
Identifying Program Power Phase Behavior using Power Vectors

CanturkIsci, MargaretMartonosi

Departmentof ElectricalEngineering

PrincetonUniversity�
canturk,mrm� @ee.princeton.edu

Abstract

Characterizingprogram behaviorcarries significantvalue in various avenuesof computerengineeringre-

search from investigationof future architectures tailored betterfor emerging applicationsto OSbaseddynamic

managementtechniques.Mostmodernapplicationsexhibit distinctivelydifferent behaviorthroughouttheir run-

times,which constituteseveral phasesof executionthat share a greateramountof resemblancewithin themselves

comparedto otherregionsof execution.Theseexecutionphasescanoccurat scalescomparableto total program

execution,necessitatingprohibitively long simulationtimesfor characterization. Due to the implementationof

extensiveclock gating and additional powerand thermalmanagementtechniquesin modernprocessors, these

program phasesare also reflectedin program power behavior, which can be usedas an alternativemeansof

programbehaviorcharacterizationfor power-orientedresearch.

In this paperwepresentour methodology for identifyingphasesin program powerbehavioranddetermining

executionpointsthatcorrespondto thesephasesaswell asdefininga smallsetof powersignaturesrepresentative

of overall programpowerbehavior. In our similarity analysisweusepowervectors sampledat programruntime

with our powerestimationsetup,which consistof power valuesfor 22 processorsub-components.We define

a powersimilarity metric as an intersectionof both magnitudebasedand ratio-wisesimilarities and developa

thresholdingalgorithmin order to partition thepowerbehaviorinto similarity groups.We illustrateour method-

ologywith theGzipbenchmarkfor its wholeruntimeandcharacterizeGzippowerbehaviorwith boththeselected

executionpointsanddefinedsignature vectors.

1 Introduction

Characterizingprogramphasebehavior for currentandemerging applicationsprovidessignificantfoundation

to computerengineeringresearchin several aspectsand abstractions.Workload characterizationcan be used

to develop morepower efficient, complexity effective, high performancearchitectures,to provide feedbackfor

multiconfigurablearchitecturesfor power/performanceoptimizations,to enableOS baseddynamicmanagement

suchasthreadscheduling,DVS andDFS, andto provide meansto overcomeprohibitively long simulationssuch

asidentifying representative executionpointsor reduceddatasets.

Most programsshow very variantbehavior over their whole runtimesandthe analysisof thesebehavior via

simulationis usually too impracticaldueto extensive simulationtimes. However, mostof theseprogramsalso

exhibit someamountof repetitive behavior within differentexecutionregionsor atcertainperiods.Phaseanalysis

is a formal methodof identifying this repetitive behavior, which canbe usedto reducethe amountof redundant

work in architecturalresearchwhile preservingtheworkloadcharacteristics,andto enabledynamicoptimization

techniquesthatbenefitfrom this phasebehavior.

In [5] we demonstratedwith several examplesthat differentprogramswith similar averagepowerscanshow

significantlydifferentpowervariation(i.e.gcc,vpr, gzip),andsameprogramwith similartotalpowerbehavior, can

have distinctively differentpower behavior –in termsof differentpower componentratios–in differentexecution

phases(i.e. vpr). In this paper, we demonstrateanalternative phaseanalysismethodwhich relatesmoredirectly

to power. In our work, we usethepowervectorconceptintroducedin [5], which representstheestimatedpower

valuesfor 22processorcomponents–suchastracecache,integerexecutionunit–ateachsampledexecutionpoint,

in a similar fashionas the basicblock vector distribution analysisof [11]. We observe the variationsin these

power vectorsin orderto identify similar regionswithin a program,which definetheseveralphasesof execution

a programgoesthroughduring its execution.Themostimportantaspectof our work is, it usespower signatures

of programsandthereforeis awayto analyzepower phasebehavior ratherthanrelyingonperformancemetricsor

basicblock information. Thepower vectorsusedin our analysesareacquiredat runtime,thereforethesimilarity

relationscanbegeneratedvery quickly, without theneedto performlengthysimulationsto collect thesimilarity

data.Also, this in turnenableseasyrepeatabilityof thedescribedsimilarity analysis.For example,to characterize

thepower behavior of a programfor a differentdatasetor optimizationlevel, we needto only reruntheprogram

with thenew configuration,ratherthanresimulatingthewholeexecution,which would requiretimeson theorder

of weekswith a moderncomputer.

The power phaseanalysisdescribedin this papercancontribute to currentresearchin variousaspects.Rep-

resentative power vectors,generatedas one result of our similarity analysis,can be usedas ”ProgramPower

Signatures”in power orientedstudies. As our analysisis basedon a real system,it candirectly be utilized in

power awareresearchsuchas[16] for runtimephaseidentificationbasedonthesignaturevectors.With theability

2

to identify recurringphasesover largescalesof execution,our power behavior characterizationtechniquecanbe

usedfor OS baseddynamicmanagementfor threadscheduling,voltageor frequency scaling[4, 15]. Moreover,

identifiedrepresentative executionpointsfor programs,asanotheroutcomeof thesimilarity analysis,canbeused

to definepower simulationpointssimilar to SimPointsof [11].

Theremainderof this paperis structuredasfollows. Section2 discussesthe relatedwork, Section3 givesan

overview of ourpowerphaseanalysismethodology, Section4 discussesthephasecharacteristicsof programpower

behavior, Section5 describesour power behavior similarity metric basedon power vectors,Section6, describes

our phaseidentificationtechniqueanddemonstratesour resultsfor representative vectorsandselectedexecution

points,with a final error analysis.Section7 providesour discussionof presentedwork andour future research

relatedto workloadcharacterizationandSection8 summarizesour conclusions.

2 Related Work

A numberof previousworksinvestigatedvariousissuesrelatedto programphasebehavior includingsimulation-

based[3, 10, 11, 12, 7, 2] andruntime[14] programprofiling techniquesto identify phasebehavior. Varyinggoals

of thesework spandiverseareassuchasidentifying representative simulationpoint samples,predictingphases,

generatingreduceddatasetsandmanagingmulticonfigurablehardwarewith programsignatures.Dhodapkarand

Smith[3], defineworking setsignaturesasa lossycompressionof trueworking setsandusethis working setin-

formationto detectphasechangesandworkingsetsize,whicharein turnusedto find anoptimalconfigurationfor

mulitconfigurablehardware.They proposeahardware-softwareimplementationfor dynamicconfiguration,where

hardwarephasetablescollectworking setsignaturesandlow level softwaremanageshardwareconfiguration.

