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Abstract

Characterizing program behavior is important for both
hardware and software research. Most modern applica-
tions exhibit distinctly different behavior throughout their
runtimes, which constitute several phases of execution that
share a greater amount of resemblance within themselves
compared to other regions of execution. These execution
phases can occur at very large scales, necessitating pro-
hibitively long simulation times for characterization. Due
to the implementation of extensive clock gating and addi-
tional power and thermal management techniques in mod-
ern processors, these program phases are also reflected in
program power behavior, which can be used as an alterna-
tive means of program behavior characterization for power-
oriented research.

In this paper we present our methodology for identifying
phases in program power behavior and determining exe-
cution points that correspond to these phases, as well as
defining a small set of power signatures representative of
overall program power behavior. We define a power simi-
larity metric as an intersection of both magnitude based and
ratio-wise similarities in the power dissipation of processor
components. We then develop a thresholding algorithm in
order to partition the power behavior into similarity groups.
We illustrate our methodology with the gzip benchmark for
its whole runtime and characterize gzip power behavior
with both the selected execution points and defined signa-
ture vectors.

1 Introduction

Characterizing program phase behavior for current and
emerging applications provides significant foundation to
computer engineering research in several aspects and ab-
stractions. Workload characterization can be used to de-
velop more power-efficient, complexity-effective, high per-
formance architectures, to provide feedback for multicon-
figurable architectures for power/performance optimiza-
tions, to enable OS based dynamic management and to over-
come prohibitively long simulations by identifying repre-
sentative execution points or reduced datasets.

Most programs show very variable behavior over their
whole runtimes and the analysis of these behavior via sim-
ulation is usually impractical due to extensive simulation
times. However, most of these programs also exhibit some
amount of repetitive behavior within different execution re-
gions or at certain periods. Phase analysis is a formal
method of identifying this repetitive behavior, which can
be used to reduce the amount of redundant work in archi-
tectural research while preserving the workload character-
istics, and to enable dynamic optimization techniques that
benefit from this phase behavior.

In [5] we demonstrate with several examples that differ-
ent programs with similar average powers can show signif-
icantly different power variation (i.e. gcc, vpr, gzip). Like-
wise, a single program with very stable total power can have
distinctively different power behavior—in terms of different
component power ratios—in different execution phases (i.e.
vpr). In this paper, we demonstrate a phase analysis method
which relates directly to power. In our work, we introduce
the power vector concept, which represents the estimated
power values for 22 processor components—such as trace
cache, integer execution unit—at each sampled execution
point, in a similar fashion as the basic block vector distribu-
tion analysis of [11]. We observe the variations in these
power vectors in order to identify similar regions within
a program, which define the several phases of execution a
program goes through during its execution.

The most important aspect of our work is that it uses
power signatures of programs and therefore is a way to an-
alyze power phase behavior rather than relying on perfor-
mance metrics or basic block information. The power vec-
tors used in our analyses are acquired at runtime; therefore
the similarity relations can be generated very quickly, with-
out the need to perform lengthy simulations to collect the
similarity data. To characterize the power behavior of a pro-
gram for a different dataset or optimization level, we need
to only rerun the program with the new configuration, rather
than resimulating the whole execution.

The power phase analysis described in this paper con-
tributes to current research in various ways. Representative
power vectors, generated as one result of our similarity anal-
ysis, can be used as “program power signatures” in power
oriented studies. As our analysis is based on a real system,
it can directly be utilized in power aware research such as



[16] for runtime phase identification based on the signature
vectors. With the ability to identify recurring phases over
large scales of execution, our technique can be used for OS
based dynamic management for thread scheduling, voltage
or frequency scaling [4, 15]. Moreover, identified execu-
tion points for programs, as another outcome of the similar-
ity analysis, can be used to define power simulation points
similar to SimPoints of [11].

The remainder of this paper is structured as follows.
Section 2 discusses the related work, Section 3 gives an
overview of our power phase analysis methodology, Sec-
tion 4 discusses the phase characteristics of program power
behavior and Section 5 describes our power behavior simi-
larity metric based on power vectors. Section 6 describes
our phase identification technique and demonstrates our
results for representative vectors and selected execution
points, with a final error analysis. Section 7 provides discus-
sion of presented work and future research related to work-
load characterization and Section 8 summarizes our conclu-
sions.

