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Traditional Systems Monitoring
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Traditional Systems Monitoring
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Introducing- Near Field Monitoring
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Near Field Monitoring (NFM)
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NFM's Advantages

*Always-on: Works for unresponsive or compromised systems

*Qut-of-the-box: Unmodified guest
No agent or hook installation

*Non-intrusive: No guest cooperation
No interference with guest operation

*Qut-of-band: Outside guest's context
Decouple execution and monitoring

*\/irtualization-aware: Holistic knowledge
Accurate and efficient monitoring



NFM's Architecture
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Approach: VM Memory Introspection
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1. Exposing VM Memory State

— Gain access to VM’s memory image from outside
* Unmodified VM
« Unmodified hypervisor

2. Exploit VM Memory State
— Reconstruct VM's runtime state from the memory image
— In-memory kernel data structure traversal



Approach | Exposing VM Mem State

= Memory dump
— Dump / migrate guest memory to file
— KVM-QEMU pmemsave or migrate-to-file
— High overhead: VM paused for dump duration

= Live R/O memory handle

— Xen

* Map guest memory into crawler process- xc_map_foreign_range()
- KVM

* No default support

* New live handle, read VM mem directly via

— QEMU process' /proc/<pid>/mem + /proc/<pid>/maps

— Negligible impact on VM
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Approach | Exploiting VM Mem State

"Extract system information by traversing linux kernel's C
structs in exposed memory image

— Different structs for different kinds of information
» task_ struct, mm_struct, files_struct, net_device etc.

"Requirements:
— Starting addresses for structs
* /boot/System.map
— Offsets for particular struct fields
* Linux source or vmlinux
+ /boot/<Build.config>
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Backend | Crawl Output
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FD — filename, ...
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Backend | Prototype Apps

1. CTop: Cloud-wide consolidated resource monitoring
2. PaVScan: Hypervisor paging aware virus scanner
3. RConsole: Remote console

4. TopoLog: Network topology discovery
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Evaluating NFM

= Latency / monitoring frequency?

= Accuracy?

= Overhead?

= Advantages?

14



NFM's High Monitoring Frequency
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NFM's Accuracy: Cloud Top vs. top

J
)

(top - 11:58:42 up 1 day, 22:19, 1 user, load average: 0.90, 0.22, 0.11
Tasks: 57 total, 3 running, 54 sleeping, O stopped, 0 zombie
Cpu(s): 99.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.7%hi, 0.0%si, 0.3%st
Mem: 2052104k total, 1976340k used, 75764k free, 3996k buffers
Swap' 6160380k total, 304068k used, 5856312k free, 1868k cached

top

-mmmn-
1942 root 1028m 1.0g 188 49.9 51.0 0:08.98 malloc
1940 root 20 0 1028m 780m 136 R 49.5 38.9 0:11:91 malloc

1 root 20 0 56220 1164 408 s 0.0 0.1 0:00.71 systemd
2 root 20 0 0 0 0 s 0.0 0.0 0:00.00 kthreadd

\.

=
Every 0.5s: ./topUpdate.sh
CPU up time: 4461430125 jiffies

PID VIRT RES %CPU $MEM TIME+ COMMAND
1942 1052704KB 1047368KB 45.8 51.0 0:08:33 malloc
1940 1052704KB 798816KB 45.8 38.9 0:11.92 malloc

1 56220KB 1164KB 0.0 0.1 0:00.70 systemd
2 0 0 0.0 0.0 0:00.00 kthreadd

cTop




NFM's High Accuracy
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Reply rate [/s]

NFM's Low VM Overhead
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NFM's Advantages:
Analyze Dysfunctional Systems

= Via RConsole - Out-of-band console-like R/O interface

= Supported functions: /s, Ismod, ps, netstat, ifconfig, ...

= Time travel: sync and seed APIs

= Analyzes unresponsive systems: kernel panic, misconfigured n/w
= Detects (some) rootkits:

In-VM Console:

Active Internet connections (servers and established)
Proto Local Address Foreign Address State

tcp 127.0.0.1:25 0.0.0.0:~* LISTEN

tcp 9.XX.XXX.110:52019 9.XX.XXX.109:22 ESTABLISHED

tep 9.XX.XXX.110:22 9.XX.XXX.15:49845 ESTABLISHED

RConsole:

Active Internet connections

Proto Local Address Foreign Address State PID Process
tcp 127.0.0.1:25 0.0.0.0:0 SS_UNCONNECTED 741 [sendmail]
tep 9.XX.XXX.110:52019 9.XX.XXX.109:22 SS_CONNECTED 6177 [ssh]

tep  9.XX.XXX.110:22  9.XX.XXX.15:49845 SS_CONNECTED = 14894 [sshd]
tcp 0.0.0.0:2476 0.0.0.0:0 SS_UNCONNECTED 23304 [datacpy]
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NFM's Advantages:
Better Accuracy

= Distributed Application
— 3 LAMP instances

VM1 VM2
Reservation 30% 30%
Allocation 100% 70%

VM3
30%
30%

20



NFM's Advantages:
Better Accuracy

Httperf Stats
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Conclusion

= Current monitoring techniques unfit for modern virtualized Cloud

*Introducing Near Field Monitoring- Leverage virtualization for a
fundamentally different VM monitoring approach

— Eliminates in-VM hooks, provides same fidelity monitoring out-of-band
— Decoupled VM monitoring - execution architecture
— Alleviates concerns with existing techniques

« Always-on, non-intrusive, holistic view, ...

= Evaluation:
* High frequency
* Low overhead
* Better accuracy

* Higher efficiency
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