Sherwood et al. [10] proposeBasic Block Distribution Analysismethod,which usesbasicblock profiles of

programsto identify phasesandclassifiesthis phaseinformationinto periodicandstandalonebehavior like ini-

tialization. A basicblock is a portionof a programcodethat is enteredat onepoint, executedin wholeandhasa

singleexit point. Thework in [10] introducesbasicblock vectors,which representtheproportionof basicblock

executionswithin onesamplingperiod.Then,it usesbasicblockvectordifferenceswith respectto aglobalvector,

to identify phases.In order to determinethe amountof resemblancebetweendifferent windows of execution,

collectedover the programrun, [11] definesthe basicblock similarity matrix, which consistsof the manhattan

distancebetweenall pairsof basicblock vectors.Thesimilarity matrix presentsboth thedurationof similarities

andthe similar repetitions.[11] thenusesthis similarity relationto clusterthe samplepointsinto a small setof

groups,whereeachgroupis representedby asingleexecutionpoint,chosenastheclosestto groupcentroid.These

executionpointsarethenusedasrepresentative simulationspoints,whosesimulationresultsareweightedby a

factorproportionalto groupsize.Later, [12] extendsthebasicblock vectorideato executiontime phasetracking

andphasepredictingmicroarchitecture,by approximatingbasicblock accessinformationwith instructioncounts

3

separatedwith branches.

Todi [14] usesIntel ItaniumProcessorperformancecountersto collectbenchmarkexecutioninformation,then

appliesprincipalcomponentanalysisto reducevariabledimensionsandk-meanspartitioningalgorithmto gener-

atesimilarity groups,andfinally selectsrepresentative executionpointsasclosestneighborsto clustercentroids

similar to [11].

Other relatedwork include: [7], which provides reduceddatasetsfor specbenchmarksbasedon functional

simulationbasedprofiling; [2], which identifiesexecutionphasesover long timescalesbasedon metricssuchas

IPC (Instructionsperclock), IPC varianceandIPB similar to [12], anddemonstratesworkloadsexhibit different

executionphasesalongtheir lifetimes;[9], which usesa branchbehavior buffer anddetectioncounterto identify

executionhotspotswithin workloadsat runtimeanddescribesprogramphasesbasedon hotspotfrequencies.

In comparisonto the previous work, our researchsharescertainsimilarities. First of all, we usea similar

similarity analysistechniqueas[11]. However, our similarity arebasedon estimatedpower vectorsandwe use

a combinationof normalizedandnon-normalizedmeasuresfor power components.Second,similar to [14], the

basisof our similarity analysisdatarely on performancecounters,but our approachprovidespower attributesto

collectedcounterinformation,thusaswell asidentifying phases,we canidentify andfocuson regionswith high

cache,executionpower, etc. Moreover, the applicationof performancecounterdatacollectionbearssignificant

differences– whichessentiallystemsfrom counterimplementationdifferencesin theP4andItaniumarchitectures.

We alsocollectcounterdatain lots of dimensions,but ratherthanrerunningtheexperimentat differenttimes,we

usecounterrotationswithin a singleexperimentas the flexibility of P4 counterreadingmechanismenablesus

to read15 counterssimultaneously, while Itanium architecturelimits the autherto 3 countersper run. At the

bottomline,we presenta power orientedphaseanalysismethodologyandsinceour techniqueis basedon runtime

power estimationratherthansimulation,thegenerationof power similaritiesis at almostworkloadruntimespeed.

Therefore,thepresentedmethodologyis easilyrepeatableandextensibleto new emerging workloads.

3 Methodology

In [5], we introduceda runtimemethodologyfor componentpower estimationbasedon P4performancecoun-

ters [13] andwe suggestedpower phaseanalysisasan alternative meansfor workloadcharacterization,which

utilized the power estimationmethodology. In our following phaseanalysis,we make useof the samepower

estimationframework with the experimentalsetupshown in Figure1. With this setup,we collect measuredto-

tal processorpower dataandraw performancecounterinformation,andusethis counterinformationto estimate

processorcomponentpowersandtotal processorpower at runtime.

The currentprobeon P4 power lines measuresthe DC currentthroughprocessorpower lines andthe digital

multimeterat the otherendsendsthis datato a loggermachineover RS232. The testedmachinerunsa kernel

4

�������
	�
�
� �����
��������	� �
	�����	

Voltage readings via
RS232 to logging machine

Convert voltage to measured power
Convert access rates to modeled powers
Synchronize together in time window

1mV/Adc
conversion

Counter based access
rates over ethernet

Figure 1. Power measurement and estimation setup

modulethat collectscounterinformation and a server that sendsthe raw counterdatato the logger machine

over ethernet.The loggermachinethenprocessesthe counterdatato producepower estimatesfor 22 processor

componentsat runtime, which, togetherwith a constantidle power, add up to a total power estimatethat can

be verified againstreal measurement.In our work, we usethesegeneratedcomponentpower estimatesas22-

dimensionalpowervectors at eachsamplingpoint asour multivariatedatafor similarity analysis.

In referenceto the broaderaspectof our work, power phaseanalysisis enabledby the power estimationstep,

which providesus with the power vectorsfor a given benchmark,basedon the utilized estimations.Power es-

timation step,in turn is enabledby performancemonitoringandreal power measurementstepsasthe latter two

provide thepower modelwith requiredinformationfor estimationandverification.

Specificallyduringpower phaseanalysis,we first collectpower vectors,measureddataandtiming information

for a givenbanchmarkat runtime.We alsogeneratea secondsetof databy normalizingthepower vectors.Then,

we usethe original power vectorsand normalizedvectorstogetherto generatea similarity matrix to quantify

theamountof similarity betweenall pairwisecombinationsof executionpointsbasedon themanhattandistance

betweenthevectorpairs.Basedonathresholdingalgorithmdescribedin Section6, wegenerategroupingmatrices

for agivensimilarity threshold.Thesedemonstrate,for eachexecutionpoint,whatotherexecutionpointslie within

its similarity threshold.Analyzingtheproducedgroupingmatrix,we partitiontheexecutionpointsinto a smaller

setof groupsthatcontainvectorsthatsatisfyspecifiedamountof similarity. Afterwards,weidentify representative

vectorsfor eachgroup,which representtheaveragegrouppower behavior, andreconstructpower tracebasedon

groupdistribution andrepresentative vector informationsandverify closenessof our approximationto original

power behavior.

5

4 Power Behavior of Programs Constitute Phases

In [5], we showed that programsexhibit several distinct phasesof executioneven at the largestof scaleslike

the whole executiontimeframe. For example,benchmarkssuchas Twolf can exhibit distinctively identifiable

phaseswith respectto differentdatasetseventhoughthe–measured– total power revealsindistinguishablepower

behavior. On the otherhandwith Equake, oneseesthat a benchmarkcanexhibit very differentphaseswithin a

singledatasetlike initialization, computationandreporting.This phasebehavior is very commonin applications

canbe observed in variousotherapplications.In Figure2 we show two benchmarks,SPEC2000GapandGzip,

whereGapshows distinctphasesfor a singledatasetandGzip shows periodicphaseswithin a datasetaswell as

recurringphasesacrossits 5 datasets.We alsoincludeplots for power breakdown tracesfilteredwith a 10 point

moving averagerso that we could filter down higherfrequency phasecomponentsandlook at distinct phasesat

the larger whole executionscale. Again, very distinct phasesareidentifiedat very large timescales,which are

prohibitive to capturevia simulations.