2 Related Work

A number of previous works investigated various issues
related to program phase behavior including simulation-
based [2, 3, 7, 10, 11, 12] and runtime [9, 14] program pro-
filing techniques to identify phase behavior. These works
span diverse areas such as identifying representative simu-
lation point samples, predicting phases, generating reduced
datasets and managing configurable hardware with program
signatures. Dhodapkar and Smith define working set signa-
tures as a lossy compression of true working sets and use
this working set information to detect phase changes and
working set size, which are in turn used to find an opti-
mal configuration for multiconfigurable hardware [3]. Sher-
wood et al. introduce basic block vectors, which represent
the proportion of basic block executions within one sam-
pling period. They use basic block vector differences with
respect to a global vector to identify program phases [10].
In order to determine the amount of resemblance between
different windows of execution, collected over the program
run, they define the basic block similarity matrix, which
consists of the manhattan distances between all pairs of ba-
sic block vectors. They use this similarity relation to cluster
the sample points into a small set of groups, where each
group is represented by a single execution point, chosen as
the closest to group centroid [11]. Later, they extend the ba-
sic block vector idea to execution time phase tracking and
phase predicting microarchitecture, by approximating basic
block access information with instruction counts separated
with branches [12]. In [14], Todi uses Intel Itanium proces-
sor performance counters to collect benchmark execution
information. The author applies principal component anal-
ysis to reduce variable dimensions and k-means partitioning
algorithm to generate similarity groups, and finally selects
representative execution points similar to [11].

In comparison to the previous work, we use a similar

similarity analysis technique as [11]. However, our analysis
is based on estimated power vectors and we use a combina-
tion of normalized and non-normalized measures for phase
identification. Similar to [14], the basis of our similarity
analysis data relies on performance counters, but our ap-
proach provides power attributes to collected counter infor-
mation. Thus as well as identifying phases, we can identify
and focus on regions with high cache, execution power, etc.
Moreover, the application of performance counter data col-
lection bears significant differences. Rather than rerunning
the experiment at different times, we use counter rotations
within a single experiment as the flexibility of P4 counter
reading mechanism [13] enables us to read 18 counters si-
multaneously. Overall, we present a power oriented phase
analysis methodology and since our technique is based on
runtime power estimation rather than simulation, power
similarities are generated at almost real workload runtime
speed. Therefore, the presented methodology is easily re-
peatable and extensible to new emerging workloads.

3 Methodology

In our power phase analysis, we make use of the runtime
component power estimation framework that we introduced
in [5]. With the experimental setup shown in Figure 1, we
collect measured total processor power data and raw per-
formance counter information, and use this counter infor-
mation to estimate processor component powers and total
processor power at runtime.

Figure 1. Power measurement and compo-
nent power estimation setup.

In our setup, the current probe on P4 power lines mea-
sures the DC current through processor power lines and the
digital multimeter at the other end sends this data to a log-
ger machine over RS232. The tested machine runs a ker-
nel module that collects counter information, and a server
that sends the raw counter data to the logger machine over
ethernet. The logger machine then processes the counter
data to produce power estimates for 22 processor compo-
nents at runtime, which, together with a constant idle power,
add up to a total power estimate that can be verified against
real measurement. In our work, these generated component



power estimates are considered as 22-dimensional power
vectors at each sampling point that serve as our multidi-
mensional data for similarity analysis.

During power phase analysis, we first collect power vec-
tors, measured data and timing information for a given
benchmark at runtime. We also generate a second set of data
by normalizing the power vectors. Then, we use the original
power vectors and normalized vectors together to generate
a similarity matrix to quantify the amount of similarity be-
tween all pairwise combinations of execution points. Based
on a thresholding algorithm described in Section 6, we gen-
erate grouping matrices for a given similarity threshold.
These demonstrate, for each execution point, which other
execution points lie within its similarity threshold. Analyz-
ing the produced grouping matrix, we partition the execu-
tion points into a small set of groups, which contain vectors
that satisfy a specified amount of similarity. Afterwards, we
identify representative vectors for each group, which repre-
sent the average group power behavior. We use these rep-
resentative vectors to reconstruct the power trace and verify
how close our approximation is to original power behavior.

