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Background – POWER6 (JS22)

 JS22 has two POWER6 chips

 Dual-core SMT2

 High-frequency (4GHz) in-order

 OoO for some FP operations

 64KB L1 I-cache and D-cache

 Per-core 4MB L2 cache

 Optional off-die 32MB L3 cache

 1 or 2 memory controllers

 Depending on configuration
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Background – POWER6 (JS22)

 Nap mode

 Per-core low-power mode

 Turns off the internal clocks

 Reduces power consumption and temperature

 Hardware thread priorities

 Control instruction decode rate for each thread in a core

 Eight priority levels

 Special case (1,1) : power saving operation

 Throughput and execution time can be improved

 Boneti et al. Software-Controlled Priority Characterization of POWER5 Processor. ISCA 2008

 Address biased thread performance

 Boneti et al. A Dynamic Scheduler for Balancing HPC Applications. SC 2008
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Background – Linux Kernel

 CPU Idle Power Manager

 No process is available to run (other than idle process)

 Takes advantage of underlying HW low-power 
mechanisms

 Tickless kernel

 Frequent timer interrupts (hundreds per second)

 Interrupts force the system to exit low-power mode

 Tickless kernel removes periodic timer interrupts

 Timer set to expire to the next, non-periodic timer event

idle_loop:
  while (get_tb() < start_snooze) {
    If (…) goto out;
    ...
    HMT_very_low(); /* priority 1 */
  }

  HMT_medium(); /* priority 4 */
  …
  cede_processor(); /* nap mode */
out:
  HMT_medium(); /* priority 4 */

Linux idle loop snippet for POWER6
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Methodology

 IBM JS22 BladeCenter

 Two dual-core, 2-way SMT POWER6 chips @ 4.0Ghz

 Power/temperature measurements

 IBM EnergyScale architecture

 Accurate measurements via Thermal and Power Management Device (TPMD)

 Benchmarks

 METbench microbenchmarks

 Stress different subcomponents (integer unit, FP unit, L1/L2 cache, memory)

 SPEC CPU2006

 Metrics

 Energy-delay product : EDP = power / IPC2 (lower is better)
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Results

 Idle system

 Low-power modes

 Tickless kernel

 Active system

 Workload characteristics

 Core usage effect

 Hardware thread priorities
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Results – Low-Power Modes

 Four configurations (system is idle)

1) No power saving (both nap mode and HW 
thread priorities are disabled)

2) HMT enabled (only priorities are enabled)

 Low-power priority set (1,1) is used

 Very low latency

3) CEDE enabled (only nap mode is enabled)

 Higher latency

4) Both enabled (both nap mode and HW 
priorities are enabled)
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Results – Tickless Kernel

 Four configurations (system is idle)

 Tickless/tickful

 100/1000 timer interrupts per second

 We collect

 OS events

 Power/temperature measurements

 Non-significant effect on power

 On a POWER6 system (for HZ=100)

 HZ=100 is typical for a server

 Analytical model of tickless effect on 
power

 Accurate estimation
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Results

 Idle system
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 Tickless kernel

 Active system
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Results – Workload Characteristics (single thread)

 Effect of CPU and memory intensity on system power and core temperature

 Power and temperature values are relative to their values when the system is idle

cpu_int ld_l1 ld_l2 ld_mem st_mem cpu_fp h264ref bzip2 gcc dealII lbm cactusADM mcf milc soplex
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Results – Workload Characteristics (single thread)

 Effect of CPU and memory intensity on system power and core temperature

 Temperature is correlated with CPU intensity (high-IPC benchmarks)

 Up to 9.6% variation

cpu_int ld_l1 ld_l2 ld_mem st_mem cpu_fp h264ref bzip2 gcc dealII lbm cactusADM mcf milc soplex
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Results – Workload Characteristics (single thread)

 Effect of CPU and memory intensity on system power and core temperature

 Temperature is correlated with CPU intensity (high-IPC benchmarks)

 Power consumption is correlated with memory intensity...

 Up to 5.8% variation

METbench SPEC CPU2006
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Results – Workload Characteristics (single thread)

 Effect of CPU and memory intensity on system power and core temperature

 Temperature is correlated with CPU intensity (high-IPC benchmarks)

 Power consumption is correlated with memory intensity...

 … and CPU intensity as well

METbench SPEC CPU2006
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Results – Core Usage Effect

 Incremental execution of multiple 
microbenchmark copies

 CPU-bound (cpu_int), MEM-bound (ld_mem)

 Power consumption increases linearly wrt. to 
the number of copies

 No significant difference between using one or two 
chips

 Performance scales linearly for CPU-bound 
workloads

 For MEM-bound workloads there is intra-chip 
saturation

 Most probably as there is only on memory controller 
per chip

IPC (cpu_int)
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Results – Thread Priorities

 Heterogeneous mix: CPU-bound and MEM-bound workloads

 Increasing priority for MEM-bound thread

 No significant performance benefit for lbm

 Performance for h264ref decreases

 EDP worsens by 73% (3,4)