GAP Total Power

0

10

20

30

40

50

60

0 50 100 150 200 250

Time (s)

P
o

w
er

 [
W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

GZIP Total Power

0

10

20

30

40

50

60

44 94 144 194 244 294 344 394 444

Time (s)

P
o

w
er

 [
W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

GAP Component Power Breakdowns

0

1

2

3

4

5

6

0 50 100 150 200 250
Time (s)

P
o

w
er

 [
W

at
ts

] L2 Cache

L1 cache

INT Exec

Ucode ROM

Schedule

GZIP Component Power Breakdowns

0

1

2

3

4

5

6

44 144 244 344 444
Time (s)

P
o

w
er

 [
W

at
ts

] L2 Cache

L1 cache

INT Exec

Ucode ROM

Schedule

(Filtered) GAP Power Breakdowns

0

1

2

3

4

5

6

0 50 100 150 200 250
Time (s)

P
o

w
er

 [
W

at
ts

] 10 per. Mov. Avg.
(L2 Cache)

10 per. Mov. Avg.
(L1 cache)

10 per. Mov. Avg.
(INT Exec)

10 per. Mov. Avg.
(Ucode ROM)

10 per. Mov. Avg.
(Schedule)

(Filtered) GZIP Power Breakdowns

0

1

2

3

4

5

6

44 144 244 344 444
Time (s)

P
o

w
er

 [
W

at
ts

] 10 per. Mov. Avg.
(L2 Cache)

10 per. Mov. Avg.
(L1 cache)

10 per. Mov. Avg.
(INT Exec)

10 per. Mov. Avg.
(Ucode ROM)

10 per. Mov. Avg.
(Schedule)

Figure 2. Program Power Phases for Gap and Gzip

Powertracesshown in Figure2 revealtwo importantobservations,whichlay thegroundsfor ourresearch.First,

power behavior of programsareshown to exhibit phasebehavior, similar to performancemetricssuchasIPC and

missrates.Additionally thesephasesmaynot bevisible by soletotal power obsrvations,but canbehiddenin the

6

variationsof power vectors.Secondly, the employed runtimetechniqueenablesobservation of large scalephase

behavior in theorderof 10sof seconds.As discussedin [2], for mostworkloads,executingthefirst few billions

of instructions,whichcorrespondto a few secondsof actualexecution,canproducea misleadingview of program

power behavior. Thus,thesetwo observationssetthegroundrulesof our power phaseanalysisresearch:to focus

on completepower behavior of programsandto identify representative regionsthatcanaccuratelyandefficiently

reconstructprogrampower behavior.

5 Using Power Vectors For Similarity

In oursimilarity analysis,weconsiderthepower vectorsaspointersto executionpointsin thepositive quadrant

of the power spacedefinedby the22 vectorcomponents.We definethe amountof power behavior dissimilarity

betweenany two pairsof executionpoints(or interchangiblypowervectors)asthemanhattandistancebetweenthe

two vectors,which is definedastheabsolutedifferenceof vectorelementssummedover all vectorcomponents.

We usea similarity matrix representationfor our power vector sequencesin order to quantify power behavior

similaritieswithin abenchmark[11]. Theconstructedupperdiagonalpowersimilarity matricesrecordthedistance

betweenall pairsof vectorssuchthat,amatrixentry(r,c) shows themanhattandistancebetweenthepowervectors

r andc. Only theupperdiagonalneedsto beconstructedasdistancefrom r to c is identicalto distancefrom c to

r. Thediagonalof the matrix (r,r) correspondsto actualexecutionpointsandcontainsonly zeros.Therefore,as

eachvectoris perfectlysimilar to itself, perfectsimilarity correspondsto a zeroin thematrix entry, while higher

valuesrepresenthigherdissimilarity. Theexecutiontime flow is alongthe matrix diagonalandfor an execution

point ��������� , points ���! #"$�����%� representthesimilarity with respectto previoussamples,while points ���&���#"$�' (�
representsimilarity with respectto samplesin theforward path. We demonstratethe generatedpower similarity

matricesin termsof matrixplotsthatarealignedwith theexecutiontimelinealongthediagonal,wherethetop left

cornerrepresentsthe startof the timelineandthe lower right cornerrepresentsendof timeline. In thesimilarity

plots shown in Figures3, 4, 5 and6, the shadingis scaledfrom white, for maximumdissimilarity, to black, for

perfectsimilarity, wheredarker regionsrepresenthighersimilarity betweenthecorrespondingcomponentpower

vectors.

In [5], we had suggestedthe similarity matrix to be constructedfrom the original power vectorsacquired

from the runtime estimations.Here, we suggesta more restrictive approachin order to also distinguishcases

wherevectorcomponentratiosarerelatively different for vectorsof smallermagnitudesandthereforealsouse

normalizedmetricsin conjunctionwith theoriginalvectors.Moreover, it is imperative to know thatpower vectors

provide significantinsightover thebehavior thatcanbeobservedsimply from total power dissipation.Therefore,

wealsoprovideatotalpowerbasedsimilarity descriptionin comparisonto powervectorbasedsimilarity analysis.

In thefollowing subsectionswediscusstheseissuesin aprogressive manner, finally arriving atourfinal similarity

7

metric.

5.1 Similarity Based on Total Power

In order to definethe similarity basedon total power, we constructedthe similarity matrix in Figure 3 by

consideringtotalpowerasasingledimensionalpowervector. Therefore,thesimilarity matrixdirectlycorresponds

to thevariationof absolutedifferenceamongexecutionpoints. Eachmatrix entry)�*�+�,%- is computedasshown in

equation1, where.0/�1
243657/�8:9%*%;�< = representthetotal power samplesat executionpoints * and , .
.0/�1�2>3@?BA�CDA�3�2E*'A�1
FHGI2>1�*'A�JK)�*&+�,%-MLON .0/�1
243657/�8:9�* ;QP .0/�1
243657/�8:9�* = N (1)

Figure 3. Similarity Matrix based on total power

The similarity matrix in Figure3, hidessignificantamountof informationthat canbe inferredfrom Figure2

to identify differentprogrampower phasesthatrepresentdifferentpower behavior. For instance,theregion from

from 200sto 380sis identifiedasalmostcompletelysimilar exceptfor the idle periods,while the power vector

componentsshow differentpower behavior for all the 3 datasetscovered. In orderto identify thesephases,we

utilize power vectorbasedsimilarity analysisasdiscussedin thenext threesections.

8

5.2 Similarity Based on Original Power Vectors

Here,wedescribeour initially proposedsimilarity metricbasedonnon-normalizedpowervectors.Thesimilar-

ity matrix is constructedfrom manhattandistancesof all thecombinationpairsof non-normalizedpower vectors.

A singlematrix entry R�S�T�U�V is computedasshown in equation2, whereWYX!Z�[\ representthesamplepower vectors

and]_^a`Eb'Tdc4T�e�e�e&Tdcfc>g correspondto vectorcomponentindices.h S']�i>]�j@k>lnmK]�oD]�l�kES']�p
qsrtk>p�S']�uKR�S&T�U%V_v wxwyz {}|n~ W�X�Z'R�]
V���W�X�\%R�]
V ~ (2)

The generatedmatrix plot is shown in Figure 4, which identifiessomeof the phaseinformation concealed

by the total power metric, suchas the obvious phasechangesthat occur within all 5 datasets,wherememory

relatedpower drops,while executionandissuepower increaseswithin small time bursts. However, an inherent

downsideof this non-normalizedapproachis, vectorsof smallermagnitudeareboundto be consideredsimilar

eventhoughthey point to very differentdirectionsin power spaceasthedifferencevectorwill alsobeof smaller

magnitudecomparedto differencesbetweenhigher power vectors. In order to overcomethis pitfall, we also

considernormalizedmetricsasdiscussedin thenext two subsections.