4 Power Behavior of Programs Constitute
Phases

Most programs exhibit several distinct phases of execu-
tion even at the largest of scales like the whole execution
timeframe. For example, benchmarks such as twolf can ex-
hibit distinctively identifiable phases with respect to differ-
ent datasets even though the—measured—total power re-
veals indistinguishable power behavior. On the other hand,
with equake one sees that a benchmark can exhibit very dif-
ferent phases within a single dataset like initialization, com-
putation and reporting [5]. In Figure 2 we show two bench-
marks, SPEC2000 gap and gzip, where gap shows distinct
phases for a single dataset and gzip shows periodic phases
within a dataset as well as recurring phases across its 5
datasets. We also include plots for power breakdown traces
filtered with a 10 point moving average so that we could
filter down higher frequency phase components and look at
distinct phases at the larger whole execution scale. Again,
very distinct phases are identified at very large timescales,
which are prohibitive to capture via simulations.

Power traces shown in Figure 2 reveal two important ob-
servations, which lay the grounds for our research. First,
power behavior of programs are shown to exhibit phase be-
havior, similar to performance metrics such as IPC and miss
rates. Additionally these phases may not be visible by sole
total power observations, but can be hidden in the varia-
tions of power vectors. Secondly, the employed runtime
technique enables observation of large scale phase behav-
ior in the order of 10s of seconds. As discussed in [2], for
most workloads, executing the first few billions of instruc-
tions, which correspond to a few seconds of actual execu-
tion, can produce a misleading view of program power be-
havior. Thus, these two observations set the ground rules
of our power phase analysis research: to focus on complete

power behavior of programs and to identify representative
regions that can accurately and efficiently reconstruct pro-
gram power behavior.

5 Using Power Vectors for Similarity

In our power phase analysis, we consider the generated
power vectors as points in the positive quadrant of the power
space spanned by the 22 vector dimensions. As each power
vector corresponds to a specific execution time sample in
the program trace, we evaluate power behavior similarity
of execution regions by measuring the spatial closeness of
the points specified by the corresponding power vectors.
We use the manhattan distance between two vectors as our
measure of closeness, which is defined as the absolute dif-
ference of vector elements summed over all vector compo-
nents.

We record the manhattan distances for all vector pairs in
an upper diagonal similarity matrix in the execution order
such that, matrix entry (r,c) shows the manhattan distance
between the power vectors corresponding to ����� and ����� ex-
ecution time samples. Only the upper diagonal needs to
be constructed as distance from the ����� vector to the �	���
is identical to distance from the �
��� vector to the ����� . The
matrix entries are nonnegative real numbers. A 0 at entry
(r,c) represents a perfect similarity between execution sam-
ples r and c, while higher values represent higher dissimi-
larity. The execution time flow is along the matrix diagonal
and for an execution point � , entries in the upper column� ��
���������� represent its similarity with respect to previ-
ous samples, while the entries in the right row

� ����� 
�� ���
represent similarity with respect to samples in the forward
path. We demonstrate the generated power similarity matri-
ces in terms of matrix plots that are aligned with the execu-
tion timeline along the diagonal, where the top left corner
represents the start of the timeline and the lower right cor-
ner represents the end of the timeline. In the matrix plots
shown in Figures 3, and 4, the matrix entries are presented
as greyscale pixels, where the shading is scaled from white,
for maximum dissimilarity, to black, for perfect similarity,
by the entry values.

Initially, we had considered a similarity analysis based
on original power vectors acquired from the runtime esti-
mations [5]. Here, we suggest a more restrictive approach
in order to also distinguish cases where vector component
ratios are relatively different for vectors of smaller magni-
tudes and therefore also use normalized metrics in conjunc-
tion with the original vectors. Moreover, it is imperative
to know that power vectors provide significant insight over
the behavior that can be observed simply from total power
dissipation. Therefore, we also provide a total power based
similarity description in comparison to power vector based
similarity analysis. In the following subsections we discuss
these issues in a progressive manner, ultimately arriving at
our final similarity metric.
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(d) Gzip component power breakdowns
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(e) Filtered gap power breakdowns
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Figure 2. Total and component-wise power traces for gap and gzip.

5.1 Similarity Based on Total Power

In order to observe the similarity based on total power,
we constructed the similarity matrix in Figure 3 by con-
sidering total power as a single dimensional power vector.
Therefore, the similarity matrix directly corresponds to the
variation of absolute total power difference among execu-
tion points. Each matrix entry �������
� is computed as shown
in Equation 1, where ��� �"!$#&%'� (�)���*�+ , represent the total
power samples at execution points � and � .-/.1032
46587:9�7;4<2
=17:0;>@?A2	0;=B7:C$DE=BFHGJI8KML -/.1032
46NO.1PRQ�=�S
TU-/.1032
46NO.�PVQ�=JW
L

(1)
The similarity matrix in Figure 3, hides significant

amount of information that can be inferred from Figure 2 to
identify different program power phases. For instance, the
region from from 200s to 380s is identified as almost com-
pletely similar except for the idle periods, while the power
vector components show different power behavior for all
the 3 datasets covered. To be able to extract this concealed
phase information, we need to consider a finer grained anal-
ysis of power behavior based on variations of component-
wise power distributions—power vectors, which we discuss
in the following sections.

