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Runtime Application Behavior Prediction
Using a Statistical Metric Model
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Abstract—Adaptive computing systems rely on accurate predictions of application behavior to understand and respond to the
dynamically varying characteristics. In this study, we present a Statistical Metric Model (SMM) that is system- and metric-independent
for predicting application behavior. SMM is a probability distribution over application patterns of varying length and it models how likely
a specific behavior occurs. Maximum Likelihood Estimation (MLE) criterion is used to estimate the parameters of SMM. The
parameters are further refined with a smoothing method to improve prediction robustness. We also propose an extension to SMM (i.e.,
SMM-Interp) to handle sudden short-term changes in application behavior. SMM learns the application patterns during runtime, and at
the same time predicts the upcoming application phases based on what it has learned up to that point. We demonstrate several key
features of SMM: 1) adaptation, 2) variable length sequence modeling, and 3) long-term memory. An extensive and rigorous series of
prediction experiments show the superior performance of the SMM predictor over existing predictors on a wide range of benchmarks.
For some of the benchmarks, SMM reduces the prediction error rate by 10X and 3X, compared to last value and table-based
prediction approaches, respectively. SMM’s improved prediction accuracy results in superior power-performance tradeoffs when it is

applied to an adaptive dynamic power management scheme.

Index Terms—Workload behavior prediction, statistical modeling, adaptive computing

1 INTRODUCTION

CURRENT generation microprocessors deploy adaptive
management techniques to cope with the inherent
variability within an application as well as across different
applications. Typically, these techniques use changing
phase behavior of an application at certain time epochs to
dynamically tradeoff metrics of interest and performance.
In most cases, the techniques are reactive in that they are
enabled once an application phase transition occurs. In
cases where the application phase behavior is very
dynamic, reactive systems can result in further performance
degradation and can also lead to instability in the system.

A more interesting alternative is the proactive manage-
ment of the system, which requires accurate prediction of the
application behavior by using past behavior patterns.
Previously, such proactive methods have been proposed,
where pattern history tables [16], program flow behavior
[27], [24], and statistics over recent performance character-
istics [10] are used for prediction. These techniques predict
application behavior by tracking recently observed patterns
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or statistics in the observed application features, which can
be used to guide dynamic management decisions. While
these predictors can be effective in some scenarios, they do
not address two critical issues; 1) predicting global long
range patterns, and 2) modeling patterns of variable length.
Fig. 1 shows an example of an actual execution trace from the
applu benchmark. Here, the two boxed regions show an
exemplary repetitive execution. The table-based predictor
used in this example has a pattern length of 8 samples. The
two captured repetitive regions show an 8-sample pattern,
where the second occurrence experiences a single fluctua-
tion. While the table-based predictor learns the behavior
from the first pattern, this small fluctuation actually leads to a
pattern mismatch. As a result, the table-based predictor
backs off to last value predictor, and the following two
consecutive samples labeled as i and j are mispredicted.
However, an advanced predictor that is resilient to pattern
fluctuations, can actually discern this repetition and may
correctly predict both ¢ and j from prior observations. This
pattern is discovered by the proposed predictor by modeling
variable size patterns and is highlighted with the smaller
enclosed regions (i.e., S-shaped areas in green in Fig. 1).

In this paper, we propose a Statistical Metric Model
(SMM) for metric prediction. SMM estimates the probability
of the next phase based on prior observations and also
alleviates the shortcomings of the prior predictors with its
ability to model patterns of different length and long-term
global patterns. A comprehensive set of experiments
demonstrates the effectiveness of the SMM predictor in
comparison to the previously proposed predictors. SMM
predictor, when applied to dynamic power management,
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Fig. 1. Vulnerability of a table-based predictor to fluctuations in observed
metrics.

results in lower prediction error rate' and thus better
power-performance tradeoffs compared to the existing
predictors. Our contributions can be summarized below.
Note that this work expands our recent work [22] and [23] in
several ways which are highlighted in the last three bullets:

o We propose a new data-driven SMM, which is
inspired from natural language modeling field.

e We show that SMM is an adaptive model, where
each time it observes a new sample it updates its
parameters to incorporate the changes in metric
behavior. The more it learns by observing new
samples the better gets its prediction performance.

e We show that unlike table based and last value
predictors, SMM has the ability to model long-term
patterns in the data.

e We demonstrate that when SMM is applied to
dynamic power management, it results in better
power-performance tradeoffs compared to the exist-
ing predictors.

e We propose SMM-Interp, which is an extension of
SMM to emphasize local short-term patterns in
modeling, while keeping long-term modeling and
prediction capacity intact.

e We present a detailed analysis and requirements for
the online model training and prediction. We show
that SMM can be implemented within the operating
system software in context switch time granularities
with no visible performance impact.

o We compare SMM predictor to widely used last
value and table-based predictors, and show its
superior performance.

The rest of the paper is organized as follows: Section 2
gives an overview of the prior work on program phase
prediction. Section 3 describes the predictors that serve as
the baseline in our work. Section 4 provides the foundation
and formulation of SMM predictor. Section 5 gives a
detailed description of the computational overhead for
SMM. Section 6 describes SMM-Interp, which is an

1. Prediction error rate (e) is defined as the average absolute difference
between the predicted (p) and true (f) metric value divided by the total
metric sample size (N), e = % Z;il |pi — t;|. Normalized prediction error (e,,)
is computed by dividing the absolute prediction error in the predicted
phases of the tracked workload metrics to the maximum absolute range (R)
of the predicted metrics. e, =%Zz\:1% Such normalization helps to
understand prediction accuracy for different architectural metrics that
might otherwise have orders of magnitude differences in their absolute
quantities, such as, for example, IPC versus last-level cache miss rates.
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extension of SMM. Section 7 presents methodology. Sec-
tion 8 demonstrates the experimental evaluation of SMM
and its application to dynamic power management, and
Section 9 offers our conclusions.

