Program Behavior Prediction Using a Statistical Metric
Model

Ruhi Sarikaya
IBM Researc

Yorktown Heights, NY
sarikaya@us.ibm.com

ABSTRACT

Adaptive computing systems rely on predictions of program
behavior to understand and respond to the dynamically vary-
ing application characteristics. This study describes an ac-
curate statistical workload metric modeling scheme for pre-
dicting program phases. Our evaluations demonstrate the
superior performance of this predictor over existing predic-
tors on a wide range of benchmarks. This prediction accu-
racy lends itself to improved power-performance trade-offs
when applied to dynamic power management.

Categories and Subject Descriptors:
C.4 [Performance of Systems]: Modeling techniques

General Terms: Management, Measurement, Performance

1. INTRODUCTION

Today’s adaptive computing systems heavily rely on accu-
rate predictions of changes in application behavior to proac-
tively manage system adaptations. Prior work proposed
such predictors based on simple pattern history tables [3],
recent program flow behavior [6], statistics over recent per-
formance characteristics [1] and model based parametric
predictors [5]. These predictors have shortcomings due to
their deficiency in predicting global long range patterns, and
their inability to model patterns of varying length. In this
work, we propose a new prediction technique based on statis-
tical metric modeling that overcomes these limitations. This
predictor tracks the probabilities of variable-length metric
sequences. These probabilities are used to predict the most
likely future behavior given the history pattern. This pre-
dictor has the ability to model patterns of different length
and it can effectively model long term patterns. A compre-
hensive set of experiments demonstrates the effectiveness of
this approach in comparison to the previously proposed pre-
dictors. We demonstrate the application of this predictor
to dynamic power management, leading to better power-
performance trade-offs compared to the existing approaches.

2. METRIC MODELING PREDICTOR

Our prediction approach is inspired from natural language
processing, where we treat the workload metric samples as
words and build a language model for each workload. Since
the performance metrics are real numbers, we quantize them
into a set of discrete sets, called “quantization bins”. Our in-
tuition is that, like in natural languages, we can treat mod-
eling workload behavior as a language modeling problem.
There is commonly an underlying structure in workload ex-
ecution as also reflected in performance metrics, and our
modeling approach can reveal this structure.

Copyright is held by the author/owner(s).
SIGMETRICS’10, June 14-18, 2010, New York, New York, USA.
ACM 978-1-4503-0038-4/10/06.

Canturk Isci

IBM Research IBM

Hawthorng, NY
canturk@us.ibm.com

Alper Bu%uktosunoglu
esearch
Yorktown Heights, NY

alperb@us.ibm.com

History History Next Sample Probability
Size - .- s

P(s4153,52,51)

52 s3 s4 P(s4153.52)

N-2

s4 P(s4 153)

s4 P(s4)
P(s3)
P(s2)
PGs1)

Figure 1: Model with back-off for n = 4.

The statistical metric model is a conditional distribution
on the identity of the ith sample in a metric sequence, given
the identities of all previous samples. We make a compu-
tationally convenient approximation that a sample depends
only on the previous n samples, where n depends on the
amount of available data to estimate the model parameters.
Going back to natural language modeling analogy, in gen-
eral, what word we will speak next, depends more on the
most recent previous n words than the words we have spo-
ken a while ago. Our metric model is based on a class of
Markov models, which is known as, the n-gram models [4].
Here n refers to the maximum length of the finite sequence
of the metric samples. The probability of the nth sample is
conditioned on the previous n — 1 samples.

The metric model of order n = 4 is shown in Figure 1.
The model has two sets of entries: the finite sequences and
the associated probabilities with each sequence. The model
contains sequences of length 1 to n where the last sample in
each sequence is the output given the remaining n—1 history
samples. For example, the first entry has the (s1,s2, s3)
as the history for the next sample s4 with the probability
P(s4]s3, 82,51). The models of lower order m (1 < m < n),
increase the likelihood of finding a matching subsequence for
a given finite sequence.

The model is a probability distribution, P(s), over L sam-
ples S = s1, 89, ..., s1,, that attempts to reflect the frequency
with which each finite sequence s = s1,s2,...,5 (I < L)
occurs during workload execution.

i
P(S) :HP(S’L|5’L71>31'727~-~751) (1)

The probability of a string P(s) is expressed as the prod-
uct of the probabilities of the samples that compose the
sequence, with each sample probability is conditional on the
identity of the last n—1 samples. Without loss of generality,

18%

16% OLastValue
14%
12%
10%
8%
6%
4%
2% |
0% =

Normalized Prediction Error

Q 3 pr N o ® > 0 g T T 9 L e 5
g22353 25822833888 ¢8
e 2 8 £ 3 ® s @ N -« %
o © [=3 3 = LY
E g | I § ° 5 2 9 £ 8 o J
® £t £ o 9 T o £ og 9 o
S a o 2 o o 9
®« & 9 5 o © 5 o &
o 9o o o
a o 2 &

§ 2 8§

N

'n.ﬂ

gcc_integrate

B Table-1024 0O SMM-Global

gec_scilab

1 e
o o o n S T g = 2 W T N0 9 o
£ 3k g 8 883 2eF e EETEE 2828
e 1538 3 3 g9 JET 2.8 888 53
s o ®c o2 g EEBEXO®S T T T o = 37
5N 2 8 o H $ 5 © S £ ¢ ¢ I .l
5 N £ & 9 £ P -1 2 ¢ 6 6 5 5 =
| o o | © | = 2 a 8 3
o d o ~ E 82 9 8 22
a a 2§ [-9 3 (]
N 255 E % K
5 55 H g g
] S 6 o
> > >