5.2 Similarity Based on Original Power Vectors

The most straightforward way of incorporating power
vectors into the similarity analysis is defining similarity
with respect to the distance between these vectors. The sim-
ilarity matrix based on this approach is constructed from

Figure 3. Total power similarity matrix.

manhattan distances of all the combination pairs of non-
normalized power vectors. A single matrix entry �3�����X� is
computed as shown in Equation 2, where %�YZ*�+ , represent
the sample power vectors and []\_^6`6�1a8�
b
bXb��1a6a$c correspond
to vector component indices.d =B7:e	7:fg2X4h5i7:9�7;4E2	=B7:0;>j?A2
0;=17:C$Dk=BFlGJI8K�mnmo p qsr L N]t S DE73I8TuN]t W Dk7;I�L

(2)

The generated matrix identifies some of the phase in-



formation concealed by the total power metric, such as
the obvious phase changes that occur within all 5 datasets,
where memory-related power drops, while execution and
issue power increase within small time bursts. There is,
however, an inherent downside to this absolute approach.
Namely, vectors of smaller magnitude are bound to be con-
sidered similar even though they may point very different
directions in power space. This is simply because in low-
power regions, the difference vector will also be of smaller
magnitude compared to differences between higher power
vectors. In order to overcome this pitfall, we also consider
normalized metrics that help provide similarity measures in-
dependent of the range of total power.

5.3 Similarity Based on Normalized Power Vec-
tors

In order to single out the effects of normalization, here
we consider a similarity metric based on only computed
normalized power vectors. The similarity matrix is con-
structed from the manhattan distances of all the combina-
tion pairs of normalized power vectors. A single matrix
entry v3w�x�yXz is computed as shown in Equation 3, where{}|�~���� �

represent the sample normalized power vectors.���1�B���X���;�	�1���i�:���;�E�	�B�:�;���A�	�;�B�:�$�E�B�H�J�����n�� � �s V¡ ��¢]£�¤X�k�;�"¥/��¢]£ ¦	�k�;� ¡
(3)

The reason behind normalization is to emphasize the dif-
ferences between the distribution of power into the vector
components. In other words, the similarity metric demon-
strated here is based on the relative ratios of component
powers independent of vector magnitudes. Consequently,
the similarity matrix reveals much better discrimination of
low power vectors compared to original similarity matrix.
However, one obvious shortcoming of the normalized vec-
tors is their indifference with respect to magnitude as long
as ratios prove to be similar. This unfair treatment is ob-
served at some higher power regions, where the normalized
similarity matrix exhibits significantly higher levels of sim-
ilarity compared to the original similarity matrix. Finally,
to avoid this pitfall, we present a combined approach as an
intersection of the two similarity metrics in the next section.

5.4 Similarity Based on Both Normalized and Ab-
solute Power Vectors

As discussed in Sections 5.2 and 5.3, both normalized
and non-normalized techniques tend to disregard certain
types of dissimilarities. Therefore, in order restrict our-
selves to similarities that satisfy both cases, we developed
an intersection of the above two matrices so that two vectors
are considered similar only if they can be considered simi-
lar under both measures. We perform this by adding the two
matrices after normalizing each to unity in order to weight
both measures equally. We then limit the resultant matrix el-
ements by 1 so that 1 is representative of maximum dissim-
ilarity and 0 corresponds to perfect similarity. We perform

a limiting operation, rather than normalization, after the ad-
dition of two matrices in order to achieve a final similarity
metric which emphasizes dissimilarities. In other words, we
want a similarity and a dissimilarity to result in dissimilar-
ity. Consequently, the final similarity matrix is constructed
from the two previous similarity matrices as shown in Equa-
tion 4, where FM, OM and NM represent final, original and
normalized similarity matrices respectively.§©¨«ª ���l�H¬i­¯®O° ±�² ³ ¨«ª ���l�H¬®O´�µ
¶H·3¸ ¹�· ª ³ ¨ºª � · �l� · ¬�¬¼» ½ ¨«ª ���l�H¬®O´�µ
¶l·�¸ ¹3· ª ½ ¨«ª � · �l� · ¬�¬ �H¾"¿

(4)

The matrix plot representing this final similarity metric
is shown in Figure 4. This final plot identifies both ratio
based and magnitude based dissimilarities relatively well.
Moreover, the emphasis on dissimilar regions also provides
much sharper distinction between the degrees of similari-
ties. In comparison to Figure 3, the final similarity matrix
plot reveals significantly higher information regarding pro-
gram power phases, both at lower power and higher power
execution regions.