2 RELATED WORK

Tracking, characterizing, and predicting application char-
acteristics have been the focus of a large body of research.
These studies leverage various characterization metrics
including performance monitoring counters, programma-
tical flow, and system statistics. One line of research
explores characterization of observed behavior via runtime
statistic collection and architectural or system-level simula-
tions [14], [15], [26], [1], [3], [9], [12]. These techniques
mainly focus on interpreting specific application execution
behavior and detecting some indicative characteristics.
Other work [2], [4], [8], [5], [30] uses system statistics to
guide dynamic adaptations such as power and thermal
management. While these techniques provide significant
insight to application behavior and its impact on dynamic
management decisions, they do not explore online predic-
tion of future behavior. The resulting dynamic management
techniques can be considered as reactive approaches. Our
proposed approach aims to provide the necessary means for
proactive adaptations.

A significant number of study also targets at predicting
future application behavior [10], [16], [13], [27], [19], [20],
[21], [29], [32]. For example, Duesterwald et al. [10] describe
different simple statistical and table-based predictors for
within- and across-metric predictions of performance mon-
itoring information. However, the statistical predictors they
considered were based on simple averages of the recently
observed metric values. For example, an Average(N) pre-
dictor chooses the average over the last N values and
aMode(N) predictor chooses the most frequently occurring
value among the last N values. An exponentially weighted
moving average (EWMA) predictor places more emphasis
on the most recent data. None of these predictors were using
probabilistic approaches. Prior studies [10], [13] also looked
at the comparative performance of different prediction
methods, commonly demonstrating that the table-based
predictors tend to perform significantly better than purely
simple statistical approaches for projecting dynamically
varying workload characteristics. SMM, in comparison, is a
combination of the statistical models and the table-based,
pattern-tracking methods. SMM’s grammar models perform
in function similar to a range of table-based predictors with
different model orders, and the pattern statistics help to
choose the right model order and the corresponding table for
next phase prediction. Vandeputte et al. [29] compare last
value, burst, and run-length encoder predictors with addi-
tional improvements via confidence counters and condi-
tional update configurations. They demonstrate that 2-level
burst predictor with confidence and conditional update is the
best performing configuration among the evaluated pre-
dictors. Sarikaya and Buyuktosunoglu [20], [21] describe an
optimal prediction technique based on a predictive least
squares minimization. Isci et al. [13] develop a table-based
runtime predictor to predict future behavior from past
pattern characteristics. Zhou et al. [32] monitor memory
access patterns and estimate memory behavior of workloads
for energy efficient memory allocation. Sherwood et al. [27]
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describe microarchitectural phase predictors based on
repetitive program flow behavior. Lau et al. [19] further
refine these phase classifications by defining transition
phases to mitigate the effects of small fluctuations and in
turn to improve prediction accuracy. They classify the
application behavior during a transition period between
two stable phases into a “transition phase” rather than
attributing it to a particular actual phase. This transition-
based approach also helps to improve prediction accuracy by
addressing an orthogonal problem, i.e., pruning the outliers
due to transitions or bursts and thus, arriving at a cleaner and
reliable phase characteristic information. SMM, in compar-
ison, uses a language modeling-based approach to track
repetitive application behavior with variable pattern lengths,
which can be comprised of many phases. Shen et al. [24], [25]
detect such repetitions from reuse distance patterns for
dynamic memory configurations via profiling and instru-
mentation. This work leverages grammar compression to
construct phase hierarchies and to identify variable-length
phases, and uses binary rewriting to insert markers into the
studied programs. In summary, all these studies provide
useful prediction techniques suitable for different applica-
tions. This paper, on the other hand, shows the benefit of
statistical metric modeling for tracking variable pattern
history lengths and modeling long term patterns, which
have not been addressed by previous studies.

3 BASELINE PREDICTORS

In order to demonstrate the comparative advantages of the
SMM predictor, we first provide a brief description of some
of the existing prediction approaches employed in the
literature. These predictors serve as the baseline for our work.

3.1 Last Value Predictor

Last value prediction is perhaps the simplest metric predic-
tion method. Last value predictor assumes that the most
recently observed behavior is representative of the future
application characteristics. Such a prediction approach tends
to be very effective for slow-moving application character-
istics, in essence, predicting a time-shifted version of the
original trace. However, this predictor has limited accuracy
for rapidly varying application characteristics.

The most appealing feature of the last value predictor is
its implementation simplicity. The last value predictor
needs to monitor and store only the most recent application
sample. The prediction algorithm simply sets the prediction
output to the most recent observation. Some variations on
the last value approach involve moving averages and
exponential weighting of the observed history. Compared
to this predictor, other elaborate prediction schemes
generally introduce additional complexity and overhead
in terms of storage and computation to carry out the
prediction largely without a consistent performance gain.

3.2 Table-Based Predictor

An alternative to last value type predictors is the table-
based predictor. While last value and its variants look at the
statistics of last or recent application behavior, table-based
prediction tries to understand and leverage the patterns in
execution flow to predict future application behavior. The
key motivation for such an approach is the inherent
repetitive application characteristics. An example of these
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Fig. 2. Table-based predictor structure.

predictors, namely a global phase history table predictor
[13] is depicted in Fig. 2. Such a predictor can be
implemented either in software or hardware depending
on the desired prediction quanta and the time granularity of
the employed adaptation policy [13], [10], [27].

The global register is the heart of the table-based
predictor and it tracks the most recently observed (e.g.,
N) sample characteristics. At each sampling period, this
register records the last observed sample. The contents of
this register are used to index into a pattern table, which
holds a certain number of previously encountered patterns.
The predictions are also deterministically encoded into this
table and are performed for each previously observed
pattern. An age entry is used to track the reuse time of
different entries for a least recently used (LRU) replacement
policy. After a prediction is performed, the register contents
are added to the table by either replacing the oldest entry or
by inserting into an available invalid entry.

