Non-intrusive, Out-of-band and Out-of-the-Box
Systems Monitoring in the Cloud

SIGMETRICS
June 18, 2014

Canturk Isci
Sahil Suneja Vasanth Bala
Eyal de Lara Todd Mummert

University of Toronto IBM T.]. Watson Research

Data Center Machines

Traditional
VMs = new processes
0S for the cloud computer!
HARDWARE
Modern
VM VM VM VM

VIRTUALIZATION LAYER

HARDWARE

Traditional Systems Monitoring

OS

HARDWARE

Traditional Systems Monitoring

e

VIRTUALIZATION LAYER

L

Introducing- Near Field Monitoring

e

VIRTUALIZATION LAYER

L

Near Field Monitoring (NFM)

2
2]

VM VM VM

VIRTUALIZATION LAYER
HARDWARE

VM

NFM's Advantages

*Always-on: Works for unresponsive or compromised systems

*Qut-of-the-box: Unmodified guest
No agent or hook installation

*Non-intrusive: No guest cooperation
No interference with guest operation

*Qut-of-band: Outside guest's context
Decouple execution and monitoring

*\/irtualization-aware: Holistic knowledge
Accurate and efficient monitoring

NFM's Architecture

Hy;:)ervisorI

\\ﬁ%jDBk MEM| MEM
. View ST
RN aT IS
= —:LD__I_S_'K Crawl
»View API
Frontend

Cloud Analytics Analytics
Apps
Frames S

Frame

Cra\fvl Datastore

Logic Structured
view of

l VM states

A

Backend

Approach: VM Memory Introspection

1
1
Hypervisor
VM
os = — ()
_ = ‘ Crawl
Disk MEM| MEM Logic
View STE
Vs A [IS |
:"':LD—,'—SK————————-------------1" Cravﬂ ------ »
1 L. View | APl | —
71

1. Exposing VM Memory State

— Gain access to VM’s memory image from outside
* Unmodified VM
« Unmodified hypervisor

2. Exploit VM Memory State
— Reconstruct VM's runtime state from the memory image
— In-memory kernel data structure traversal

Approach | Exposing VM Mem State

= Memory dump
— Dump / migrate guest memory to file
— KVM-QEMU pmemsave or migrate-to-file
— High overhead: VM paused for dump duration

= Live R/O memory handle

— Xen

* Map guest memory into crawler process- xc_map_foreign_range()
- KVM

* No default support

* New live handle, read VM mem directly via

— QEMU process' /proc/<pid>/mem + /proc/<pid>/maps

— Negligible impact on VM

10

Approach | Exploiting VM Mem State

"Extract system information by traversing linux kernel's C
structs in exposed memory image

— Different structs for different kinds of information
» task_ struct, mm_struct, files_struct, net_device etc.

"Requirements:
— Starting addresses for structs
* /boot/System.map
— Offsets for particular struct fields
* Linux source or vmlinux
+ /boot/<Build.config>

11

Backend | Crawl Output

)

VM Crawl
Mem/Disk ---» Lodi
handle ogic

Cloud Analytics

Analytics
Apps

“ > APP
Frames

Frame
Datastore
Structured]

view of
VM states

CPU

0S

N/W device
Modules
Process

Open files
Memory Mapping
N/W connections

NumCores, Hz, CacheSize, ...
Nodename, Release, Arch, ...
HWaddr, Ipaddr, TX/RX bytes, ...
Name, State, ...

PID, Command, RSS, ...

FD — filename, ...

MappedFiles, VA — PA mappings, ...

SocketState, {Src, Dst, Ports}, ...

12

Backend | Prototype Apps

1. CTop: Cloud-wide consolidated resource monitoring
2. PaVScan: Hypervisor paging aware virus scanner
3. RConsole: Remote console

4. TopoLog: Network topology discovery

13

Evaluating NFM

= Latency / monitoring frequency?

= Accuracy?

= Overhead?

= Advantages?