Figure 4. Similarity matrix based on both nor-
malized and absolute similarity metrics.

With this final similarity metric, we demonstrate power
vector based phase analysis provides certain amount of in-
sight into workload power behavior, which cannot be di-
rectly extracted from total power. Moreover, it provides
a more restrictive selection criterion. In the following re-
search, we utilize this similarity metric to identify program
phases and characterize program power behavior.

6 Similarity Groups Based on Thresholding

In Section 5 we have demonstrated how we can infor-
mally distinguish similar program phases from the similar-
ity matrix. By assessing the degree of darkness of the simi-
larity matrix entry with coordinates (r,c), we can understand



the level of similarity between sample execution points r
and c in the timeline. Yet, to be able to use the similarity in-
formation, we also need more formal ways of distinguishing
this phase behavior.

One primary aim in power phase analysis is to achieve
a reduced workload size for a benchmark that still captures
most of its power behavior. Our methodology is best de-
scribed as “representative sampling technique” [14], where
we identify a small set of execution points that are represen-
tative of the overall power traces of programs. Secondly, we
also define a set of representative power vectors, which are
not directly associated with execution points, but rather de-
fine a program “signature” based on their component pow-
ers and their order of appearance in the timeline. These
signature vectors can be used in program identification and
phase prediction.

For both of these problems, we need to get the sample
set small enough to be manageable. Thus, in this section
we introduce a thresholding algorithm with the following
two goals:

(i) Grouping execution points—power vectors—based on
their similarity

(ii) Representing power behavior with reasonable accu-
racy with a small number of “signature vectors”

6.1 Thresholding Algorithm

Our thresholding algorithm provides a means to group
execution points, guided by our aim to represent power be-
havior with generated signature vectors. First we specify
a threshold as a percentage of maximum dissimilarity be-
tween all pairs. Then, starting from the first execution point
(0,0), we move forward in time identifying the execution
points that lie within the threshold criteria. The threshold
criteria include both the absolute and normalized measures.
For example, for a threshold of 10%, a point is considered
within threshold if the manhattan distance between the start-
point power vector and current power vector is less than
10% of maximum possible distance, and also if the distance
between the normalized vectors at the two points lies within
10% of maximum possible distance between normalized
vectors. The thresholding algorithm performs this similar-
ity grouping for each execution point to generate a grouping
matrix. Similar to the initial similarity matrix, the grouping
matrix illustrates which other points are similar to each ex-
ecution point, for a given threshold.

In Figure 5, we demonstrate the groupings for gzip. The
maximum difference for all pairs of vectors is 47.35 (com-
pared to a maximum power magnitude of 58.65W). For nor-
malized vectors, the maximum difference is 1.69. Figure
5(a) shows an extreme case, where for the 0.1% thresh-
old, almost all nodes are only similar to themselves. Fig-
ure 5(d) shows a very loose threshold of 50%. Here, the
only discrimination left is between the low power and high
power values due to their large magnitude difference. For
the values between these extreme cases, even a 1% thresh-
old shows some amount of captured similarity. When we

increase the threshold to 10%, we already see that all exe-
cution points lie within at least one other point’s 10% ad-
jacency and a significant amount of similar groups can be
identified for most of the points.

(a) Threshold = 0.1% (b) Threshold = 1%

(c) Threshold = 10% (d) Threshold = 50%

Figure 5. Grouping matrices for gzip with re-
spect to different threshold values.

For each execution point, the first thresholding step
shows which other execution points are within the radius
of the given threshold. However, this does not yet divide
the execution points into smaller sets of groups. To iden-
tify these groups, we walk through the generated grouping
matrix along the forward execution path. For each execu-
tion point À , in the matrix we identify the points Á3À�Â1ÃXÄ]ÅÆÀ�Ç
in the forward execution path that lie within the threshold.
Then, we tag the corresponding execution points Ã Ä as the
same group. Afterwards, we find the next untagged exe-
cution point in the timeline and perform the same tagging
operation until we reach the end of execution. Thus, we pre-
vent any tagged execution point from adding new elements
to its belonging group.