4 StATISTICAL METRIC MODEL

4.1 A Natural Language Modeling-Based
Perspective for SMM

We see a resemblance between how a metric sequence and a
natural language are generated. In a natural language, we
generate words sequentially to construct sentences. The
SMM treats the metric samples as the words in a language
and builds a language model for each benchmark. Note that
as metric samples are real numbers one has to quantize
them into a set of discrete values (like vocabulary in a
language), which are called “quantization bins.” In a
natural language, words do not follow each other randomly
because of the underlying grammar. There is an underlying
structure defined by the grammar, which determines the
order in which we bring words together to make mean-
ingful sentences. Our intuition is that, like in natural
languages, we can treat the metric modeling as a language
modeling problem. We assume that there is an underlying
structure in each benchmark, and if indeed there is such an
underlying structure (e.g., repetitive patterns) SMM can
reveal and model this structure. However, if there is not any
structure, that is to say, the benchmark is a completely
random sequence of numbers then SMM will not do a
worse job than any other predictor, as long as it is trained
on sufficiently large data. In the rest of the manuscript, we
will often draw parallels between natural language model-
ing and SMM to explain the concepts used in this work.
Next, we introduce the foundations of SMM, which will
pave the way for a mathematical formulation.
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Fig. 3. Description of the statistical metric model with back off for n = 4.

4.2 Foundations of SMM

SMM models the conditional distribution on the identity of
the ith (quantized) sample given the identities of all previous
(quantized) samples in a metric sequence. Therefore, the
next sample depends on all the previous samples. In general,
this is a true statement but such a model will suffer from
parameter estimation problems. Therefore, we have to make
a computationally convenient approximation that a sample
depends only on the previous n — 1 samples, where n
depends on the amount of available data to estimate the
model parameters. Recalling the natural language modeling
analogy, what word we will speak next typically depends
more on the most recently spoken words than the words we
have spoken a while ago. With this approximation, SMM
becomes an n-gram model [17], which is a special class of
Markov models. Here, n refers to the maximum length of the
metric patterns (e.g., patterns of n = 4 samples as given in
Fig. 3). N-gram models have been studied intensively since
their introduction in early eighties and have been widely
used in speech and natural language processing [7]. The
parameters of n-gram models are estimated from a large
training corpus. The models produce a reasonable nonzero
probability for every word in the vocabulary. The prob-
ability of the nth sample is conditioned on the previous
n — 1 samples. Unlike natural language models, which are
built offline only once and then used for the application
without any update, the SMM is built and updated on
runtime as many times as the observed metric samples. As
such, it requires online model training.

SMM has two sets of entries: the finite sequences (i.e.,
patterns) of length n and the associated probabilities with
each sequence. The SMM model of order n = 4 is shown in
Fig. 3. The model contains sequences of length 1 to n where
the last sample in each sequence is the output given the
remaining n — 1 history samples. For example, the first
entry has the (s1, 52, 53) as the history for the next sample s4
with the probability P(s4|ss,s2,s1). The probabilities are
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called the model parameters that are estimated from the
observed data. As we highlighted before, the SMM consists
of models of lower order m (1 < m < n), allowing variable
length sequence modeling and increasing the likelihood of
finding a matching subsequence for a given finite sequence.

The prediction power of SMM increases as n increases.
However, this comes at the expense of poor parameter
estimation, which could hurt the performance. Following
extensive experimentation, 2 < n < 6 are found to work best
for natural language models. In this work, for program
behavior prediction we use n = 8 to have a fair comparison
with prior work [13]. However, we also provide an
evaluation of SMM performance with smaller n. By
restricting the conditioning information to the previous
n — 1 samples, we are making a simplifying assumption.
Although samples further back in history potentially also
have an influence on the identity of the next sample, higher
order models provide diminishing returns due to the fact
that the number of parameters in the SMM model is
exponential in n.

4.3 Formulation of SMM

Mathematically, SMM is a probability distribution, P(s),
over L samples S = sy, 59, ..., sz, that attempts to reflect the
frequency with which each finite sequence s = s1,5,..., 5
(I < L) occurs in a metric. P(s) is expressed as the product
of the probabilities of the samples that compose the
sequence, with each sample probability is conditional on
the identity of the last n — 1 samples.

= P(Sl)P(52|81) s P(Sl‘sl,l .. ‘81)

l (1)
= HP(8i|S7;,1,87;,2, e .,81),

i=1

P(s)

where P(s3|s1) is the conditional probability of observing
sample sy, given the previous sample was s;. We can
approximate the probability P(s) by limiting the depen-
dence on all the previous words to only most recently
observed ones (n — 1):

l l

P(S) = HP 81|$ HP S¢|$Z 7L+1 (2)

i=1 i=1

where s/ denotes samples s;, . . ., s;. For the sake of simplicity,
bigram (n = 2) case is considered below. The extension of
formulation to higher order models are trivial. By setting
n = 2, we make the approximation that the probability of a
sample only depends on the identity of the immediately
preceding sample, hence we can approximate P(s) as

1
s) = [[ P(silsi-1). (3)
i=1

The individual conditional probability distributions can be
estimated with Maximum Likelihood Estimation (MLE)
technique by using relative frequencies:

C(Si—la 51:)

Pyr(silsi-1) = Clsi) (4)

where C(z) denotes the number of times the sequence z
occurs in the metric. The conditional distributions are
multiplied to estimate P(s).
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4.4 Improving Probability Estimates via Model

Smoothing

In the absence of sufficiently large observations, the
maximum likelihood (ML)-based relative frequency esti-
mates do not result in reliable probability estimates. For
example, for a model with n =8 and a vocabulary (ie.,
quantization bins) size of 20, we can potentially have 20° =
25.6 billion unique sequences of length 8. However, in
practice, all applications combined exhibit less than 10K
unique patterns, which is negligible compared to 25.6 billion
(which corresponds to about 300 days of continuous
running of an application with no two sequence (ie.,
pattern) of length 8 are the same). However, in our
experiments we sample the data at every 10 msec, and the
conventional probability estimate for each unseen sequence
would be zero. However, just because an event has never
been observed so far does not mean that it cannot occur in
the future. To address these issues with the MLE probability
estimates, we apply “model smoothing” to the relative
frequencies to make sure that each probability estimate is
larger than zero. Various smoothing techniques can be
devised to ensure that the probability estimates are greater
than zero for samples which do not occur in the training
data. One simple smoothing technique is to pretend each
bigram occurs one more than it actually did, leading to;

C(Si,l, 81) +1
Pii(silsio1) = CE) A (5)
where V = {1,2,...,19, 20} is the set of all unique quantiza-
tion bins being considered. This has the desirable quality of
preventing zero bigram probabilities. However, this scheme
has the flaw of assigning the same probability to say,
“(10,10)” and “(20,20)” (assuming neither occurred in the
metric data so far and the overall metric mean is 10), even
though intuitively the former seems more likely because the
sample 10 is much more frequently observed than 20.
Another smoothing method is to interpolate higher order
n-gram models with lower order n-gram models, because
when there is insufficient data to estimate a probability in
the higher order model, the lower order model can often
provide useful information.