[

Figure 2: Prediction accuracy of our predictor, last-value and table-based predictors.

we can express the probability of a s, P(s) as:

l l
i) =[Pl) ~ [Pl @)

where s] denotes samples s;, ..., s;. In order to simplify the
description and formulation of the the metric model, we con-
sider the case n = 2. The extension of formulation and re-
sults to higher order models are trivial. By setting n = 2,
we make the approximation that the probability of a sample
only depends on the identity of the immediately preceding
sample, hence we can approximate P(s) as:

1
H P(si|si—1), where P(s;|si—1) =

i=1

C(Si—hsi)

P(s) Clorn)

®3)

where C(z) denotes the number of times the sequence x oc-
curs in the metric. This is called the maximum likelihood
(ML) estimate for P(s;|s;—1). In addition to ML probability
estimates, we also apply additional “smoothing” to the rela-
tive frequencies to modify the conditional distributions away
from pure relative frequency estimates in order to compen-
sate for data sparsity.

3. EXPERIMENTAL EVALUATION

We evaluate our predictor with the SPEC CPU2000 suite
running on an IBM POWER4 system. We use hardware per-
formance counters to collect data for prediction. Our pre-
dictor performs predictions at 10 ms time scales. The overall
computational overhead of our predictor is constrained to be
less than a thousand multiply and divide operations. This
translates to compute time overheads on the order of mi-
croseconds. Thus, the proposed scheme can be implemented
within the operating system software in context switch time
granularities with negligible performance impact.

We run an extensive set of experiments to evaluate our
predictor in comparison to two existing prediction schemes,
namely table-based [2] and last-value predictors. The table-
based predictor tracks a fixed length of most recently ob-
served characteristics. The predictions for future behavior
is deterministically encoded into a table, based on prior ob-
served patterns. Last-value predictor assumes that the next
metric sample is the same as the last observed sample.

Figure 2 shows a comparison of last value, table based
and our predictor for a model order n = 8 across all SPEC
CPU2000 benchmarks. Our metric modeling based predic-
tor improves prediction accuracy by 19% and 36% compared
to the table based and last-value predictors. This improve-
ment is even further emphasized for highly-varying applica-
tions, with 43% and 63% relative reductions in prediction
errors over the existing approaches.

Last, we explore the application of our prediction ap-
proach to dynamic power management. We predict memory

access rates of applications at runtime using metric model-
ing, and use the predicted memory access behavior to con-
trol dynamic voltage and frequency scaling (DVFS). We use
memory access rates as the main differentiator for categoriz-
ing execution into different bins. In our evaluation system,
we consider eight bins, corresponding to eight DVFE'S states.
That is, when a predictor predicts the next application phase
as bin; the processor is proactively set to DVFS setting 1.
Similar to the prior experiment, we continuously predict ap-
plication behavior at fixed sampling intervals. Based on the
predicted execution behavior, i.e., memory access rate, we
set the corresponding DVFS state for the following period.
Then, at the end of this period we observe the achieved
power savings and the associated performance degradation
based on the actual execution behavior in this past interval.
While our predictor achieves slightly lower power savings
compared to the other predictors, it significantly reduces
the performance degradation impact of such proactive power
management, with 34% and 19% improvements compared to
the last-value and the table-based predictors respectively.

4. CONCLUSIONS

We described a predictor based on a probabilistic model
that learns application characteristics at runtime and cap-
tures long term, dominant application behavior. The pro-
posed approach has four main strengths. First, it mod-
els long term global patterns in application behavior. Sec-
ond, the predictor can accommodate variable-length pat-
terns. Third, it is resilient to small fluctuations in the ob-
served patterns. Last, the metric model has the ability to
adapt itself; as it learns more it predicts better. The re-
sults show that the our predictor reduces prediction errors
by up to 10X and 3X compared to the last value and table
based predictors respectively, with an average improvement
of more than 60% and 40% for highly varying benchmarks.
We also show the application of this prediction to dynamic
power management, where higher prediction accuracies of
our approach lends itself to superior power-performance trade-
offs compared to the existing approaches.

S. REFERENCES

[1] E. Duesterwald, et al. Characterizing and Predicting Program
Behavior and its Variability. PACT, 2003.

[2] C. Isci, et al. Live, Runtime Phase Monitoring and Prediction

on Real Systems with Application to Dynamic Power

Management. MICRO, 2006.

C. Isci, et al. Long-term Workload Phases: Duration

Predictions and Applications to DVFS. IEEE Micro, 2005.

F. Jelinek et al. Interpolated Estimation of Markov Source

Parameters from Sparse Data Pattern Recognition in

Practice, E.S. Gelsema and L. N. Kanal , 1980.

R. Sarikaya, et al. A Unified Prediction Method for Predicting

Program Behavior. IEEE Trans. on Computers, 2010.

T. Sherwood, et al. Phase Tracking and Prediction

International Symposium on Computer Architecture, 2003.

(3]
[4

(5]
(6]