Figure 4. Similarity Matrix based on original power vector s.

9

5.3 Similarity Based on Normalized Power Vectors

In orderto singleout theeffectsof normalization,herewe considera similarity metricbasedon only computed

normalizedpower vectors.Thesimilarity matrix is constructedfrom manhattandistancesof all thecombination

pairsof normalizedpowervectors.A singlematrixentry ��������� is computedasshown in equation3, where��������� �
representthesamplenormalizedpower vectors.

�����'���>�����>�%�s�B���D�����>�������s�t�>�
�����B���������_ ¡x¡¢£ ¤}¥n¦ �����!�f���
�K§¨�������%���
� ¦ (3)

Thegeneratedmatrix plot is shown in Figure5, wheretheeffectsof normalizationarereadilyobservable.The

reasonbehindnormalizationis to emphasizethe differencesbetweenthe distribution of power into the vector

components.In otherwords,thesimilarity metricdemonstratedhereis basedon therelative ratiosof component

powersindependentof vectormagnitudes.Consequently, thesimilarity matrix revealsmuchbetterdiscrimination

of low power vectorscomparedto Figure4. For instance,44-70s,70-88sand460-480sexecutionregions,which

are identified as highly similar in figure 4 are distinctively discriminatedin Figure 5. However, one obvious

shortcomingof thenormalizedvectorsis their indifferencewith respectto magnitudeaslong asratiosprove to be

similar. This unfair treatmentcanbeobservedat higherpower regionssuchas220-260sand270-350s,which are

consideredashighly similaralthoughtheoriginalsimilarity matrix inf Figure4 shows alower degreeof similarity

betweenthe two regions. Finally, to avoid this pitfall, we presenta combinedapproachasan intersectionof the

two similarity metricsin thenext lastsubsection.

5.4 Similarity Based on Both Normalized and Absolute Power Vectors

As discussedin sections5.2and5.3,bothnormalizedandnon-normalizedtechniquestendto disregardcertain

typesof dissimilarities.Therefore,in orderrestrictourselvesto similaritiesthatsatisfybothcases,we developed

anintersectionof theabove two matricessothattwo vectorsareconsideredsimilar only if they canbeconsidered

similar underbothmeasures.We performthis by addingthetwo matricesafternormalizingeachto unity in order

to weight both measuresequally. We thenlimit the resultantmatrix elementsby 1 so that 1 is representative of

maximumdissimilarity and0 correspondsto perfectsimilarity. Hence,we do not normalizeafter the addition

of two matricesin order to achieve a final similarity metric which emphasizesdissimilarities. In otherewords,

we want a similarity and a dissimilarity to result in dissimilarity. Consequently, the final similarity matrix is

constructedfrom thetwo previoussimilarity matricesasshown in equation4.

© ��ª@�4�«�K���D�����E�'���
�s�t�>���'���K���&���%�_ ­¬#®°¯ ± ² ����³´�B���µ�I�E�
�'���B�������%�¬#¶�· ��� � � ² �'��³!�B���µ�I�E�
�'���B�������%�¹¸ ���������K���µ�t�>�
�����B���������¬#¶�· ��� � �����&�'���B���µ�t�>���'���K���&���%� �%º�»
(4)

10

Figure 5. Similarity Matrix based on normaliz ed power vector s.

The matrix plot representingthis final similarity metric is shown in Figure6. This final plot identifiesboth

ratio basedand magnitudebaseddissimilaritiesrelatively well. Moreover, the emphasison dissimilar regions

alsoprovidesmuchsharperdistinctionbetweenthe degreesof similarities. In comparisonto Figure3, the final

similarity matrix plot revealssignificantly higher information regardingprogrampower phases,both at lower

power andhigherpower executionregions.

With this final similarity metric,we demonstratepower vectorbasedphaseanalysisprovidescertainamountof

insight into workloadpower behavior, which cannotbe directly extractedfrom total power behavior. Moreover,

thisfinal similarity metricprovidesamorerestrictive selectioncriterion,by eliminatingbothmagnitudebasedand

ratiobaseddissimilaritiesin power behavior. In thefollowing research,we utilize this similarity metricto identify

programphasesandcharacterizeprogrampower behavior.

6 Similarity Groups Based on Thresholding

In section5 wehave demonstratedhow wecaninformally distinguishsimilar programphasesfrom thesimilar-

ity matrix. By assessingthedegreeof darknessof SimilarityMatrix(r,c), we canunderstandthelevel of similarity

betweenexecutionpointsr andc. Yet, to beableto usethesimilarity information,we needa moreformal way of

distinguishingthisphasebehavior, whichwill alsobeguidedby thetargetedapplicationof thissimilarity behavior.

Oneof our primary aimsin power phaseanalysisis to achieve a small reducedworkloadsizefor a benchmark,

11

Figure 6. Similarity matrix as the inter section of both normaliz ed and original similarity metrics.

which still capturesmostof its power behavior. As describedin [14], therearetwo commonwaysof achieving

this aim: reducingdatasets[7], or time samplingof executionpoints[11]. Our methodologyis bestdescribedas

”Representative SamplingTechnique”[14], wherewe try to achieve a small setof executionpoints,which are

representative of the overall power tracesof programs.Secondly, we alsodefinea setof representative power

vectors,which arenot directly associatedwith executionpoints,but ratherdefinea program”signature”basedon

their componentpower dissectionsandsequenceof appearancein power trace. Thesesignaturevectorscanbe

usedin programidentificationandphaseprediction.

In this sectionwe introduceour thresholdingalgorithmin orderto respondto thetwo aforementionedissues:

- Groupingexecutionpoints–power vectors–basedon their similarity

- Representingpower behavior with reasonableaccuracy with a smallnumberof ”signaturevectors”

6.1 Thresholding Algorithm

Thresholdingalgorithmprovidesa simplemeansto groupexecutionpoints,while guidedby our aim to repre-

sentpower behavior with generatedsignaturevectors.First we specifya thresholdasa percentageof maximum

dissimilaritybetweenall pairs.Then,startingfrom first executionpoint (0,0), it identifiestheexecutionpointsin

the forward executionpaththat lie within the thresholdcriterion. For example,for a thresholdof 10%, a point

is consideredwithin thresholdif the manhattandistancebetweenthe startpointpower vectorandcurrentpower

12

vectoris lessthan10% of maximumpossibledistance,andalsoif the distancebetweenthe normalizedvectors

at the two pointslies within 10% of maximumpossibledistancebetweennormalizedvectors.The thresholding

algorithm performsthis similarity groupingfor eachexecutionpoint to generatea groupingmatrix, similar to

similarity matrix,which demonstratesall theothersimilar pointsto eachexecutionpoint, for a giventhreshold.