Pt (silsi—1) = AP(s;]si—1) + (1 = M) P(sy), (6)

where P, (s;|si—1) is the probability distribution for the
interpolated model and P(s;) = C(s;)/L is the unigram
model. The interpolated model achieves the behavior so
that bigrams which involve common words are assigned
higher probabilities [17], [6]. The weighting of the linear
interpolation is estimated by maximizing the probability of
“held-out” data which differs from the data used to original
estimate the n-gram frequencies. This type of smoothing
was shown to obtain competitive performance when the
training data are small, as is the case with the metrics
considered here.

Among all the smoothing methods absolute discounting
appears to be most popular in the natural language
processing area. The higher order distribution is created
by subtracting a fixed discount D < 1 from each nonzero
count. We use an interpolated version of the absolute
discounting [7], which was shown to provide the best

performance in natural language modeling applications.
For finite metric sequences with nonzero counts, this
distribution has the following general form:
_ C(Sﬁf'rrkl) -D

Zs,, C(‘%—nﬂ—l) (7)

+ o (S§:3L+1) Pt (52 |S§:}L+2) ’

-Pint (Si ‘52:71#1)

where P, (si|siZ}.,) is the lower order smoothing distribu-
tion. Normalization constraints fix the value of a(s!”},):

i-1
i1 1y (%, 87 ny1)
1) =Dt ) 8
RS STy )
where nq(*,sZ}.,) represents the number of bins for
which C(si_, ;) > 0.

4.5 Advantages of SMM

SMM has three key features which set it apart from the
previous work; 1) it is adaptive, 2) it has the ability to model
sequences (i.e., patterns) of variable length, 3) it has long
term memory.

The first feature allows runtime learning and provides
ability to model changing application characteristics. The
second feature provides robustness for metric prediction
and contributes to accuracy. We show in Fig. 3 that SMM
has the ability to match patterns of variable length m, where
(1 £m < n). This is a major issue with table-based pre-
dictor, as its patterns are fixed in length. SMM takes a
pattern of length n and checks whether there is such an
entry in the model, if so, it uses the probability for that
entry. If not, then it checks models of lower order for the
matching subsequences by iteratively limiting the history
size. For a given history, the predicted next sample is
selected based on its probability.

The third feature provides ability to model patterns seen
long time ago. Last value predictor, table-based predictor
and others attempt to use short term dependencies,
focusing on the most recent samples to predict the next
sample. This of course is useful but not sufficient to model
long term dependencies where repetitive patterns go
beyond the window of past n samples. The benefit of these
features are demonstrated by a set of experiments in the
experimental section of the paper.

5 COMPUTATIONAL COMPLEXITY

In workload behavior prediction task, the entire sequence of
execution is not observed when the SMM is used for
prediction. In fact, in practice monitored system execution
is a continuous process that produces a stream of workload
characteristics without any particular beginning or end. The
metric data that are of interest to the SMM predictor keeps
coming from the beginning of a system startup to the next
system halt, which can span days or months. Because of
this, the SMM must be trained /updated constantly. The key
question here is whether the computational complexity of
model training/updating presents a challenge on the
practicality of the SMM.

There are three aspects to the SMM’s overhead: 1) model
training, 2) prediction of the likely next sample using the
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model, 3) model storage. We previously touched these
issues [23] without going into detail, but here we will
elaborate on them.

In the proposed approach, all of the three items (model
training, prediction ,and model storage) corresponding to
the SMM overhead are done online for each observed sample
during an execution of an application (e.g., bzip, applu,
etc.). SMM is essentially a set of tables of different length,
where each entry in the table has three components:
1) history, 2) next sample (to be predicted), and 3) probability
of predicting the next sample given the history. Therefore,
predicting the next sample using SMM is the most
straightforward among the three overheads. For a given
history we simply look up the SMM tables and pick the
sample that has the highest probability for the prediction.

5.1 SMM Training

The computational overhead for SMM training can be
estimated given the following three parameters: 1) number
of quantization bins (i.e., vocabulary V), 2) length of finite
sequence (n), 3) how often we need to update the model. If
SMM parameters updated at every sample, computation is
bounded by O(kVn) division and multiplication operation,
where k is a small constant (k < 3). In our experiments, we
have V =20 quantization bins, n = 8 and we update the
SMM parameters at every sample. For such a setting, the
computational overhead for each model update would be
less than 1K multiply and divide operations. Thus, the
compute time overheads is on the order of microseconds
and it can be implemented within the operating system
software in context switch time granularities with no visible
performance impact. We refer the reader to Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TC.2012.
25, for further explanation of the model training overhead.

5.2 SMM Storage

SMM size (i.e., model storage) is more of a theoretical issue
than the practical one. For a quantization bin size of 20 (i.e.,
V =20) and model order of n = 8, the sequence space can
have as many as 20° distinct sequences/patterns. In natural
language modeling the model size could be a real concern,
as, for example, in English the vocabulary size could be as
large as 1IM. A simple trigram language (n = 3) model in
theory could be as many as (1M?3) patterns. However,
trigram and even higher order models are built and stored
in a small amount of disk space. This is because of the fact
that in practice only a tiny fraction of this possible sequence
space is observed, due to the underlying structure in the
data. When we are forming sentences, what we have said in
the past (i.e., history) greatly limits what we will say next
from 1M alternatives to possibly as few as a hundred
words. The same is largely true for SMM applied to the
metric modeling.

