
1

Identifying Program
Power Phase Behavior
Using Power Vectors

Canturk Isci & Margaret Martonosi

WWC-6
10.27.2003
Austin, TX 2

Power Phase BehaviorPower Phase Behavior
! Existence of distinguishable intervals during

an application�s execution lifetime such that:
They share significantly higher resemblance
within themselves in terms of power behavior
the application exhibits on a given processor
This similarity is carried out by not only the
total processor power, but also the distribution
of power into processor sub-units

(Filtered) VPR Power Breakdowns

0
1
2
3
4
5
6

0 100 200 300 400 500
Time (s)

Po
w

er
 [W

at
ts

]

(Filtered) GAP Power Breakdowns

0
1
2
3
4
5
6

0 50 100 150 200 250
Time (s)

Po
w

er
 [W

at
ts

]

(Filtered) Gcc Power Breakdowns

0
1

2
3
4
5

0 100 200Time (s)

Po
w

er
 [W

at
ts

]

3

Our Power Phase AnalysisOur Power Phase Analysis
"Goal:

!Identify phases in program power
behavior

!Determine execution points that
correspond to these phases

!Define small set of power
signatures that represent overall
power behavior

4

Our ApproachOur Approach"Our Approach – Outline:

! Collect samples of estimated power values for
processor sub-units <Power Vectors> at
application runtime

! Define a power vector similarity metric

! Group sampled program execution into phases

! Determine execution points and
representative signature vectors for each
phase group

! Analyze the accuracy of our approximation

5

MotivationMotivation
"Characterizing power behavior:

! Future power-aware architectures and
applications

! Dynamic power/thermal management

! Architecture research

"Utilizing power vectors:
! Direct relation to actual processor power

consumption

! Acquired at runtime

! Identify program phases with no knowledge of
application 6

RETIRE
Schedule
Inst Queue2
Inst Queue1
Rename
Allocation
Ucode ROM
1st Level BPU
Trace Cache
Inst Dec
FP Regfile
INT Regfile
FP Exec
INT Exec
Data TLB
MEM control
MOB
L1 cache
ITLB & Fetch
2nd Level BPU
L2 Cache
Bus Control

Generating Power VectorsGenerating Power Vectors

POWER
CLIENT

POWER
SERVER Voltage readings

via RS232 to
logging machine

Convert voltage to measured power
Convert access rates to
component powers

1mV/Adc
conversion

Counter based
access rates

over ethernet

22 Entries of each
power vector sample

2

7

Power Vector Similarity MetricPower Vector Similarity Metric
" How to quantify the �power behavior

dissimilarity� between two execution points?
1. Consider solely total power difference #

2. Consider manhattan distance between the
corresponding 2 vectors #

3. Consider manhattan distance between the
corresponding 2 vectors normalized #

4. Consider a combination of (2) & (3) $

" Construct a �similarity matrix� to represent
similarity among all pairs of execution points
! Each entry in the similarity matrix:

8

Gcc Component Power Breakdowns

0

1

2

3

4

5

6

0 50 100 150 200 250
Time (s)

Po
w

er
 [W

at
ts

] L1 cache

Trace
Cache

RETIRE

Gcc Total Power

0
10
20
30
40
50
60

Po
w

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER
Gzip Total Power

0
10
20
30
40
50
60

44 88 132 176 220 264 308 352 396 440
Time (s)

Po
w

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

Gzip Component Power Breakdowns

0

1

2

3

4

5

6

44 144 244 344 444
Time (s)

Po
w

er
 [W

at
ts

] L1 cache

INT Exec

RETIRE

G
cc

G
cc

&

&
 G

zi
p

G
zi

p
M

at
ri

x
Pl

ot
s

M
at

ri
x

Pl
ot

s
(S

im
ila

r
to

 S
im

Po
in

ts
w

o
rk

 o
f

S
h
er

w
oo

d
 e

t
al

.)

9

Gcc Component Power Breakdowns

0

1

2

3

4

5

6

0 50 100 150 200 250
Time (s)

Po
w

er
 [W

at
ts

] L1 cache

Trace
Cache

RETIRE

Gcc Elaboration:
Very variant power

Almost identical power
behavior at 30, 50, 180s.

