Non-intrusive, Out-of-band and Out-of-the-Box Systems Monitoring in the Cloud

SIGMETRICS June 18, 2014

Sahil Suneja

Eyal de Lara

University of Toronto

Canturk Isci

Vasanth Bala

Todd Mummert

IBM T.J. Watson Research

Data Center Machines

Traditional Systems Monitoring

Traditional Systems Monitoring

Introducing- Near Field Monitoring

Near Field Monitoring (NFM)

NFM's Advantages

- •Always-on: Works for unresponsive or compromised systems
- Out-of-the-box: Unmodified guest
 No agent or hook installation
- Non-intrusive: No guest cooperation
 No interference with guest operation
- Out-of-band: Outside guest's context Decouple execution and monitoring
- Virtualization-aware: Holistic knowledge
 Accurate and efficient monitoring

NFM's Architecture

Frontend

Backend

Approach: VM Memory Introspection

1. Exposing VM Memory State

- Gain access to VM's memory image from outside
 - Unmodified VM
 - Unmodified hypervisor

2. Exploit VM Memory State

- Reconstruct VM's runtime state from the memory image
- In-memory kernel data structure traversal

Approach | Exposing VM Mem State

Memory dump

- Dump / migrate guest memory to file
- KVM-QEMU pmemsave or migrate-to-file
- High overhead: VM paused for dump duration

Live R/O memory handle

- Xen
 - Map guest memory into crawler process- xc_map_foreign_range()
- KVM
 - No default support
 - New live handle, read VM mem directly via
 - QEMU process' /proc/<pid>/mem + /proc/<pid>/maps
- Negligible impact on VM

Approach | Exploiting VM Mem State

- Extract system information by traversing linux kernel's C structs in exposed memory image
 - Different structs for different kinds of information
 - task_struct, mm_struct, files_struct, net_device etc.
- •Requirements:
 - Starting addresses for structs
 - /boot/System.map
 - Offsets for particular struct fields
 - Linux source or vmlinux
 - /boot/<Build.config>

Backend | Crawl Output

CPU NumCores, Hz, CacheSize, ...

OS Nodename, Release, Arch, ...

N/W device HWaddr, Ipaddr, TX/RX bytes, ...

Modules Name, State, ...

Process PID, Command, RSS, ...

Open files FD → filename, ...

Memory Mapping MappedFiles, VA → PA mappings, ...

N/W connections SocketState, {Src, Dst, Ports}, ...

Backend | Prototype Apps

- 1. CTop: Cloud-wide consolidated resource monitoring
- 2. PaVScan: Hypervisor paging aware virus scanner
- 3. RConsole: Remote console
- 4. *TopoLog*: Network topology discovery

Evaluating NFM

- Latency / monitoring frequency?
- Accuracy?
- Overhead?
- Advantages?

NFM's High Monitoring Frequency

NFM's Accuracy: Cloud Top vs. top

top - 11:58:42 up 1 day, 22:19, 1 user, load average: 0.90, 0.22, 0.11 Tasks: 57 total, 3 running, 54 sleeping, 0 stopped, 0 zombie Cpu(s): 99.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.7%hi, 0.0%si, 0.3%st Mem: 2052104k total, 1976340k used, 75764k free, 3996k buffers Swap: 6160380k total, 304068k used, 5856312k free, 1868k cached

top

PID	USER	PR	NI	VIRT	RES	SHR	s	%CPU	%MEM	TIME+	COMMAND
1942	root	20	0	1028m	1.0g	188	R	49.9	51.0	0:08.98	malloc
1940	root	20	0	1028m	780m	136	R	49.5	38.9	0:11:91	malloc
1	root	20	0	56220	1164	408	s	0.0	0.1	0:00.71	systemd
2	root	20	0	0	0	0	s	0.0	0.0	0:00.00	kthreadd

Every 0.5s: ./topUpdate.sh

CPU up time: 4461430125 jiffies

cTop

PID	VIRT	RES	%CPU	%MEM	TIME+	COMMAND
1942	1052704KB	1047368KB	45.8	51.0	0:08:33	malloc
1940	1052704KB	798816KB	45.8	38.9	0:11.92	malloc
1	56220KB	1164KB	0.0	0.1	0:00.70	systemd
2	0	0	0.0	0.0	0:00.00	kthreadd
:						

NFM's High Accuracy

<4% variation

NFM's Low VM Overhead

+ 256MB WS in paper

NFM's Advantages: Analyze Dysfunctional Systems

- Via RConsole Out-of-band console-like R/O interface
- Supported functions: Is, Ismod, ps, netstat, ifconfig, ...
- Time travel: sync and seed APIs
- Analyzes unresponsive systems: kernel panic, misconfigured n/w
- Detects (some) rootkits:

In-VM Console:

```
Active Internet connections (servers and established)

Proto Local Address Foreign Address State
tcp 127.0.0.1:25 0.0.0.0:* LISTEN
tcp 9.XX.XXX.110:52019 9.XX.XXX.109:22 ESTABLISHED
:
tcp 9.XX.XXX.110:22 9.XX.XXX.15:49845 ESTABLISHED
```

RConsole:

```
Active Internet connections
Proto Local Address
                           Foreign Address
                                              State
                                                               PID Process
tcp
       127.0.0.1:25
                           0.0.0.0:0
                                              SS UNCONNECTED
                                                                741 [sendmail]
tcp
        9.XX.XXX.110:52019 9.XX.XXX.109:22
                                              SS CONNECTED
                                                               6177 [ssh]
tcp
        9.XX.XXX.110:22
                           9.XX.XXX.15:49845 SS CONNECTED
                                                             14894 [sshd]
       0.0.0.0:2476
                           0.0.0.0:0
                                              SS UNCONNECTED 23304 [datacpy]
```

NFM's Advantages: Better Accuracy

- Distributed Application
 - 3 LAMP instances

	VM1	VM2	VM3
Reservation	30%	30%	30%
Allocation	100%	70%	30%

NFM's Advantages: Better Accuracy

Conclusion

- Current monitoring techniques unfit for modern virtualized Cloud
- Introducing Near Field Monitoring- Leverage virtualization for a fundamentally different VM monitoring approach
 - Eliminates in-VM hooks, provides same fidelity monitoring out-of-band
 - Decoupled VM monitoring execution architecture
 - Alleviates concerns with existing techniques
 - Always-on, non-intrusive, holistic view, ...
- Evaluation:
 - High frequency
 - Low overhead
 - Better accuracy
 - Higher efficiency