Obviously, the number of quantization bins (V) and the
model order (n) are two parameters that can be adjusted to
control the model size. In the paper, as we will show in
Fig. 11 that we can decrease n from 8 to 6 (going from a
space of 20° — 205 distinct sequences) without sacrificing
the performance. Likewise, we can reduce the quantization
bins from say 20 to 8 (going from a space of 205 — 86 =
262K sequences) without significantly hurting the perfor-
mance. Moreover, there are very effective model pruning
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techniques [11] that keep the model size under control
without sacrificing model performance. The idea under-
lying the pruning methods is to remove higher order
sequences from SMM (i.e., sequence tables) whose prob-
abilities fall below a threshold and instead rely on lower
order sequences to predict the next word. In our experi-
ments with the SPEC CPU2000 data set on average the
SMM model storage for model order 8 is around 10 KB,
which is in the same ballpark as the table-based predictor.’
While the largest storage requirement of 21 KB was
observed for mgrid, there are 15 benchmarks with storage
requirements of less than 5 KB.

6 INTEGRATING LocAL AND GLOBAL METRIC
BEHAVIOR

Despite all the advantages SMM does not account for the
temporal proximity of the patterns during the parameter
estimation and prediction. Next, we will present the case for
the need for “local” metric modeling, and later combine
local and global metric modeling within a new model called
SMM-interp (i.e., interpolated SMM). SMM-interp has the
ability to emphasize recently observed patterns while
performing global metric modeling and prediction.

6.1 Argument for the Local Metric Modeling

The main idea underlying the SMM predictor concerns an
important limitation of all the Markov models. The main
limitation of the Markov models is their inability to reflect
short-term or recently observed local patterns. Again going
back to the natural language analogy [18], suppose that we
are reading a document and we just read the word sequence
“the new ...,” and that the word phone followed these two
words 5 percent of the time in the text we read so far, while
the word “window” followed them 1 percent of the time.
SMM will assign phone a probability of 0.05 and window a
probability of 0.01. For an isolated sentence, this would be
the reasonable choice to make. But now suppose that we
just read the word window in the previous sentence (i.e.,
topic effect) and there was no mention of the word phone.
We believe that a human would then assign overwhel-
mingly higher probability to the word window. A word used
in the immediate past (say the last 100-200 words or so) is
much more likely to be used soon than either its overall
frequency in the English language or any of the popular
Markov models would predict. The same argument
obviously applies to computer systems, as several archi-
tectural components are actually targeted toward exploiting
such temporal locality principles such as caches and branch
history tables. Furthermore, as the common loop structures
and the control flow of applications often exhibit such
temporal repetitive execution, the recent behavior is
commonly a stronger indicator of future application
execution. Several prior studies on dynamic optimization,
workload characterization, hot-code identification, and
control-flow analysis illustrate and exploit these temporal
characteristics and demonstrate the value of recency-
awareness in workload tracking and dynamic adaptations.

2. Each bin can be represented with a byte and each entry has a model
order of 8. For a 1,024 entry table the total storage is 1,024 - 8 = 8 KB.
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Therefore, modeling and integrating short-term shifts in
metric sequence frequencies to global metric modeling and
prediction might perform better than the pure Markov
model embodied in the SMM predictor. Following this
analogy, we can design a predictor that has both a cache
and a Markov component. In fact, there are several ways of
implementing this. One way is to build a second—what we
call “cache” SMM predictor using only the most recently
observed say 100-500 samples. The cache component of our
combined model would estimate the probability of a metric
sequence from its recent frequency of use. The combined
model would use a weighted average of the probabilities
from the global and cache component of the SMM
predictors in calculating the most likely expected sample
probability. Another way is to use table based and last
value predictors as “cache” component and combine their
prediction with the SMM prediction to improve prediction
accuracy. In this work, we implemented the latter.

6.2 Combining Local and Global Prediction

The SMM as we described so far does global metric
modeling and prediction, since it treats all observed
patterns equally whether they are observed very recently
or a while ago. However, we believe that the recently
observed pattern should be treated favorably and should
play a more important role than patterns observed a while
ago. We therefore combine the local short-term prediction
and global prediction to improve overall prediction
accuracy. This combination leads to a new form of SMM,
named SMM-Interp, which interpolates global and local
short-term predictions. As pointed out in the previous
section we employ table based and last value predictors as
the short-term and very short-term predictors, respectively.
There are several ways to integrate short-term and global
prediction results. We choose “performance-based voting,”
where we consider last value, table based and SMM
predictors as three different predictors in a pool, and track
their past performance to decide on the final prediction
output. By including two short-term predictors in the pool
and treating all the predictors equally we are biasing the
final prediction results in favor of the recently observed
patterns. The decision criterion is simple but effective; pick
the output of the predictor as the final prediction output if it
provided the smallest error in predicting the most recent
sample. However, it is not always clear which predictor
achieved the lowest prediction error, as they may all have
predicted the most recent sample accurately, or in general,
their errors are equal. In this case, we take into account their
overall prediction performance so far. That is, we prefer the
predictor with the lowest accumulated prediction error.

7 METHODOLOGY

To evaluate the SMM predictor, and the other two baseline
predictors we monitor the dynamic runtime characteristics
of the SPEC CPU2000 suite applications running on an IBM
POWER4 [28] server platform. We use hardware perfor-
mance counters to track application behavior using the AIX
Performance Monitoring API (PMAPI). Our performance
monitoring framework has negligible impact on system
behavior, and captures overall application characteristics
including all library and system calls performed by the
application thread. The performance counters available in

our system enables simultaneous monitoring of eight
performance events with negligible overhead. For most of
our evaluations we mainly focus on two key architectural
metrics, instructions per cycle (IPC) and memory access rate.
These two metrics are also commonly used in prior studies
to demonstrate well-known application phase characteris-
tics. They are widely available across architectures and have
been employed in prior studies to guide workload-adaptive
dynamic power management. All the presented prediction
approaches, however, are not tied to a specific metric and
can be applied to other architectural metrics of interest,
based on the desired adaptation or monitoring goals.

In all of our predictor implementations, we use a 10 ms
sampling period, in line with OS scheduling time scale. At
each sampling point, our monitoring interface snapshots the
performance counter registers and the difference of the
current accrued counts from the prior sample indicates the
current performance sample. From the elapsed counts and
cycles, we derive our performance metrics of interest, which
are then transferred to the prediction logic. As the raw
measures are somewhat continuous values in the possible
IPC and memory rate range, using the raw measures for
pattern- or grammar-based prediction has limited returns.
This is because, these approaches rely on labels rather than
actual exact quantities. Therefore, we also apply a quantiza-
tion step to the derived performance measures to bin them
into specific ranges. For our evaluations, we use a relatively
fine-grain binning approach with 20 quantization bins. This
represents the high end of the experimented granularities,
limiting within-bin quantization error range to 5 percent. We
record the obtained quantized performance measure sam-
ples in a sample buffer, which is then used for the prediction
and generating the patterns for the table-based and SMM
predictors. Following this, each prediction algorithm per-
forms its prediction for the succeeding application behavior.