In Figure7, we demonstratethegroupingsfor Gzip. Maximumdifferencefor all pairsof vectorsis 47.35and

for normalizedvectorsit is 1.69. Therefore,for a 1% threshold,the distancebetweenoriginal vectorsshouldbe

lessthan0.4735anddistancebetweennormalizedvectorsshouldbelessthan0.0169.Thefigures(a)and(d) show

also the extremecases,wherefor 0.1% threshold,almostall nodesare only similar to themselves (the second

line parallel to timeline axis representsthe executionpoints,which arepointsat locations ¼�½�¾x½E¿). For 50%, the

only discriminationleft is betweenthelow power andhigh power valuesdueto their largemagnitudedifference.

For thevaluesthatlie within theseextremecases,evena 1% thresholdshows someamountof capturedsimilarity.

Whenweincreasethethresholdto 10%,wealreadyseethatall executionpointslie within at leastoneotherpoint’s

10%adjacency anda significantamountof similar groupscanbeidentifiedfor mostof thepoints.

This first stepof thresholdingalgorithmprovidesuswith a moredirectsimilarity information:For eachexecu-

tion point, it shows which otherexecutionpointsarewithin theradiusof thegiventhresholdsothat thosepoints

canbeconsideredsimilar to theobserved executionpoint. However, this doesn’t yet divide theexecutionpoints

into smallersetsof groups.To acquirethis final identificationof groups,we walk throughthegeneratedgrouping

matrix alongthe executionpathandfor an executionpoint ¼�½&¾x½E¿ in the matrix, identify the points ¼�½&¾�ÀµÁÂ½E¿ in

theforwardexecutionpaththatlie within thethreshold.Then,we tagthecorrespondingexecutionpoints ¼�À&¾�À%¿ as

thesamegroup. Then,we find thenext untaggedexecutionpoint alongexecutionandperformthesametagging

operationuntil we reachthe endof execution. Thus,we prevent any taggedexecutionpoint from addingnew

elementsto its belonginggroup. In Figure8, we first show in figure (a) the measuredandmodeledtotal power

tracefor Gzip. Then,in figures(b) and(c) weshow thedistribution of similarity groupsgeneratedby two different

thresholds.Figure(b) shows the distribution of 254 groupsalongthe sametimeline for a tight thresholdof 1%,

while figure(c) showsthedistribution of 33groupsfor amorerelaxedthresholdof 10%.For thetighterthreshold,

the groupassignmentsseemto have an almostmonotonicallyincreasingtrendalongthe timeline, which means

mostof the points,which starta new group,cangatheronly their forward pathnearneighbors,while unableto

includemany executionpointsin furthertimescales.On theotherhand,whenwe releasethesimilarity threshold,

severalexecutionpointsbegin to collapseinto samesimilarity groups.In additionto theabove two cases,wehave

generatedgroupdistributionsfor severalotherthresholdsandin Table1 we show thenumberof generatedgroups

for eachof theseappliedthresholds.In our experiment,thetotal numberof original executionpointsfor Gzip is

974,andasthetabulateddatashows,thenumberof groupsdecreasesquickly to lessthan7.2%of executionpoints

within thefirst 5% threshold,dueto thevery regularandrepetitive behavior of Gzip. Afterwards,thenumberof

groupscontinuesto decreasewith a smallerpace,asthe groupingsstart to spawn the standalonevectorsat the

13

(a) Threshold= 0.1% (b) Threshold= 1.0%

(c) Threshold= 10.0% (d) Threshold= 50.0%

Figure 7. Grouping Matrices for Gzip with Various Threshold Values

groupedges.

Therearemoreestablishedgroupingalgorithmssuchask-meanspartitioningalgorithm[8], which choosesk

randomcenterpointsfor asetof vectorsanditeratively updatescenterlocationsby assigningvectorsto thegroups

definedby thesecentersbasedon minimum distanceandthenrecomputingthe groupcentroids.This algorithm

is usedin the SimPointwork of Sherwoodet.al [11] andTodi’s SPEClitework [14]. However, our thresholding

algorithmserves for our power characterizationpurposesas the direct interpretationof manhattandistancefor

totalpower providesconfidencethatthetotalpower differencebetweenthestartingvectorof a groupandall other

membersof thegroupwill bewithin thegiventhreshold.Nonetheless,acombinationof thetwo algorithms,where

first the thresholdingalgorithmdeterminesthe numberof of groupsfor a given thresholdandthenthe k-means

14

Gzip Total Power

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Time (s)

P
ow

er
 [W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER

(a) Gzip Power Trace
Gzip Group Distribution for Threshold = 1%

0

50

100

150

200

250

300

0 100 200 300 400 500

Time (s)

G
ro

up
 #

(b) Gzip GroupDistributionsfor Threshold= 1.0%
Gzip Group Distribution for Threshold = 10%

0

5

10

15

20

25

30

35

0 100 200 300 400 500

Time (s)

G
ro

up
 #

(c) Gzip Power Distributionsfor Threshold= 10.0%

Figure 8. Grouping Distrib utions for Gzip for 1% and 10% Thresholds

algorithmperformsthepartitioningfor thegivennumberof groupsmight revealbetterresultsfor approximation.

6.2 Generating Representative Vectors

In section6.1, the thresholdingalgorithmhasprovided our responseto the first of the two raisedquestions:

How to groupthepower vectorsbasedon their similarity. For thesecondquestion,aswhetherwe couldrepresent

thepower tracewith a smallersetof signaturevectors,weusethegeneratedgroupingsasthestartpointanddefine

a representative vectorfor eachgroup. Consequently, the numberof groupsthat dependon the setthresholdis

alsothenumberof representative vectorsfor a giventrace.For therepresentative vectors,weconstructthevectors

asthe component-wisearithmeticaverageof all the vectorsbelongingto the correspondinggroup. In Figures9

and10 we show thedistribution of the974power vectorsto the33 groupsfor Gzip for a chosen10%similarity

thresholdaswell asthecorrespondingrepresentative vectorsfor eachgroup.Althoughtheseplotsdo not directly

show thetime relationof groupvectors,this canbeinferredby crossreferencingFigures9 and10 with thegroup

distributionsin Figure8.

In Figures9 and10, the first setof vectorsshow the vectorsthat correspondto the executionpointsthat are

15

GZIP Phase Groups & Representative Vectors

0

5

10

15

20

25

30

35

40

45

50

V
ec

to
r

C
o

m
p

o
n

en
ts

RETIRE

Schedule

Inst Queue2

Inst Queue1

Rename

Allocation

Ucode ROM

1st Level BPU

Trace Cache

Inst Dec

FP Regfile

INT Regfile

FP Exec

INT Exec

Data TLB

MEM control

MOB

L1 cache

ITLB & Fetch

2nd Level BPU

L2 Cache

Bus Control

0

50

100

150

200

250

300

Figure 9. Gzip Power vector s Distrib uted into Groups and Representative Vector s. For each group

number , the fir st bars are the actual vector s that fall into the that group. The last bar in each group

sho ws the representative vector for that group. The histogram belo w the group number s sho w the

number of vector s per group.