Although 88s, 110s,
140s, 210s and 230s
show similar total power;
88, 210 and 230 share
higher similarity.

Gcc Total Measured Power

0
10
20
30
40
50
60

0 50 100 150 200 250
Time (s)

Po
w

er
 [W

at
ts

]

Gcc Total Power

0
10
20
30
40
50
60

Po
w

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

G
cc

G
cc

&

&
 G

zi
p

G
zi

p
M

at
ri

x
Pl

ot
s

M
at

ri
x

Pl
ot

s

10G
cc

G
cc

&

&
 G

zi
p

G
zi

p
M

at
ri

x
Pl

ot
s

M
at

ri
x

Pl
ot

s

Gzip Elaboration:
Much regular power
behavior

Spurious similarities
are again
distinguished by the
similarity analysis

GZIP Total Measured Power

0

10

20

30

40

50

60

44 94 144 194 244 294 344 394 444

Time (s)

Po
w

er
 [W

at
ts

]

Gzip Total Power

0
10
20
30
40
50
60

44 88 132 176 220 264 308 352 396 440
Time (s)

Po
w

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

Gzip Component Power Breakdowns

0

1

2

3

4

5

6

44 144 244 344 444
Time (s)

Po
w

er
 [W

at
ts

] L1 cache

INT Exec

RETIRE

11

Grouping Execution PointsGrouping Execution Points
" “Thresholding Algorithm”:

! Define a threshold of similarity
< % of max dissimilarity>

! Start from first execution point (0,0) and identify ones
in the fwd execution path that lie within threshold for
both normalized and absolute metrics

! Tag the corresponding execution points (j,j)
as the same group

! Find next untagged execution point (r,r)
and do the same along forward path

! Rule: A tagged execution point cannot add new
elements to its group!

We demonstrate the outcome of thresholding with Grouping Matrices
12

GzipGzip Grouping MatricesGrouping Matrices

" Gzip has 974 power vectors
" Cluster vectors based on similarity

using �thresholding�
! Max Gzip power dissimilarity: 47.35W

3

13

Gzip Group Distribution for Threshold = 1%

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500

Time (s)

G
ro

up
 #

0

10

20

30

40

50

Gzip Group Distribution for Threshold = 10%

0
5

10
15
20
25
30
35
40
45

0 50 100 150 200 250 300 350 400 450 500

Time (s)

G
ro

up
 #

0

10

20

30

40

50

Generated Group DistributionsGenerated Group Distributions

14

Representative Vectors & Execution PointsRepresentative Vectors & Execution Points

" We have each execution point assigned to a group
" For Each Group:

" For Each Execution Point:

" We can represent whole execution with as many
power vectors as the number of generated groups

! Select the execution point
that started the group (The
earliest point in each group)

! Define a representative
vector as the average of
all instances of that group

! Assign the power vector of
the selected execution point
for that group as that point�s
power vector

! Assign the corresponding
group’s representative
vector as that point’s
power vector

15

R
ec

on
st

ru
ct

in
g

Po
w

er
 T

ra
ce

R

ec
on

st
ru

ct
in

g
Po

w
er

 T
ra

ce

w
ith

 R
ep

re
se

nt
at

iv
e

V
ec

to
rs

:
w

ith
 R

ep
re

se
nt

at
iv

e
V

ec
to

rs
:

RECONSTRUCTED GZIP POWER for Threshold=1% <254 Vectors>

5

15

25

35

45

55

0 50 100 150 200 250 300 350 400 450 500
Time (s)

Po
w

er
 [W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER RECONSTRUCTED_POWER
(Representative Vectors)

RECONSTRUCTED GZIP POWER for Threshold=10% <33 Vectors>

5

15

25

35

45

55

0 50 100 150 200 250 300 350 400 450 500Time (s)

Po
w

er
 [W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER RECONSTRUCTED_POWER
(Representative Vectors)

16

R
ec

on
st

ru
ct

in
g

Po
w

er
 T

ra
ce

R

ec
on

st
ru

ct
in

g
Po

w
er

 T
ra

ce

w
ith

 S
el

ec
te

d
Ex

ec
ut

io
n

Po
in

ts
:

w
ith

 S
el

ec
te

d
Ex

ec
ut

io
n

Po
in

ts
:

RECONSTRUCTED GZIP POWER for Threshold=10% <33 Vectors>

5

15

25

35

45

55

0 50 100 150 200 250 300 350 400 450 500Time (s)

Po
w

er
 [W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER RECONSTRUCTED_POWER
(Vectors Based on Selected Execution Points)

RECONSTRUCTED GZIP POWER for Threshold=1% <254 Vectors>

5

15

25

35

45

55

0 50 100 150 200 250 300 350 400 450 500Time (s)

Po
w

er
 [W

]

TOTAL_MEASURED_POWER TOTAL_MODELED_POWER RECONSTRUCTED_POWER
(Vectors Based on Selected Execution Points)

17

Component Power CharacterizationsComponent Power Characterizations

GZIP Modeled Power - Vector Components

0

10

20

30

40

50

60

44 66 88 110
132

154
176

198
220

242
264

286
308

330
352

374
396

418
440

462

Ve
ct

or
 C

om
po

ne
nt

s

Bus Control L2 Cache 2nd Level BPU
ITLB & Fetch L1 cache MOB
MEM control Data TLB INT Exec
FP Exec INT Regfile FP Regfile
Inst Dec Trace Cache 1st Level BPU
Ucode ROM Allocation Rename
Inst Queue1 Inst Queue2 Schedule
RETIRE TOTAL_MODELED_POWER

GZIP Reconstructed Power - Vector Components

0

10

20

30

40

50

60

44 66 88 110
132

154
176

198
220

242
264

286
308

330
352

374
396

418
440

462

Ve
ct

or
 C

om
po

ne
nt

s

Bus Control_R L2 Cache_R 2nd Level BPU_R
ITLB & Fetch_R L1 cache_R MOB_R
MEM control_R Data TLB_R INT Exec_R
FP Exec_R INT Regfile_R FP Regfile_R
Inst Dec_R Trace Cache_R 1st Level BPU_R
Ucode ROM_R Allocation_R Rename_R
Inst Queue1_R Inst Queue2_R Schedule_R
RETIRE_R RECONSTRUCTED_POWER

(Representative Vectors)
GZIP Reconstructed Power - Vector Components

0

10

20

30

40

50

60

44 66 88 110
132

154
176

198
220

242
264

286
308

330
352

374
396

418
440

462

Ve
ct

or
 C

om
po

ne
nt

s

Bus Control_R L2 Cache_R 2nd Level BPU_R
ITLB & Fetch_R L1 cache_R MOB_R
MEM control_R Data TLB_R INT Exec_R
FP Exec_R INT Regfile_R FP Regfile_R
Inst Dec_R Trace Cache_R 1st Level BPU_R
Ucode ROM_R Allocation_R Rename_R
Inst Queue1_R Inst Queue2_R Schedule_R
RETIRE_R RECONSTRUCTED_POWER

(Vectors Based on Selected Execution Points)

18

GZIP Reconstructed Power - Absolute Errors

0

1

2

3

4

5

6

7

8

9

10

44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462

Time(s)

A
bs

ol
ut

e
D

iff
er

en
ce

0

10

20

30

40

50

60

Po
w

er
 [W

]

(Vectors Based on Selected Execution Points)
GZIP Reconstructed Power - Absolute Errors

0

1

2

3

4

5

6

7

8

9

10

44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 418 440 462

A
bs

ol
ut

e
D

iff
er

en
ce

0

10

20

30

40

50

60

Time (s)

Po
w

er
 [W

]

(Representative Vectors)

Approximation ErrorApproximation Error

" Due to thresholding algorithm % Errors for selected
exec. points are bounded with the threshold
! Max Error: 4.71W & RMS Error: 3.08W

" As representative vectors are group centroids %
Cumulative errors for repr. vectors are lower
! Max Error: 7.10W & RMS Error: 2.31W

" Error in total power< Σ(Component errors)

4

19

ConclusionConclusion
" Presented a power oriented methodology to

identify program phases that uses power vectors
generated during program runtime

" Provided a similarity metric to quantify power
behavior similarity of different execution samples

" Demonstrated our representative sampling
technique to characterize program power
behavior

" Can be useful for power & characterization
research:
! Power Phase identification/prediction
! Reduced power simulation
! Dynamic power/thermal management

20

Related WorkRelated Work
" Dhodapkar and Smith [ISCA�02]