8 EXPERIMENTAL RESULTS

To evaluate SMM performance, we run a set of benchmarks
on a real system and monitor performance characteristics
via performance counters and predict future workload
behavior via SMM and other predictors. We compare the
SMM predictor to a table-based and last value predictors.
We also investigate SMM predictor in-depth for its
performance in relation to various parameters. In order to
provide a fair comparison, we also perform a sensitivity
analysis for the table-based predictor using different table
sizes. Fig. 4 presents the normalized mean prediction errors
for different table sizes. Our results confirm the previous
studies [16] in that using table sizes larger than 1,024 does
not provide significantly different prediction results with
the only exception of mgrid where there is further
improvement. Therefore, in our experiments we use a
table-based predictor with a fixed size of 1,024 entries.

8.1 Metric Variation

Workloads with significant variability are particularly
challenging for metric predictors. For slowly varying
workloads last value predictor is very effective but for
benchmarks with rapidly changing characteristics, it per-
forms unfavorably. It is thus essential to understand the
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Fig. 5. Improvements with the SMM predictor, compared to last value and table-based predictors for IPC prediction.

variability and “predictability” of different workloads to
properly judge the performance of various predictors.

We present two measures in Fig. 6 which show the
available variation in the workloads used in this work. The
upper plot shows the average sample-to-sample variation in
the tracked metrics normalized to the overall dynamic
range of the workload. In the lower plot, the magnitude of
variation is decoupled from the occurrence of a variation by
profiling how often two consecutive samples belong to
different phases. This measure is useful to understand the
deviation of each workload from a purely flat workload. In
the figure, the benchmarks are sorted in increasing
variability. Thus, workloads toward the right end exhibit
the highest variability with the last six workloads showing
more than 5 percent average sample-to-sample variation.

8.2 Metric Tracking Using SMM Predictor

SMM has several parameters that can have significant effect
on the performance. The model order n (i.e., maximum
sequence/ pattern length) is one such parameter. The optimal
n achieving the best performance depends on the specific
benchmark and available data to train the SMM. Here, we set
n = 8 for fair comparison, because the table-based predictor,
which is considered as one of the baseline methods uses a
sequence length of 8 [16]. As we will demonstrate that a
smaller n value could be just as good in terms of
performance. We also use the last value predictor both as a

baseline to compare and as a back-off predictor for the table-
based predictor. For SMM using larger model orders can
allow us modeling longer patterns but the underlying model
parameters may not be robustly estimated. However, using
smaller model orders may not have enough predictive power
to model any patterns embedded in the metric sequence. We
believe that 6 <n < 8 is a reasonable compromise between
these two competing goals.

We provide prediction error rates for all the benchmarks
comparing last value, table-based and SMM predictors in
Fig. 5. The SMM predictor improves prediction errors by
19 percent on average over all the experimented workloads
compared to the table-based predictor. This improvement is
even further emphasized, with 43 percent relative reduction
in prediction error for the top five highly varying applica-
tions, namely as mgrid, equake, facerec, art_refl,
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Fig. 6. IPC variation in benchmarks.



SARIKAYA ET AL.: RUNTIME APPLICATION BEHAVIOR PREDICTION USING A STATISTICAL METRIC MODEL 583

Normalized equake IPC

I
0 2000 4000 Predici ?c?r?Error Uggv%QLast Valt?eo redictor12000 14000

1 T T T T T T T

16000

0 2000 4000 6000 8000 10000 12000 14000 16000

Prediction Error Using Table Based Predictor
1 T T T T T T T 1

0 2000 4000 6000 8000 10000

Prediction Error Using SMM Predictor
1 T T T T T T T

12000 14000 16000

0.5 b

0

0 2000 4000 6000 8000 10000 12000 14000 16000

Fig. 7. Normalized IPC (to its max) prediction errors for different
predictors over the quantized samples.

art_ref2. In comparison to the last value predictor, SMM
improves prediction errors on top five highly varying
applications by 63 percent. The largest improvements of
about 10-fold (15.3 percent versus 1.6 percent) and 3-fold
(4.8 percent versus 1.6 percent) are achieved compared to
the last value and table based predictors, respectively, on
the equake benchmark.

Fig. 7 shows how the prediction performance of the
different predictors change over time, with the equake
benchmark. In the first panel the entire IPC sequence of
equake, normalized to its max, is plotted. In the other
panels, the prediction errors are plotted for the last value,
table-based and SMM predictors. We clearly observe from the
plots that the table-based predictor outperforms the last value
predictor and the SMM predictor outperforms both pre-
dictors. As expected, as the amount of data increases the SMM
parameter estimation becomes more reliable. As a result the
SMM prediction performance improves (i.e., making smaller
prediction errors) toward the end of the figure. Online
learning and adaptation are two critical features that an
adaptive predictor must have. SMM has the ability to learn
and adaptitself constantly. Asitlearns and adapts itself to the
changing phase behavior, the prediction accuracy improves.
On the other hand, in the same figure, the errors for last value
predictor appears to be evenly distributed across the time
scale. This is expected, as this simple predictor does not
employ any adaptation based on previously observed
application behavior. The table-based predictor’s perfor-
mance also improves slightly with increasing amount of data,
since it also aims to discern the patterns in application
behavior. However, the improvements in the prediction
accuracy do not come close to those with the SMM predictor,
since the SMM predictor can successfully model both long-
term and varying-duration application characteristics.