GZIP Phase Groups & Representative Vectors

0%

20%

40%

60%

80%

100%

V
ec

to
r

C
o

m
p

o
n

en
ts

RETIRE

Schedule

Inst Queue2

Inst Queue1

Rename

Allocation

Ucode ROM

1st Level BPU

Trace Cache

Inst Dec

FP Regfile

INT Regfile

FP Exec

INT Exec

Data TLB

MEM control

MOB

L1 cache

ITLB & Fetch

2nd Level BPU

L2 Cache

Bus Control

Figure 10. Normaliz ed Gzip Power Vector s and Representative Vector s Distrib uted into Groups.

16

Threshold # Groups
0.1% 909
1% 254
3% 108
5% 70
7% 50
10% 33
20% 15
30% 9
50% 4
70% 3
100% 1

Table 1. Number of Generated Groups vs. Threshold for Gzip.

membersof theshown groupnumberin thex axis. Thesecondbarshows thegeneratedrepresentative vectorfor

that groupasthe arithmeticaverageof all vectorsthat belongto the samegroup. In Figure9, we alsoshow the

numberof vectorsfor eachgroupwith both the shown histogram,andthe actualnumbersbelow the histogram.

The most immediateobservation from the two figuresis, thereis a very uneven distribution of vectorsinto the

33 groups,wheregroups15 and22 actuallyrepresentmorethan50% of the whole trace. Both normalizedand

non-normalizedplotsreveal,therearea few regionswithin the15thand22ndgroups,which presentsignificantly

higher similarity amongthemselves with respectto the rest of the membersof the group. Theseregions are

discriminatedwhen we choosea tighter threshold,but they are groupedtogetherfor the given 10% threshold.

Nevertheless,dependingonthelevel of desiredaccuracy, amoregreedygroupingmechanismcanfurtherfocuson

thesefatgroupsandapplyasecondlevel thresholdingwith atighterboundto identify theseregions.Moreover, the

non-normalizedplots in Figure9 show that,somedimensionssuchasthetracecacheandretirementlogic move

together, thussignifying a dependentpower behavior, while someotherdimensionslike the L1 cache,L2 cache

andbuslogic canshow conversebehavior suchasgroups5 vs.6 and21vs.31. This lastobservationletsusassert,

with a power vectorbasedphaseanalysis,we canalsodiscriminatephasesinto groupssuchashigh L1 cacheand

low L2 power –i.e.group21–or suchashigh L2 power with low buspower –i.e.group31.

6.3 Selecting Execution Points

As we have discussedat the beginning of this section,our primary aim is to comeup with a manageable

setof executionpointsthat capturemostof the programpower behavior. Unlike the representative vectors,the

executionpointsshouldactuallyreferto anactualexecutiontimesothatthosespecifiedpointscanidentify power

simulationpointssimilar to Calderet.al.́s SimPoints.The methodologyboth [11] and[14] useis, choosingthe

vectorclosestto thecentroidsof theirgeneratedclusters.This translatesto our descriptionastheexecutionpoints

correspondingto the power vectorsclosestto the representative vectorsfor eachgroup. However, asdiscussed

in section6.1, the main advantageof thresholdingalgorithm is that, the distancebetweenthe startpointof a

17

groupandall othermembersof the groupis alwaysboundedby the given threshold.Therefore,in our selection

of the executionpoints,we choosethe earliestoccuringmemberof eachgroup–thestartpoint–asthe selected

executionpoint for thatgroup.Thus,we canalwaysformally specifyanupperboundon theamountof difference

betweentheoriginally estimatedpower andour power approximationbasedon theselectedsetof power vectors.

Additionally, as[1] discusses,choosingrepresentative simulationpointsearlierin theexecutiontimelinereduces

the time requiredto fast forward to the selectedsimulationpoints. As our implementationof the thresholding

algorithmalsotakes this point into consideration,by walking alongthe forward executionpathto discover the

groupstartpoints,theselectedexecutionpointsarealwaysthe’early’ simulationpointsin our experiments.

The power vectorsfor the selectedexecutionpointscanbe readily inferredfrom figures9 and10, asthe first

vector in eachgroup’s set of vectors. Furtherdiscussionof selectedexecutionpoints and acquiredresultsis

includedin sections6.4 and6.5,wherewe demonstratetheachievedpower traceapproximationandtherangeof

approximationerror.

6.4 Reconstructing Power Traces

After having specifiedtherepresentative vectorsin section6.2,for eachexecutionpoint,weassigntherepresen-

tative vectorfor thecorrespondinggroupasthatpoint’s power vectorandthus,reconstructthewholepower trace

with only therepresentative vectors.Similarly, referringto theselectedexecutionpointsin section6.3,weidentify

thecorrespondingpower vectorsandconstructthepower tracebasedon selectedexecutionpoints’ vectors.These

reconstructedpower tracesdemonstratethe closenessof power behavior characterizationsto the original power

traces.In Figure11, we show the reconstructedtracesbasedon representative vectorsfor thresholdsof 1% and

10%respectively in figures(a) and(b), andin Figure12, we show the power tracesbasedon selectedexecution

points. For Figure12, we only includethetracefor 10%thresholdas1% is indistinguishablefrom Figure11(a).

All thethreeplotsshow actualmeasuredaswell asmodeledpower asthereconstructedpower is actuallyasecond

approximationto the actualpower throughthe performancecounterbasedpower estimation.Thus,we canalso

assesstheaccuracy of our characterizationwith respectto therealpower behavior.

Thereconstructedpower tracefor 1% thresholdin Figure11(a)shows almosta perfectmatchingto theoriginal

powerbehavior, with aproximatelyÃ(Ä&Å of theoriginalpowervectors.Figure11(b)showsadistinguishableamount

of mismatchbetweenthe traces,but it characterizesthe whole power behavior with only 33 vectors,which are

approximately3.9% of the total vector samples.The power tracebasedon the vectorsthat correspondto the

selectedexecutionpoints in Figure12 alsoshows a closebut distinguishableapproximationfor the same10%

threshold.Thedifferencein Figure12 seemsto behigherover thewhole tracecomparedto Figure11(b),which

we discussin moredetailin section6.5.

It is worth to notethat,thecomparisonsin figures11 and12 only comparethetotal power behavior, while the

18

RECONSTRUCTED GZIP POWER for Threshold=1% <254 Vectors>

5

15

25

35

45

55

0 50 100 150 200 250 300 350 400 450 500
Time (s)

P
o

w
er

 [
W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER RECONSTRUCTED_POWER
(Representative Vectors)

(a) ReconstructedPower for Threshold=1%
RECONSTRUCTED GZIP POWER for Threshold=10% <33 Vectors>

5

15

25

35

45

55

0 50 100 150 200 250 300 350 400 450 500
Time (s)

P
o

w
er

 [
W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER RECONSTRUCTED_POWER
(Representative Vectors)

(b) ReconstructedPower for Threshold= 10%
Figure 11. Reconstructed Power Traces for Gzip based on Representative Vector s.

RECONSTRUCTED GZIP POWER for Threshold=10% <33 Vectors>

5

15

25

35

45

55

0 50 100 150 200 250 300 350 400 450 500
Time (s)

P
o

w
er

 [
W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER RECONSTRUCTED_POWER
(Vectors Based on Selected Execution Points)

Figure 12. Reconstructed Power Trace for Gzip based on Selected Execution Point Vector s.,

ultimategoalof similarity analysisis to beableto characterizepower accuratelyacrossall dimensions.In order

to show how the componentpowersare characterized,we show the power vectorsamplesalong the execution

timeline in Figures13, 14 and15. In Figure13 we show theoriginal counterestimatedpower vectorsbothwith

magnitudesandasnormalized.In Figures14 we show the resultantvectortracesfor representative vectors,and

in Figure15 we show the vectorsbasedon the selectedexecutionpoints,both normalizedandnon-normalized.