In Figure 6, we show the distribution of similarity groups
generated by two different thresholds. Figure 6(a) shows
the distribution of 254 groups along the same timeline for
a tight threshold of 1%, while Figure 6(b) shows the distri-
bution of 33 groups for a more relaxed threshold of 10%.
For the tighter threshold, the group assignments have an
almost monotonically increasing trend along the timeline.
This means that most of the points that start a new group
can gather only near neighbors along their forward path,
but are unable to include many execution points in further
timescales. On the other hand, when we relax the similar-
ity threshold, several execution points begin to collapse into
same similarity groups.

In addition to the above two cases, we generated group
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Figure 6. Group distributions for gzip.

distributions for several other thresholds. In Table 1 we
show the number of generated groups for each of these
applied thresholds. In our experiment, the total number
of original execution points for gzip is 974. As the table
shows, the number of groups decreases quickly to less than
7.2% of execution points within the first 5% threshold, due
to the very regular and repetitive behavior of gzip.

Threshold # Groups
0.1% 909
1% 254
3% 108
5% 70
7% 50
10% 33
20% 15
30% 9
50% 4
70% 3
100% 1

Table 1. Number of generated groups for dif-
ferent thresholds for gzip.

6.2 Generating Representative Vectors

In Section 6.1, the thresholding algorithm has provided
our response to the first of the two raised questions: How
to group the power vectors based on their similarity. For
the second question—whether we could represent the power
trace with a smaller set of signature vectors—we use the
generated groupings as the startpoint and define a represen-
tative vector for each group. Consequently, the number of
groups that depend on the set threshold is also the number
of representative vectors for a given trace. For the represen-
tative vectors, we construct the vectors as the component-
wise arithmetic average of all the vectors belonging to the
corresponding group. In Figures 7 and 8 we show the distri-
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Figure 7. Gzip power vectors distributed
into groups and corresponding representa-
tive vectors. The histogram below the groups
shows the number of vectors per group.
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Figure 8. Normalized gzip power vectors and
corresponding representative vectors dis-
tributed into groups.

bution of the 974 power vectors into the 33 groups and the
corresponding representative vectors for gzip for a chosen
10% similarity threshold.

In Figures 7 and 8, the first set of bars show the vec-
tors that correspond to the execution points that are mem-
bers of the shown group number in the x axis. The last bar
per group shows the generated representative vector for that
group as the arithmetic average of all vectors that belong to
the same group. In Figure 7, we also show the number of
vectors for each group with both the shown histogram, and
the actual numbers below the histogram. There is a very
uneven distribution of vectors into the 33 groups; groups
15 and 22 actually represent more than 50% of the whole
trace. Both normalized and non-normalized plots reveal that
there are a few regions within the 15th and 22nd groups,
which present significantly higher similarity among them-
selves with respect to the rest of the members of the group.
These regions are discriminated when we choose a tighter
threshold, but they are grouped together for the applied 10%
threshold. Depending on desired accuracy, a more greedy
grouping mechanism can apply a second level thresholding
with a tighter bound to identify these regions. Moreover,
the non-normalized plots in Figure 7 show that some di-
mensions such as the trace cache and retirement logic move
together, thus signifying a dependent power behavior, while



some other dimensions like the L1 cache, L2 cache and bus
logic can show converse behavior. Thus, our power vector
based phase analysis also lets us discriminate phases into
groups such as high L1 cache and low L2 power (i.e. group
21) or high L2 power with low bus power (i.e. group 31).

6.3 Selecting Execution Points

Our primary aim in phase analysis is to come up with a
manageable set of execution points that captures most of the
program power behavior. The execution points should refer
to actual execution times so that those specified points can
identify power simulation points similar to SimPoints [1].
In our selection of the execution points, we choose the earli-
est occurring member of each group—the startpoint—as the
selected execution point for that group. Thus—as the dis-
tance between the startpoint of a group and all other mem-
bers of the group is always bounded by the given thresh-
old, we can always formally specify an upper bound on
the amount of difference between the originally estimated
power and our power approximation based on the selected
set of power vectors. Also, as [1] discusses, choosing rep-
resentative simulation points earlier in the execution time-
line reduces the time required to fast forward to the selected
simulation points. Due to our selection scheme, the selected
execution points are always the “early” simulation points in
our experiments.