We can gain insight about different predictors by looking
at their detailed prediction results. In the first panel of Fig. 8,
a segment of the normalized equake IPC data is plotted.
This segment of the data is somewhat periodic with
significant differences in values between consecutive sam-
ples. In the second panel, the corresponding normalized
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Fig. 8. Normalized IPC prediction errors for different predictors over an
execution segment.

prediction error is plotted using the last value predictor. As
expected the errors are almost on the same scale as the data
samples due to large sample-to-sample variations. The
table-based predictor models the periodicity in the data to
some extent, as seen in the beginning and end of the plot.
However, each time there is a slight variation in the
observed behavior, the fixed-pattern-based approach fails
and the predictor backs off to the last value predictor as seen
between samples 25 and 40. However, SMM is very robust to
small variations in the patterns and is able to provide
accurate prediction.

We emphasize the ability of SMM to model pattern of
different length in Fig. 9. In the figure, we highlight two
patterns with boxes, which contain identical samples of
length 6. Even though, the first five samples are the same in
both boxes, table-based predictor does not have any match
simply because it stores samples of length 8. When there is
no match, then it backs off to the last value predictor,
which does not produce an accurate prediction, as pointed
out by the arrows. However, SMM backs off to lower order
models and finds the matching pattern of length 6, which is
observed in the first box, and uses it to perform accurate
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Fig. 10. Improvement in SMM predictor accuracy with longer benchmark execution times.

prediction in the second box. This is of course the case if
the next sample 10 (normalized value in the figure is 0.5)
has the highest probability among all the possible outputs
(1,...,20) given the past five samples in the box.

Another key feature of SMM predictor is its ability to
model long range patterns. In order to demonstrate this
feature, we extend the runtime duration of the experimented
benchmarks by a factor of 2 (shown as x2 in Fig. 10) by
concatenating workloads back to back. By doing so, we
introduce long term patterns to the data. In fact, what we are
doing is not hypothetical, in practice it can very well be
observed, where one application finishes another one starts
and the first application starts to run again after the second
application. With concatenated data, we provide the pre-
dictors with runtime histories which are twice as long as the
original runs. In Fig. 10, we plot the normalized mean
prediction errors for the original benchmark runs and the
extended benchmark runs. We also plot the results for
the table-based predictor in both cases. Not surprisingly,
the prediction performance of the table-based predictor
shows almost no improvement except for two benchmarks.
Those twobenchmarks are gcc_exp and gcc_integrate,
which are both very short in duration. SMM, on the other
hand, provides significant improvements for almost all the
benchmarks. The only exception is swim, where we observe
a slight increase in prediction error of both SMM and table-
based predictors. It is not surprising to see that SMM
performance improves on the extended-duration bench-
marks, since SMM has a memory of observing all the prior
patterns. SMM starts to improve the prediction in the second
half of the duplicated benchmark data. The average improve-
ment across all benchmarks is 15 percent for the SMM
predictor, whereas it is only 3 percent for the table-based
predictor. This shows the substantial benefits of the SMM
predictor in the longer term.

Even though we report the prediction experiments for
IPC, we also predicted memory access rates using all three
predictors. We observe similar results, where table-based
predictor outperforms the last value predictor by 18 percent
on average and SMM predictor outperforms table-based
predictor by 29 percent across benchmarks.

The strength of the SMM predictor comes from its
probabilistic nature, which sets it apart from the existing
predictors. While last value or table-based predictors rely
only on recent history and discard old pattern information

in favor of new observations, SMM does not only rely on
this temporal dependence but also takes into account
previously observed patterns when it is making the
prediction. When capacity requirements dictate discarding
some patterns, pruning is done not by temporal proximity,
but with respect to the probabilities of the patterns.

8.3 Model Order versus Performance

We mentioned that the performance of SMM predictor
largely depends on the model order (i.e., n) and the available
data to estimate the model parameters. Smaller model order
limits the predictive power of the SMM predictor. However,
using larger model orders may adversely affect the para-
meter estimation step, which in turn may degrade the
prediction performance. We are not aware of a “grand”
recipe that would tell us the optimal model order given the
amount of training data. However, one should keep in mind
that even though the metric data sizes for specific applica-
tions are fixed, in reality SMM is designed to operate
continuously during system uptime, with a very large set of
running metric samples. In that case using larger model
order may benefit the prediction performance.

In Fig. 11, we provide prediction errors for all bench-
marks with model orders: {4,6,8}. The results indicate that
each benchmark can be described better with a specific
model order and may achieve the smallest prediction
accuracy. In general, as the model order increases, overall
prediction accuracy also increases leading to lower predic-
tion errors. Typically, models with larger model order are
good in describing the fine structure in the data. However,
in the absence of large data, this comes at the expense of
poor generalization for the unseen future observations,
which are to be predicted. There are few exceptions to this
overall trend. For example, model order 4 (n=4) for
parser_ref achieves slightly lower prediction error than
model order 8 (n = 8). We also observe that the improve-
ments with larger model order appears to be leveling off for
n > 6 for most of the benchmarks with the exception of
mgrid, where there is further possible reduction in
prediction error with larger model sizes.

8.4 Metric Tracking Using SMM-Interp Predictor

We observed in Fig. 5 that SMM predictor performed worse
than the last value predictor for several bechmarks, namely
gec_x series. One common feature that distinguishes
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Fig. 12. Comparison of the SMM-Interp with the SMM, last value and table-based predictors.

gece_x series from the other benchmarks is their fairly short
duration. SMM needs relatively long samples to discover
the underlying patterns in the data and also to robustly
estimate model parameters, which are probabilities.

In Fig. 12, SMM-Interp is compared against SMM, table-
based and last value predictors. The results show that
SMM-Interp improves the prediction accuracy for all the
gce_x series, while keeping the performance accuracy
virtually the same for the other benchmarks. These results
confirm that SMM-Interp has the ability to model local short-
term changes in the data by steering prediction to exploit

them.
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Fig. 13. Model usage statistics across benchmarks within the SMM-
Interp scheme.
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In Fig. 13, we present the predictor usage distribution
across SMM-Interp components, namely SMM, table based
and last value predictors. SMM predictor is picked as the
best predictor more often than the other predictors for 32/
39 of the benchmarks. The “gcc” benchmarks are all short in
duration for the SMM to have reliable parameter estimates.
As such, it is not surprising to see the last value predictor
emerging as the best predictor. For parser_ref and
vpr_route, we believe there was not any significant
repetitive pattern in the data, otherwise SMM would have
discovered the repetitive patterns.