In Figures13, 14 and15, we only show the vectortracesfor 10% threshold,asthe 1% caseis indistinguishable

from the original vectors. In the non-normalizedplots,we alsoshow the total power trace,which is the sumof

all shown 22 vectorcomponentsanda constantidle power of 8W that is not includedin the vectorplots. Both

reconstructedtracesdemonstrate,they capturemostof thelargescalebehavior, while they seemto filter out some

power variationsin smallerscales.

19

(a) Non-Normalized (b) Normalized
Figure 13. Gzip Original Power Vector Traces

(a) Non-Normalized (b) Normalized
Figure 14. Gzip Power Vector Trace based on Representative Vector s

(a) Non-Normalized (b) Normalized
Figure 15. Gzip Power Vector Trace based on Selected Execution Points

20

6.5 Error Analysis

In previous sections,we have shown how the power behavior characterizationsbasedon eitherrepresentative

vectorsor selectedexecutionpointsrelateto theoriginalpower behavior with variousdescriptions.In thissection,

we quantifyour approximationerrorwith respectto theoriginal counterestimatedpowers.We show theabsolute

errorfor total power in Figure16 andwe alsoshow vectorcomponentbasedabsoluteerrorsin Figure17.

ERROR in TOTAL POWER for Threshold=10% <33 Vectors>

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500
Time (s)

P
o

w
er

 [
W

]

(Representative Vectors)

(a) Error for Representative Vectors

ERROR in TOTAL POWER for Threshold=10% <33 Vectors>

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500Time (s)

P
o

w
er

 [
W

]

(Vectors Based on Selected Execution Points)

(b) Error for SelectedExecutionPoints

Figure 16. The absolute error for total power characterizations

GZIP Reconstructed Power - Absolute Errors

0

1

2

3

4

5

6

7

8

9

10

44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462

A
b

so
lu

te
 D

if
fe

re
n

ce

0

10

20

30

40

50

60

Time (s)

P
o

w
er

 [
W

]

RETIRE_R

Schedule_R

Inst Queue2_R

Inst Queue1_R

Rename_R

Allocation_R

Ucode ROM_R

1st Level BPU_R

Trace Cache_R

Inst Dec_R

FP Regfile_R

INT Regfile_R

FP Exec_R

INT Exec_R

Data TLB_R

MEM control_R

MOB_R

L1 cache_R

ITLB & Fetch_R

2nd Level BPU_R

L2 Cache_R

Bus Control_R

RECONSTRUCTED_POWER

TOTAL_MODELED_POWER

(Representative Vectors)

(a) Error for Representative Vectors

GZIP Reconstructed Power - Absolute Error

0

1

2

3

4

5

6

7

8

9

10

44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462

Time(s)

A
b

so
lu

te
 D

if
fe

re
n

ce

0

10

20

30

40

50

60

P
o

w
er

 [
W

]

RETIRE_R

Schedule_R

Inst Queue2_R

Inst Queue1_R

Rename_R

Allocation_R

Ucode ROM_R

1st Level BPU_R

Trace Cache_R

Inst Dec_R

FP Regfile_R

INT Regfile_R

FP Exec_R

INT Exec_R

Data TLB_R

MEM control_R

MOB_R

L1 cache_R

ITLB & Fetch_R

2nd Level BPU_R

L2 Cache_R

Bus Control_R

RECONSTRUCTED_POWER

TOTAL_MODELED_POWER

(Vectors Based on Selected Execution Points)

(b) Error for SelectedExecutionPoints

Figure 17. The component-wise absolute errors

Theplots for representative vectorsandvectorsbasedon selectedexecutionpointsdiffer in onemajoraspect.

As mentionedin section6.1,sincewechoosethestartpointsof groupsastheexecutionpoints,thesumof absolute

errorsfor componentsis alwayswithin thespecifiedthreshold,while theerrorsfor representative vectorsarenot

necessarilyboundwith the samethreshold.As a result, the errorsfor representative vectorsoccasionallyshoot

higherthanthethreshold–4.735W for 10%threshold.However, astherepresentative vectorsareat thecenterof

eachgroup,the cumulative error basedon representative vectorsis expectedto be lower. Thesearereflectedin

thevectorplotsasa moreevenly distributederrorin executionpoint basedplots,while representative vectorplots

show aloweraverageerrorover thewholetimeline.For representative vectors,TheRMSerroris 2.31Wandwhile

maximumerroris 7.10W. For executionpoints,theRMS erroris 3.08Wandthemaximumerroris 4.71W, which

arein accordancewith thediscussedexpectations.Hence,themaximumdifferencesarehigherthantherangeof

total power errorsin 16, asthey arebasedon themanhattandistancebetweenthepower vectors.In otherwords,

21

while absoluteerrorsbasedon total power show the absolutedifferenceof the sum of vector components,the

componentbasederrorsshow thesumof absolutedifferencesof vectorcomponents,thuspreventingtwo counter

power behaviors from cancellingeachother.

7 Discussion and Future Work

Work reportedin this paperis a preliminarydecsriptionof our broaderresearchrelatedto power phaseanalysis

andthereareseveral issuesthatwe planto addressin our currentour futureresearch.In this section,we discuss

someof theissuesthatdefineour futurework andalsosomeshortcomingsof our approach.

Althoughthe variability in several dimensionsof the power vectorsis whatenablestheprogrampower phase

characterization,someof thedimensionsshow verysimilarvariationssuchastheissuerelatedcomponents.More-

over, althoughuseful for processorcomponentpower estimations,somedimensionsareactually driven by the

sameperformanceevents,which do not directly contributeto phaseidentification.Therefore,oneaspectof future

work involvesreducingthedimensionalityof power vectorswithout lossof power behavior. [11] usesa random

projectiontechniquefor the samepurpose,while [14] usesthe PrincipalComponentAnalysis(PCA)[6], which

generatesa new setof componentsasa linearcombinationof original componentssothateachcomponentrepre-

sentsa differentdegreeof variancein theapplieddataset.In futureresearch,we planto usePCA, asit is a good

wayof removing theredundanciesfor our application,wheresomecomponentstendto move together. Moreover,

oneof aimsis to be ableto introducedimensionsthat areconceptuallymeaningful,while reducingdimensions,

suchasdirectionsthatrepresenthigh memorysubsystempower, issuepower, etc.

As describedin section6, oneof theprimaryaimsof power phaseanalysisis to bealsoableto identify a small

setof simulationpointsthat characterizepower behavior. However, althoughwe canidentify simulationpoints,

we cannotverify our approachwith power simulationsasdon’t have accessto a P4power simulator. Therefore,

onedirection of our curentwork involves relating the power phasebehavior to programstructureand identify

executionpointsfor a programthatcanbeappliedwith a differentarchitecturalsimulator.