 Increasing priority for CPU-bound thread

 Performance benefit for h264ref

 25% improvement in EDP (5,4)

 Without significantly hurting lbm

 44% improvement in EDP (6,1)

 At the expense of hurting IPC for lbm → still, it can be useful under some circumstances

 Moreover, power consumption is actually reduced
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Results - Applications

 Power model

 Thread placement effect
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Results – Power Model

 Access to power sensors is not easy for the end-user

 We provide a power model to overcome this difficulty

 Based on performance counters (PMCs)

 End-user can understand/predict power consumption for his/her applications

 Cores and memory are the biggest contributors to dynamic power consumption

 Modeled by using core activation cost, IPC, and memory accesses

 Model obtained via linear regression

P=N AC×P ACC1× IPCC 2×L1LDMPCC3×L2LDMPCC 4×L2STMPC

N
AC

 : number of active cores

P
AC

 : power consumption due to a core activation
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Results – Power Model

 Two approaches for training the model

1) METbench training: Training → METbench / Testing → SPEC CPU2006

 Time for collecting training data is significantly reduced

 However, less accuracy is expected

2) Shared training: Training & testing → METbench + SPEC CPU2006

 By using cross-validation

 Higher accuracy expected
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Results – Power Model (METbench training)

 METbench is used for the model training

 The model is then tested on all the SPEC CPU2006

 With several thread/core configurations

 Average error is below 4% for all cases

 The maximum error is observed when the number of cores and hardware threads is highest

 Similar error to other published works
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Results – Power Model (Shared training)

 Shared training

 Both data from METbench and SPEC CPU2006 is used

 Capture wider resource usage patterns

 Cross-validation is used test the model

 Accuracy is improved

 Average error is less than 1.2%

 Increased time for collecting the training data

Measured vs. estimated power consumption
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Results – Thread Placement

 Performance/power effect

 Due to resource sharing

 Already considered in Linux

 Spread tasks across domains

 Increase performance

 Reduce the number of domains

 Power reduction

 Not workload-aware

 Depending on workload 
characteristics

 CPU-bound

 Memory-bound

mem-bound
mem-bound

cpu-bound 
mem-bound

SMT2 core
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Memory
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Results – Thread Placement (CPU-bound)

 CPU-bound workloads

 Highly sensitive to intra-core resource 
sharing

 IPC decreases 25%

 EDP worsens up to 74% (2 threads case)

 However, power consumption is lower

 No difference at the inter-core level

 Consolidating processes into a single chip 
does not offer any significant advantage

 POWER6 saves power at the core level
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Results – Thread Placement (CPU-bound)

 CPU-bound workloads

 Highly sensitive to intra-core resource 
sharing

 IPC decreases 25%

 EDP worsens up to 74% (2 threads case)

 However, power consumption is lower

 No difference at the inter-core level

 Consolidating processes into a single chip 
does not offer any significant advantage

 POWER6 saves power at the core level
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Results – Thread Placement (MEM-bound)

 MEM-bound workloads

 Slightly sensitive to intra-core 
resource sharing

 IPC only decreases 6-7%

 EDP only worsens 13%

 Lower power consumption

 Significant difference at the inter-chip 
level

 Both performance and EDP 
improves

 Allows to better use the per-chip 
single memory controller

 Up to a 2X IPC improvement

 Up to a 4X EDP improvement
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Results – Thread Placement (MEM-bound)

 MEM-bound workloads

 Slightly sensitive to intra-core 
resource sharing

 IPC only decreases 6-7%

 EDP only worsens 13%

 Lower power consumption

 Significant difference at the inter-chip 
level

 Both performance and EDP 
improves

 Allows to better use the per-chip 
single memory controller

 Up to a 2X IPC improvement

 Up to a 4X EDP improvement
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Results – Thread Placement (CPU-MEM-mix)

 CPU-MEM workload mix

A) No significant effect

 Flat change in performance and EDP

B) Memory controller saturation

 20% improvement in IPC

 1.5X improvement in EDP

C) Pipeline and memory controller 
saturation

 10% improvement in IPC

 1.2X improvement in EDP
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Results – Thread Placement

 Thread placement can significantly affect performance, power and EDP

 A workload-aware task scheduler

 Increase system performance

 Reduce power/energy consumption
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Conclusions

 We presented a power and thermal characterization for a POWER6-based system

 Both when the system is idle and active

 Multiple-level characterization

 HW, OS and application

 Results when idle

 Nap mode + hardware thread priorities reduce power and temperature by a 25%

 Linux tickless kernel does not significantly affect power consumption for POWER6

 Results when active

 Compute-intensity is the most relevant factor determining core temperature

 Memory-intensity is the main factor related to system power consumption

 Power consumption is also affected by high-IPC benchmarks
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Conclusions

 We provide a system power consumption model

 Based on performance counters

 Its prediction error is between 4% and 1.2%

 Depending on training data

 We study the effect of thread placement

 Thread placement affects performance and power/energy consumption

 Significants benefits are possible with a workload-aware scheduler

 Up to 2X IPC improvement

 Up to 4X EDP improvement
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