The power vectors for the selected execution points can
be readily inferred from Figures 7 and 8, as the first vector
in each group’s set of vectors. Further discussion of selected
execution points and acquired results is included in Sections
6.4 and 6.5, where we demonstrate the achieved power trace
approximation and the range of approximation error.

6.4 Reconstructing Power Traces

After having specified the representative vectors in Sec-
tion 6.2, for each execution point, we assign the represen-
tative vector for the corresponding group as that point’s
power vector and thus, reconstruct the whole power trace
with only the representative vectors. Similarly, referring to
the selected execution points in Section 6.3, we identify the
corresponding power vectors and construct the power trace
based on the selected execution point vectors.

The reconstructed power traces for a 1% threshold show
an almost perfect matching to the original power behav-
ior for both representative vectors and selected execution
points, using approximately È É�Ê (254) of the original power
vectors. On the other hand, traces for a 10% threshold show
distinguishable mismatches with respect to the original gzip
total power, as can be observed in Figure 13. Nonetheless,
both traces characterize the whole power behavior with only
33 vectors, which are approximately 3.9% of the total vec-
tor samples. In general, the differences in traces based on
selected execution points are observed to be higher over the
whole runtime compared to traces based on representative
vectors, which we further discuss in Section 6.5.

It is worth noting that the above comparisons only con-
sider the total power behavior, while the ultimate goal of
similarity analysis is to be able to characterize power ac-
curately across all dimensions. In order to show how the
component powers are characterized, we show the power
vector samples along the execution timeline in Figures 9,
10 and 11. In Figure 9 we show the original counter esti-
mated power vectors both with magnitudes and as normal-
ized. In Figures 10 and 11 we show the resultant vector
traces for representative vectors, and the selected execution
points, both absolute and normalized for a 10% threshold.
In the magnitude plots, we also show the total power traces,
which are the sum of all shown 22 vector components and a
constant idle power of 8W that is not included in the vector
plots. Both reconstructed traces demonstrate, they capture
most of the large scale behavior, while they seem to filter
out some power variations in smaller scales.

6.5 Error Analysis

In previous sections, we have shown how the power be-
havior characterizations based on either representative vec-
tors or selected execution points relate to the original power
behavior with various descriptions. In this section, we quan-
tify our approximation error with respect to the original
counter-estimated powers.

Figure 12 shows the absolute error in reconstructed total
power for both representative vectors and selected execution
points. Figure 13 shows the component-wise absolute er-
rors and how they accumulate at each time sample for both
cases. Additionally, on the secondary y axes, it shows the
reconstructed total power traces together with the original
total power estimation for gzip. The component-wise errors
for representative vectors and vectors based on selected ex-
ecution points (Figure 13) differ in one major aspect. As
mentioned in section 6.3, since we choose the startpoints of
groups as the execution points, the sum of absolute errors
for components is always within the specified threshold for
selected execution points, while the errors for representa-
tive vectors are not necessarily bound with the same thresh-
old. As a result, stacked component errors for representative
vectors occasionally shoot higher than the threshold—4.735
W for the 10% threshold—in Figure 13(a). However, as the
representative vectors are the centers of each group, they
have a lower average error over the whole timeline. For
representative vectors, the RMS error is 2.31W while maxi-
mum error is 7.10W. For execution points, the RMS error is
3.08W and the maximum error is 4.71W, in accordance with
the discussed expectations. Hence, the component-wise er-
rors in Figure 13 have a higher range than total power er-
rors in Figure 12, as they are based on the manhattan dis-
tances between the power vectors. In other words, while
absolute errors for total powers show the absolute differ-
ence of the sum of vector components, the component based
errors show the sum of absolute differences of vector com-
ponents. Thus, two converse power behaviors are prevented
from canceling each other.



(a) Absolute (b) Normalized

Figure 9. Original gzip power vector traces.

(a) Absolute (b) Normalized

Figure 10. Gzip power vector traces based on representative vectors.

(a) Absolute (b) Normalized

Figure 11. Gzip power vector traces based on selected execution points.

7 Discussion and Future Work

Work reported in this paper is a preliminary description
of our broader research related to power phase analysis and
there are several issues that we plan to address in future
research. Here, we present some of these issues and discuss
particular aspects of our work.