Finally, as discussedin sections6.1 and 6.2, thereexist other possibilitiesfor generatingthe phasegroups,

which canpotentiallyperformbetter. A combinationof thresholdingandk-meansalgorithmmayprovide a better

characterization,while still letting us identify executionpointsthat satisfythe specifiedthresholdor a two-pass

thresholdingalgorithmcanproducegroupswith significantlyhighersimilarity with a slight increasein numberof

groups,suchasseparatingthedistinguishableregionsin groups15 and22 of Figure9.

8 Conclusion

In this paperwe presenteda power phaseanalysismethodologyfor characterizingprogrampower behavior

basedon powervectors sampledat programruntimewith theperformancecounterbasedpower estimationsetup.

22

We usedour methodologyto identify executionregionswith similar power behavior for Gzip andgroupedthese

executionpoints using a restrictive similarity metric and a thresholdbasedgroupingalgorithm. Furthermore,

we identified executionpoints and representative power vectorsfor different specifiedthresholdsbasedon the

similarity groupsgeneratedby thethresholdingalgorithmandquantifiedtheaccuracy of our characterizationsby

comparingtheoriginal power traceto reconstructedpower traces.Our investigationof differentsimilarity metrics

revealedthatcharacterizingprogrampower basedon eithertheabsolutedifferencesof power vectorcomponents

or the similarity of ratio distributions amongcomponentspotentially identifiesspurioussimilarities. Therefore,

we defineda combinedsimilarity metric,which identifiessimilaritiescommonto bothmetricsandshowedthatit

identifiesonly truesimilaritieseffectively. Moreover, we demonstratedthatconsideringonly total programpower

behavior concealsmostof power phaseinformationandcanresult in misleadingconclusions.The experiments

with differentsimilarity thresholdsrevealed,thenumberof groupsquickly decreaseasthresholdsincreasewithin

the1-5%rangeandreconstructedpower tracesproduceanalmostperfectmatchfor thresholdsaround1%, with

only 1/4 of the original power vectors. The error analysisbetweenthe original powertraceand reconstructed

tracesshowedthat theexecutionpointsalwayslimit theerror in characterizationwithin a given thresholddueto

thegenerationof similarity groupsandselectionof executionpoints,while themaximumerrorfor representative

vectorscanbesignificantlyhigherthanagiventhreshold.For wholeprogramexecution,selectedexecutionpoints

areshown to generatea moreevenly distributedapproximationerror, but with a higheraverageerrorcomparedto

representative vectors.

This researchpresentsa different,power-oriented,programphaseanalysistechniquethat is basedon runtime

processorpower estimation.Thedefinedsimilarity metriccharacterizesprogrampower behavior basedon simi-

laritiesin bothtotal dissipatedpower anddistribution of power to processorcomponents.Unlike previously used

performancemetrics,the power vectorsalsoprovide a direct relationbetweenthe degreeof similarity and the

variationin total power, which enablesusto limit total power variationswithin a thresholdwith thethresholding

algorithm. The generatedrepresentative vectorscanbe usedas”programpower signatures”for programpower

characterizationandthe selectedexecutionpointsrepresenta direct referencefor power simulations.Moreover,

As our power phaseanalysisis basedon a real, available system,it can readily be usedin several aspectsof

computerarchitectureresearchsuchasdynamicpower andthermalmanagement.In conclusion,this work offers

a phaseanalysismethodologyspecificallytargetedat characterizingpower behavior andwe believe, this power

phaseanalysistechniquecanprovideasignificantinsightto powerawareandworkloadcharacterizationresearch.

References

[1] B. Calder, T. Sherwood,E. Perelman,andG. Hamerly. SimPointwebpage.http://www.cs.ucsd.edu/simpoint/.

[2] J. Cook,R. L. Oliver, andE. E. Johnson.Examiningperformancedifferencesin workloadexecutionphases.In Proceedingsof the

IEEEInternationalWorkshoponWorkloadCharacterization(WWC-4), 2001.

23

[3] A. DhodapkarandJ.Smith. Managingmulti-configurablehardwarevia dynamicworking setanalysis.In 29thAnnualInternational

Symposiumon ComputerArchitecture,2002.

[4] M. Huang,J. Renau,andJ. Torrellas. Profile-BasedEnergy Reductionin High-PerformanceProcessors.In 4th ACM Workshopon

Feedback-DirectedandDynamicOptimization, December2001.

[5] C. Isci andM. Martonosi.RuntimePower Monitoring in High-EndProcessors:MethodologyandEmpiricalData.In Proceedingsof

the36thInternationalSymp.on Microarchitecture, Dec.2003.

[6] R. Jain.TheArt of ComputerSystemsPerformanceAnalysis. Wiley-Interscience,New York, 1991.

[7] A. KleinOsowski, J. Flynn, N. Meares,andD. J. Lilja. Adaptingthe SPEC2000benchmarksuite for simulation-basedcomputer

architectureresearch.In WorkshoponWorkloadCharacterization,InternationalConferenceon ComputerDesign, Sept.2000.

[8] J.MacQueen.Somemethodsfor classificationandanalysisof multivariateobservations.In 5thBerkeley SymposiumonMathematical

StatisticsandProbability, pages281–297,1967.

[9] M. C. Merten,A. R. Trick, R. D. Barnes,E. M. Nystrom,C. N. George, J. C. Gyllenhaal,andW. mei W. Hwu. An architectural

framework for runtimeoptimization.IEEETransactionsonComputers, 50(6):567–589,2001.

[10] T. Sherwood, E. Perelman,and B. Calder. Basic block distribution analysisto find periodic behavior and simulationpoints in

applications.In InternationalConferenceonParallel ArchitecturesandCompilationTechniques, Sept.2001.

[11] T. Sherwood, E. Perelman,G. Hamerly, and B. Calder. Automatically characterizinglarge scaleprogrambehavior, 2002. In

Tenth InternationalConferenceon Architectural Support for ProgrammingLanguagesand OperatingSystems,October2002.

http://www.cs.ucsd.edu/users/calder/simpoint/.

[12] T. Sherwood,S.Sair, andB. Calder. Phasetrackingandprediction.In Proceedingsof the28thInternationalSymposiumonComputer

Architecture (ISCA-30), June2003.

[13] B. Sprunt.Pentium4 performance-monitoringfeatures.IEEEMicro, 22(4):72–82,Jul/Aug2002.

[14] R.Todi. Speclite:usingrepresentativesamplesto reducespeccpu2000workload.In Proceedingsof theIEEEInternationalWorkshop

onWorkloadCharacterization(WWC-4), 2001.

[15] A. WeisselandF. Bellosa.Processcruisecontrol: Event-drivenclockscalingfor dynamicpower management.In Proceedingsof the

InternationalConferenceon Compilers, Architecture andSynthesisfor EmbeddedSystems(CASES2002),Grenoble, France,, Aug.

2002.

[16] H. Zeng,X. Fan, C. Ellis, A. Lebeck,andA. Vahdat. ECOSystem:Managingenergy asa first classoperatingsystemresource.

In TenthInternationalConferenceon Architectural Supportfor ProgrammingLanguagesandOperating Systems(ASPLOSX), Oct.

2002.

24