! Working set signatures to detect phase changes

" Sherwood et. al. [PACT�01,ASPLOS�02,ISCA�30]
! Similarity analysis based on program basic block profiles

to identify phases

" Todi [WWC�01]
! Clustering based on counter information to identify

similar behavior

" Our work in comparison
! Power oriented
! Power behavior similarity metric
! Runtime
! No information about the application is required
! Bounded approximation error with thresholding

21

EOP
22

" Power Vector Components
! More detail on Power Vectors

" Different Similarity Metrics
! Similarity matrices and equations for all discussed techniques

" Similarity & Grouping Matrices
! Exemplified description of the two matrices and plots

" Current & Future Research
! Discussion of the ongoing and future research
! Includes also some new ideas and some things to do to make

our current analysis solid

" Questions & Rebuttals
! Starts with the discussion of presented work
! Discusses some shortcomings, things that need to be done to

improve and to verify that it is unique and solid
(Some parts of current work also discusses these issues)

! Also provides some answers to reviewers� questions
! Includes some possible new ideas

EXTRA SLIDESEXTRA SLIDES

23

Defining ComponentsDefining Components

24

P4 Architecture P4 Architecture vsvs LayoutLayout

Components to Model:
1) Bus Control
2) L2 Cache
3) 2nd Level BPU
4) ITLB & Ifetch
5) L1 Cache

6) MOB
7) Mem Control
8) DTLB
9) Int EXE
10)FP EXE
11)Int RF

12)FP RF
13)Decode
14)Trace $
15)1st Level BPU
16)Microcode ROM
17)Allocation

18)Rename
19)Inst-n Qs
20)Schedule
21)Inst-n Qs
22)Retirement

Back

5

25

Defining Events Defining Events &&&&&&&& Access RatesAccess Rates
" We determined 24 events to approximate access rates

for 22 components
" Used Several Heuristics to represent each access rate

" Examples:

" Need to rotate counters 4 times to collect all event data
! Used 15 counters & 4 rotations to collect all event data 26

Access Rates Access Rates &&&&&&&& Component PowersComponent Powers
"�Performance Counter based Access Rate

estimations are used as proxy for max
component power weighting together with
microarchitectural details in order to
estimate processor sub-unit powers�

! EX: Trace cache delivers 3 uops/cycle in
deliver mode and 1 uop/cycle in build mode:

Power(TC)=[Access-Rate(TC)/3 + Access-Rate(ID)]
x MaxPower(TC)
+ Non-gated TC CLK power

" Total power is computed as the sum of all 22
component powers + measured idle power (8W):

27

Counter Access HeuristicsCounter Access Heuristics
" 1) BUS CONTROL:

! No 3rd Level cache % BSQ allocations ~ IOQ allocations
! Metric1: Bus accesses from all agents

Event: IOQ_allocation
Counts various types of bus transactions

Should account for BSQ as well
access based rather than duration

MASK:
Default req. type, all read (128B) and write (64B) types, include
OWN,OTHER and PREFETCH

! Metric2: Bus Utilization(The % of time Bus is utilized)
Event: FSB_data_activity

Counts DataReaDY and DataBuSY events on Bus
Mask:

Count when processor or other agents drive/read/reserve the bus
Expression: FSB_data_activity x BusRatio

/ Clocks Elapsed
To account for clock ratios

28

Counter Access HeuristicsCounter Access Heuristics
" 2) L2 Cache:

! Metric: 2nd Level cache references
Event: BSQ_cache_reference

Counts cache ref-s as seen by bus unit
MASK:

All MESI read misses (LD & RFO)
2nd level WR misses

" 3) 2nd Level BPU:
! Metric 1: Instructions fetched from L2 (predict)

Event: ITLB_Reference
Counts ITLB translations

Mask:
All hits, misses & UC hits

! Metric 2: Branches retired (history update)
Event: branch_retired

Counts branches retired
Mask:

Count all Taken/NT/Predicted/MissP

29

Counter Access HeuristicsCounter Access Heuristics
" 4) ITLB & I-Fetch:

! etc���
" 10) FP Execution:

! Metric: FP instructions executed
event1: packed_SP_uop

counts packed single precision uops
event2: packed_DP_uop

counts packed single precision uops
event3: scalar_SP_uop

counts scalar double precision uops
event4: scalar_DP_uop

counts scalar double precision uops
event5: 64bit_MMX_uop

counts MMX uops with 64bit SIMD operands
event6: 128bit_MMX_uop

counts integer SSE2 uops with 128bit SIMD operands
event7: x87_FP_UOP

counts x87 FP uops
event8: x87_SIMD_moves_uop

counts x87, FP, MMX, SSE, SSE2 ld/st/mov uops Back

30

Similarity Based on Total PowerSimilarity Based on Total Power

6

31

Similarity Based on Absolute Power Similarity Based on Absolute Power
VectorsVectors

32

Similarity Based on Normalized Power Similarity Based on Normalized Power
VectorsVectors

33

Similarity Based on Both Absolute and Similarity Based on Both Absolute and
Normalized Power VectorsNormalized Power Vectors

Back

Similarity Matrix ExampleSimilarity Matrix Example

"Consider 4 vectors,
each with 4 dimensions:



















1
2
3
5



















2
1
5
3



















2
2
4
4



















4
3
5
1

0767

7033

6306

7360

322214543
:2 &1 VectorsBetween Distance

:nCalculatio DistanceManhattan Exemplary

=−+−+−+−

" Log all distances in
the similarity matrix

0767

7033

6306

7360

" Color-scale from black to
white (only for upper diagonal)

35

Interpreting Similarity Matrix PlotInterpreting Similarity Matrix Plot

Back

" Level of darkness at
any location (r,c)
shows the amount of
similarity between
vectors �samples�
r & c.

! i.e. 0 & 2

" All samples are perfectly
similar to themselves

! All (r,r) are black

" Vertically above the
diagonal shows
similarity of the
sample at the
diagonal to previous
samples

! i.e. 1 vs. 0

" Horizontally right of
the diagonal shows
similarity of the
sample at the
diagonal to future
samples

! i.e. 1 vs. 2,3

Grouping Matrix ExampleGrouping Matrix Example

"Consider same 4 vectors:

0767
7033
6306
7360

 togethergrouped becan 5.3 distance with VectorsThreshold 50%
 together grouped becan none 0.7, Threshod 10%

7 :VectorsBetween Distance Maximum

≤⇒
⇒

" Mark execution pairs with distance ≤ Threshold



















2
1
5
3



















2
2
4
4



















4
3
5
1



















1
2
3
5

0767
7033
6306
7360

0767
7033
6306
7360

0767
7033
6306
7360

Back

7

37

Current & Future ResearchCurrent & Future Research

"FOLLOWING SLIDES
DISCUSS ONGOING
RESEARCH RELATED TO
POWER PHASES. PLANS
FOR FUTURE RESEARCH
ARE ALSO DISCUSSED

38

THE BIG PICTURETHE BIG PICTURE

Performance
Monitoring

Real Power
Measurement

Power
Modeling

Thermal
Modeling

Performance
Monitoring

Real Power
Measurement

Power
Modeling

Thermal
Modeling

Power
Phases

Program
Profiling

Program
Structure

' To Estimate
component power
& temperature
breakdowns for P4
at runtime…

' To analyze how
power phase
behavior relates to
program structure

Bottom line…

39

Power
Modeling

Power
Phases

Program
Profiling

Program
Structure

Power
Phases

Program
Profiling

Program
Structure

Phase BranchPhase Branch

" Power Phase Behavior
! Similarity Based on Power Vectors
! Identifying similar program regions

" Profiling Execution Flow
! Sampling process� execution
! �PCsampler� LKM

" Program Structure
! Execution vs. Code space
! Power Phases (Exec. Phases

NOT YET?

40

"Generality of the technique
! All Spec benchmarks show

distinct phase behavior:
"Repeatability of the experiment

! Need to be able to arrive at similar phase
behavior in order to characterize an
application

"Correlation between vector components
! Inherent redundancy in power vectors
! Could be removed with PCA

"Alternative norms for similarity
"Applicability of selected execution points

DiscussionDiscussion&&&&&&&&FromFrom here onhere on

41

Similarity Analysis for Other Similarity Analysis for Other
Applications?Applications?
" SPECs show similar applicable behavior

! Not always phase-like, i.e. twolf has more like a
power gradient

" Results for other benchmarks: <NOT READY>
! Gcc & Twolf:

of groups w.r.t. thresholds
Errors plots for reconstructed & selected vectors

" Apply to other applications:
! Desktop applications

Will follow the bursty behavior, maybe determine
action signatures??