Although the variability in several dimensions of the
power vectors is what enables the program power phase
characterization, some of the dimensions such as the issue
related components show very correlated variations. More-
over, although useful for processor component power esti-
mations, some dimensions are actually driven by the same
performance events, which do not directly contribute to
phase identification. Therefore, one aspect of future work

involves reducing the dimension of power vectors without
loss of power behavior. In future research, we plan to ap-
ply principal component analysis (PCA)[6, 14] to generate
a new set of components as a linear combination of the orig-
inal set so that each component exhibits a different degree
of variance. PCA is a good way of removing redundancies
in our application, where some components tend to move
together.

As described in Section 6, one of the primary aims of
power phase analysis is to be also able to identify a small
set of simulation points that characterize power behavior.
However, although we can identify simulation points, we
cannot verify our approach with power simulations as we
do not have access to a sufficiently accurate P4 power simu-
lator. Therefore, one direction of our current work involves
relating the power phase behavior to program structure and
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(b) Error for selected execution points

Figure 12. Absolute error in total power estimates reconstructed from representative vectors and
selected execution points.
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Figure 13. Component-wise absolute errors stacked along the timeline.

identify execution points for a program that can be applied
in a different architectural simulator.

Finally, there exist other possibilities for generating the
phase groups such as the k-means partitioning algorithm
[8], which iteratively assigns a set of vectors to k centroids
starting from random center points. However, our thresh-
olding algorithm serves for our power characterization pur-
poses as the direct interpretation of manhattan distance for
total power. This provides confidence that the total power
difference between the starting vector of a group and all
other members of the group will be within the given thresh-
old. Nonetheless, a combination of the two algorithms,
where first the thresholding algorithm determines the num-
ber of of groups (k) for a given threshold and then the
k-means algorithm performs the partitioning for the given
number of groups might perform better. Moreover, as men-
tioned in Section 6.2, a two-pass thresholding algorithm can
be used to further decompose large groups with intra-group
phases. This method can produce groups with significantly
higher similarity with a slight increase in the number of
groups.

8 Conclusion

In this paper we presented a power phase analysis
methodology for characterizing program power behavior
based on power vectors sampled at program runtime with
the performance counter based power estimation setup. We
used our methodology to identify execution regions with
similar power behavior for gzip and grouped these execu-
tion points using a restrictive similarity metric and a thresh-

old based grouping algorithm. Furthermore, we identified
execution points and representative power vectors for dif-
ferent specified thresholds based on the similarity groups
generated by the thresholding algorithm and quantified the
accuracy of our characterizations by comparing the origi-
nal power trace to reconstructed power traces. Our inves-
tigation of different similarity metrics revealed that char-
acterizing program power based on either the absolute dif-
ferences of power vector components or the similarity of
ratio distributions among components potentially identifies
spurious similarities. Therefore, we defined a combined
similarity metric, which identifies similarities common to
both metrics and showed that it identifies only true similar-
ities effectively. Moreover, we demonstrated that consid-
ering only total program power behavior conceals most of
power phase information and can result in misleading con-
clusions. The experiments with different similarity thresh-
olds revealed that the number of groups quickly decrease
as thresholds increase within the 1-5% range, and recon-
structed power traces produce an almost perfect match for
thresholds around 1%, with only 1/4 of the original power
vectors. The error analysis between the original power trace
and reconstructed traces showed that the execution points
always limit the error in characterization within a given
threshold due to the generation of similarity groups and se-
lection of execution points. The maximum error for rep-
resentative vectors, however, can be higher than a given
threshold. For whole program execution, selected execu-
tion points are shown to generate a more evenly distributed
approximation error, but with a higher average error com-
pared to representative vectors.



This research presents a different, power-oriented, pro-
gram phase analysis technique that is based on runtime
processor power estimation. The defined similarity met-
ric characterizes program power behavior based on similari-
ties in both total dissipated power and distribution of power
to processor components. Unlike previously used perfor-
mance metrics, the power vectors also provide a direct re-
lation between the degree of similarity and the variation
in total power, which enables us to limit total power vari-
ations within a threshold with the thresholding algorithm.
The generated representative vectors can be used as pro-
gram power signatures for program power characterization
and the selected execution points represent a direct refer-
ence for power simulations. Moreover, as our power phase
analysis is based on a real, available system, it can read-
ily be used in several aspects of computer architecture re-
search such as dynamic power and thermal management.
In conclusion, this work offers a phase analysis methodol-
ogy specifically targeted at characterizing power behavior.
We believe this power phase analysis technique can provide
significant insights for power aware and workload charac-
terization research.
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