14

NFM's High Monitoring Frequency

100.0
‘»
E 100
>
(&)
c
Q 10
©
—l
= 0.1
S
&

0.0

Xen

KVM

Safe: 10Hz

KVM: 20Hz

Xen: 200Hz

10
20

100
200

1000

O Basic Crawl | 1074

@ Full Crawl

1075

Monitoring Freq. [Hz]

15

NFM's Accuracy: Cloud Top vs. top

J
)

(top - 11:58:42 up 1 day, 22:19, 1 user, load average: 0.90, 0.22, 0.11
Tasks: 57 total, 3 running, 54 sleeping, O stopped, 0 zombie
Cpu(s): 99.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.7%hi, 0.0%si, 0.3%st
Mem: 2052104k total, 1976340k used, 75764k free, 3996k buffers
Swap' 6160380k total, 304068k used, 5856312k free, 1868k cached

top

-mmmn-
1942 root 1028m 1.0g 188 49.9 51.0 0:08.98 malloc
1940 root 20 0 1028m 780m 136 R 49.5 38.9 0:11:91 malloc

1 root 20 0 56220 1164 408 s 0.0 0.1 0:00.71 systemd
2 root 20 0 0 0 0 s 0.0 0.0 0:00.00 kthreadd

\.

=
Every 0.5s: ./topUpdate.sh
CPU up time: 4461430125 jiffies

PID VIRT RES %CPU $MEM TIME+ COMMAND
1942 1052704KB 1047368KB 45.8 51.0 0:08:33 malloc
1940 1052704KB 798816KB 45.8 38.9 0:11.92 malloc

1 56220KB 1164KB 0.0 0.1 0:00.70 systemd
2 0 0 0.0 0.0 0:00.00 kthreadd

cTop

NFM's High Accuracy

<49% variation

120 180 240 300 360
Time [s]

420

480

17

Reply rate [/s]

NFM's Low VM Overhead

12000
Reply rate | 512MB WS

10000

8000

—W¥—Response time | 512MB WS

6000

4000

2000

base 10Hz monitoring virusscanning hashing

+ 256MB WS in paper

©C = N WO » 01 O N OO ©

18

Response time [ms]

NFM's Advantages:
Analyze Dysfunctional Systems

= Via RConsole - Out-of-band console-like R/O interface

= Supported functions: /s, Ismod, ps, netstat, ifconfig, ...

= Time travel: sync and seed APIs

= Analyzes unresponsive systems: kernel panic, misconfigured n/w
= Detects (some) rootkits:

In-VM Console:

Active Internet connections (servers and established)
Proto Local Address Foreign Address State

tcp 127.0.0.1:25 0.0.0.0:~* LISTEN

tcp 9.XX.XXX.110:52019 9.XX.XXX.109:22 ESTABLISHED

tep 9.XX.XXX.110:22 9.XX.XXX.15:49845 ESTABLISHED

RConsole:

Active Internet connections

Proto Local Address Foreign Address State PID Process
tcp 127.0.0.1:25 0.0.0.0:0 SS_UNCONNECTED 741 [sendmail]
tep 9.XX.XXX.110:52019 9.XX.XXX.109:22 SS_CONNECTED 6177 [ssh]

tep 9.XX.XXX.110:22 9.XX.XXX.15:49845 SS_CONNECTED = 14894 [sshd]
tcp 0.0.0.0:2476 0.0.0.0:0 SS_UNCONNECTED 23304 [datacpy]

19

NFM's Advantages:
Better Accuracy

= Distributed Application
— 3 LAMP instances

VM1 VM2
Reservation 30% 30%
Allocation 100% 70%

VM3
30%
30%

20

NFM's Advantages:
Better Accuracy

Httperf Stats

N

Y

VM-1 VM-2 VM-3

60 -

— e s Ew s =

- Httperf replies/sec
-« Httperf resp. time (s)

NFM'’'s holistic view enables more accurate -monitoring

top CPU Us

CTop CPU Usage %

30
20
10 | - - .

0 -

VM-1 VM-2 VM-3

60 -
50
40 -
30
20

10 - -
0' T

VM-1 VM-2

VM-3

B PHP CPU%
® MYSQL CPU%

Apache CPU%
H PHP CPU%
m MYSQL CPU%

21

Conclusion

= Current monitoring techniques unfit for modern virtualized Cloud

*Introducing Near Field Monitoring- Leverage virtualization for a
fundamentally different VM monitoring approach

— Eliminates in-VM hooks, provides same fidelity monitoring out-of-band
— Decoupled VM monitoring - execution architecture
— Alleviates concerns with existing techniques

« Always-on, non-intrusive, holistic view, ...

= Evaluation:
* High frequency
* Low overhead
* Better accuracy

* Higher efficiency

22