Saving, computation, streaming, etc.

! Ghostscript might be interesting
Correlation between phases vs. locations of images

42

Dependence of Results to the Dependence of Results to the
Applied Power Model?Applied Power Model?
"The generic technique requires only

sufficiently detailed power breakdowns
that add up to total power
! Doesn�t matter how you acquire the �power

vectors� otherwise
"If you use some other characterization

data other than power vectors
! Can still perform phase analysis, but cannot

provide a direct estimation for
reconstructed power behavior

Maybe use some kind of mapping?
Log measured power data as well as
characterization metrics?

Would still be unable to predict component-wise

8

43

Possibility for Other Processors?Possibility for Other Processors?

" Most recent processors are keen on power management
! There will be enough power variability to exploit for power

phase analysis
" Porting the power estimation to other architectures

! Requires significant effort to
Define power related metrics
Implement counter reader and power estimation user and
kernel SW

" Porting to same architecture, different implementation
! More straightforward

Reevaluate max/idle/gated power estimates
" Experiences with other architectures:

! Castle project for Pentium Pro (P6)
Few watts of variation
Low dimensionality

! IBM Power3 II
Very low measured power variation

44

Other Statistical Techniques?Other Statistical Techniques?

"Alternative measures of distance:
! Different norms

! Canberra Distance

! Squared Chi-squared distance, etc.

"Other similarity metrics:
! Pearson�s correlation

coefficient
! Cosine similarity

N

i

N
crN iPViPVL

cr

1 22

1
)()(

, ∑
=

−=

∑
=

+
−=

22

1
)()(
)()(),(

i
iPViPV
iPViPV

cr

crcrC

∑
=

⋅=
22

1
22

)()(),(
i

iPViPV crcrPC

∑•∑

∑ ⋅

==

==
22

1

222

1

2

22

1

)()(

)()(
),(

i
c

i
r

i
cr

iPViPV

iPViPV
crCS

45

SPECliteSPEClite vs. vs. SimPointsSimPoints
vs. Power Vectorsvs. Power Vectors
"Approaches of 3 methods:

! SPEClite:
Performance counts &
(runtime) ❥ (Perf. Oriented) ❥ (k-means
partitioning for vectors normalized to 0 mean and
unit variance) ❥ (PCA to create reduced vectors) ❥
(selects vectors closest to centroids)

! SimPoints:
Basic block accesses &
(Simulation) ❥ (Perf. Oriented) ❥ (k-means
partitioning for normalized basic block vectors) ❥
(selects vectors closest to centroids �except for
�Early� Simpoints)

! Power Vectors:
Component power consumptions &
(Runtime) ❥ (Power Oriented) ❥ (threshold based
partitioning for �normalized + absolute� vectors) ❥
(Selects earliest vector of each group) 46

Why Power Vectors Why Power Vectors w.r.tw.r.t. Others?. Others?

" Provides a direct interpretation for power
consumption
! Could be used to identify specific power behavior for

dynamic power/thermal management
" Power phases might be not a perfect

translation of performance phases
! <CURRENT WORK INVESTIGATES>

I.e. same basic block accesses during different
architectural states

" Generated at runtime
! Easy repeatability, etc.

" Thresholding provides upper bound estimate
for the power approximation with selected
execution points

47

Modified StuffModified Stuff

"FOLLOWING SLIDES
I MODIFIED FROM
THE ORIGINAL, BUT
STILL KEEP ‘EM

48

Our Power Phase AnalysisOur Power Phase Analysis
" Goal:

! Identify phases in program power behavior
! Determine execution points

that correspond to these phases
! Define small set of power signatures

that represent overall power behavior

" Our Approach:
! Collect samples of estimated power values for processor

sub-units <Power Vectors> at application runtime
! Define a similarity metric regarding these power vectors
! Process the outcome of this similarity metric to group

sampled execution points (/Power Vectors) into phases
! Determine execution points and representative

signature vectors for each phase group
! Quantify the closeness of our approximation based on

these vectors to original power behavior

9

49

MotivationMotivation
" Characterizing power behavior:

! Future power-aware architectures and applications
! Dynamic power/thermal management

Multiconfigurable hardware
Thread scheduling, DVS, DFS
Recurring phase prediction

! Architecture research
Representative �reduced� simulation points

" Utilizing power vectors:
! Direct relation to actual processor power consumption
! Acquired at runtime %

Similarity relations generated quickly
Easy repeatability for different datasets/compilations
Identify (recurring) phases over large scales of execution

! Identify program phases with no knowledge of application
(i.e. no basic block profile, PC sampling, code space info, etc.) 50

Power Vector Similarity MetricPower Vector Similarity Metric
" How to quantify the �power behavior

dissimilarity� between two execution points?
1. Consider solely total power difference

Conceals significant phase information
2. Consider manhattan distance between the

corresponding 2 vectors
Vectors with small magnitudes are inherently closer

3. Consider manhattan distance between the
corresponding 2 vectors normalized
Indifferent to magnitude of power consumption

4. Consider a combination of (2) & (3)
$ Restricts us to both absolute and ratio-wise similarities

" Construct a �similarity matrix� to represent
similarity among all pairs of execution points
! Each entry in the similarity matrix:

51

Gcc Component Power Breakdowns

0

1

2

3

4

5

6

0 50 100 150 200 250
Time (s)

Po
w

er
 [W

at
ts

] L1 cache

Trace
Cache

RETIRE

Gcc Total Power

0
10
20
30
40
50
60

Po
w

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER
Gzip Total Power

0
10
20
30
40
50
60

44 88 132 176 220 264 308 352 396 440
Time (s)

Po
w

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

Gzip Component Power Breakdowns

0

1

2

3

4

5

6

44 144 244 344 444
Time (s)

Po
w

er
 [W

at
ts

] L1 cache

INT Exec

RETIRE

G
cc

G
cc

&

&
 G

zi
p

G
zi

p
M

at
ri

x
Pl

ot
s

M
at

ri
x

Pl
ot

s

Gcc Elaboration:
Very variant power

Almost identical power
behavior at 30, 50, 180s.

Although 88s, 110s,
140s, 210s and 230s
show similar total power;
88, 210 and 230 share
higher similarity.

Gcc Total Measured Power

0
10
20
30
40
50
60

0 50 100 150 200 250
Time (s)

Po
w

er
 [W

at
ts

]

Gzip Elaboration:
Much regular power
behavior

Spurious similarities
such as 100-150s
and 200-280 are
distinguished by the
similarity analysis

GZIP Total Measured Power

0

10

20

30

40

50

60

44 94 144 194 244 294 344 394 444

Time (s)

Po
w

er
 [W

at
ts

]

52

Similarity for Simplicity?Similarity for Simplicity?
" So, we can identify similar power phases:

! I.e. informally: if similarity matrix(r,c) is DARK %
Execution points r & c have similar power behavior

" 2 Questions:
! 1) How do we group the execution points (power vectors)

based on their similarity?
! 2) Could we represent power behavior with reasonable

accuracy, with a small number of ‘signature’ vectors?
" Our answer to Q.1: “Thresholding Algorithm”:

! Define a threshold of similarity < % of max dissimilarity>
! Start from first execution point (0,0) and identify ones in the fwd execution

path that lie within threshold for both normalized and absolute metrics
! Tag the corresponding execution points (j,j) as the same group
! Find next untagged execution point (r,r,) and do the same along fwd path
! Rule: A tagged execution point cannot add new elements to its group!

We demonstrate the outcome of thresholding with Grouping Matrices

53

GzipGzip Grouping MatricesGrouping Matrices

" Gzip has 974 power vectors
" Cluster vectors based on similarity

using �thresholding�
! Max Gzip power dissimilarity: 47.35W

54

ConclusionConclusion
" Presented a power oriented methodology to

identify program phases that uses power vectors
generated during program runtime

" Provided a similarity metric to quantify power
behavior similarity of different execution samples

" Demonstrated our representative sampling
technique to characterize program power
behavior
! Representative vectors for program power signatures
! Execution points for representative simulation

" Can be useful for power & characterization
research:
! Power Phase identification/prediction
! Reduced power simulation
! Dynamic power/thermal management