Using table based and last value predictors in the
prediction process along with SMM satisfies our goal of
tracking local short-term changing patterns of a metric
sequence. SMM-Interp incorporates both global pattern
predictor embodied in SMM and an added cache component
embodied in last value and table-based predictors, which
tracks short-term fluctuations in metric behavior.

8.5 Application of SMM to Power Management

SMM predictor can be employed in various adaptive
management setting that can benefit from proactively
tuning hardware or software to the expected application
characteristics. Some of these potential settings include
dynamically configurable hardware such as cache partition-
ing or pipeline scaling, and power optimization techniques
such as power gating and voltage, frequency scaling. Here,
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Fig. 14. Power savings and performance degradation at different DVFS
states for different bins.

we explore the application of the SMM predictor to dynamic
power management, where we specifically look into
proactively configuring processor power states. We use
SMM predictor to predict the memory access rate of
applications, which is the commonly used architectural
measure for guiding dynamic voltage and frequency scaling
(DVES) settings. Such workload-behavior-based DVFS is
well studied in prior work [30], [31]. These show that the
memory access rates of applications are a strong indicator of
the appropriate DVFS state that an application can run with
limited performance degradation. Applications with higher
amount of memory accesses exhibit higher potential for
running at lower frequencies with much less impact on
application performance.

The primary approach for dynamic DVFS management
is to categorize application execution into different char-
acteristic regions, or phases, and to assign different phases
to the corresponding DVEFS settings. To accomplish this,
we first profile the memory access rates of a range of
different applications. This helps determine the search space
of DVFS related application characteristics. Based on the
observed aggregate view, we categorize different execution
characteristics into different representative bins. We
reference actual power and performance measurements
collected at different DVFS states [13] to define the bin
boundaries and to characterize the power-performance
tradeoffs of running each representative bin at different
DVES settings. The number of bins is dictated by the
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Fig. 15. Power savings and performance degradation achieved by the
three prediction methods.

number of available DVFS states. Therefore, we use eight
bins, corresponding to eight DVES states. Then, at runtime,
as the SMM predictor predicts the next application phase,
the predicted phase, i.e., bin;, dictates the corresponding
processor DVES setting i.

We show the corresponding power/performance trade-
offs for the chosen eight bins in Figs. 14a and 14b. Here, binl
corresponds to an execution region with minimal memory
accesses and DV F'Sstatel represents the highest DVFS
setting. When the execution behavior is similar to binl
running the application in DVFS states other than 1 result in
significant performance degradation. In contrast, using a
higher DVFS state for an execution region with higher
memory accesses—i.e., higher bin number—is much more
beneficial due to the smaller performance degradation
impact. In this memory bound case running the application
at a lower DVFS setting still improves performance slightly.
However, this comes at a significantly higher power cost
and lost potential power savings.

We again use the last value predictor and the table-based
predictor as baselines in our evaluations, and show the
relative improvements with the SMM predictor. We predict
application behavior at runtime at fixed time intervals, and
use the resulting predictions to guide the future DVFS
settings for the following period. For the presented cost-
benefit analysis, we monitor the achieved power savings
and the associated performance degradation at the end of
each interval compared to baseline execution with no
dynamic power management.

For all three predictors and for all applications, we
collect the power savings and performance degradation
achieved compared to the baseline without power manage-
ment, and use this for our comparative evaluation of SMM.
We accumulate the overall power savings and performance
degradation throughout the execution of the applications
and determine the average power savings and the
experienced performance degradation for each application.
Figs. 15a and 15b depict these results. While we have
included all applications in our experiments, the figures
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show only a subset of these. The excluded benchmarks
perform similarly across predictors for one of the two
reasons: all the excluded benchmarks either exhibit very
low variability (thus very simple prediction such as last
value predictor suffices) or they are highly CPU-bound,
consistently operating at the highest DVFES setting phase.

In Figs. 15a and 15b, we depict the normalized power
savings and performance degradations relative to the last
value predictor. Here, we choose to show the tradeoffs
achieved with the other predictors relative to the last value
predictor as the main purpose of this work is to underline
the additional benefit achieved with the SMM predictor
compared to the other predictors. Among the three
predictors, it is actually the last value predictor, which
achieves somewhat higher power savings, followed by the
table-based predictor. While this may sound counter to
what one might expect, the real potential of the SMM
predictor is seen in the performance degradation figures, as
shown in Fig. 15b. Here, the distinction among the three
predictors is much more significant, where the table-based
predictor performs better than the last value predictor and
the SMM predictor significantly outperforms both predic-
tors. This outlines the benefit of the SMM predictor’s higher
prediction accuracy. While the SMM predictor achieves
slightly lower power savings, with less than 10 percent
difference compared to last value and less than 5 percent
compared to the table-based predictor, it significantly
reduces the performance impact. The SMM predictor
reduces overall performance degradation by 34 percent
compared to the last value predictor and by 19 percent
compared to the table-based predictor.

9 CONCLUSIONS

We presented a new predictor called SMM for predicting
dynamically varying program behavior. SMM is a probabil-
istic adaptive model. It has the ability to learn application
characteristics at runtime and to capture patterns at different
scales in application behavior. SMM has three key features,
which set it apart from the existing predictors. First, it models
long term global patterns in application behavior. Second,
the predictor can respond to variable-length patterns, and
thus it is resilient to small fluctuations in the observed
patterns. Last, the SMM predictor has the ability to adapt
itself; as it learns more it predicts better. We present a series
of experiments that demonstrates these strengths as well as
its superior accuracy. These studies show that the SMM
predictor reduces prediction errors by up to 10X and 3X
compared to the last value and table-based predictors, with
an average improvement of more than 60 and 40 percent,
respectively, for highly varying benchmarks. We also
introduced an interpolation scheme; SMM-Interp, which
weights the recently observed patterns favorably. SMM-
Interp provides improvements over SMM for benchmarks
that are short in duration while keeping the performance
intact for the longer benchmarks. We also show the
application of the SMM predictor to dynamic power
management, where improved prediction accuracy with
the SMM predictor achieves superior power-performance
tradeoffs compared to the other predictors.
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