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Abstract

Systems management techniques that allocate resources
to running entities, such as processes and virtual machines
(VMs), often require estimates of the resources required
by each of these resource consumers. For example, many
proposed virtual machine placement algorithms attempt to
allocate VMs to physical hosts in such a way as to minimize
the number of physical hosts that are occupied, while ensur-
ing that each VM receives the CPU required to do its task
adequately. The common practice is to assume that the CPU
requirement is equal to the current CPU utilization, or to use
a prediction of it over an appropriate time horizon.

In this paper, we demonstrate that, when multiple VMs or
processes co-reside on a physical host, the measured CPU
utilization may provide a poor estimate of the actual require-
ment. We derive a simple, much more accurate alternative
estimate of CPU demand, implement it, and demonstrate
its superiority experimentally. Furthermore, we demonstrate
that using our demand estimation framework in conjunction
with dynamic resource allocation in a virtualized environment
greatly improves the effectiveness of dynamic placement,
resulting in one-shot convergence to optimal placement and
significant improvements in the overall performance of the
individual VMs.

I. Introduction

In order to function well, systems management algo-
rithms that dynamically control the placement of applications
on physical hosts must be able to estimate accurately the
resource requirements of the individual applications. For
example, consider a virtualization manager that is responsible
for migrating virtual machines (VMs) from one physical host
to another as workloads fluctuate, priorities change, or VMs
enter or leave the system. In order to make well-informed
placement decisions, the virtualization manager requires a
good estimate of the resource needs of each VM. Similarly,
an application placement controller [1] that is responsible
for deciding how many instances of each application to run,
and where to run them, must know how much resource each
application 1is likely to consume on any prospective target
host.

At present, there are two main approaches to estimating
the resource requirements of VMs and other applications,
both of which are unsatisfactory. In the first approach, used
by several prior studies [2], [3], [4], [5], the application’s
current measured resource usage is taken as an estimate of
its required resource usage. However, this estimate is valid
only for applications that do not share physical resources—
an assumption that is violated to an ever-increasing degree

in today’s environments. In today’s infrastructures, dozens of
applications and VMs may be packed onto the same host.
As we demonstrate in this paper, the resource requirements
estimated by this method can be significantly less than the
true value, leading to strongly suboptimal allocations and
unnecessarily long periods of adjustment. With this approach,
the algorithm repeatedly discovers that its expectations have
not been met, forcing it to perform multiple allocations.
The second approach entails legacy implementations tightly
coupled with the underlying virtualization technology for
specific implementations [6], preventing them from being
generally applicable.

The purpose of this paper is two-fold. First, we introduce
a new resource demand estimation methodology that is accu-
rate, robust, lightweight and general. We demonstrate its su-
periority to utility-based demand estimation through a broad
set of experiments conducted with a complete real-system
prototype implementation. Second, through experiments on
synthetic and real data center workloads, we demonstrate that
our demand estimation technique can be used to improve the
efficiency of dynamic resource allocation substantially.

Our demand estimation approach is general enough to
be employed in a wide variety of platforms, environments
and scenarios involving dynamic allocation of applications
or VMs to physical hosts. While we confine the experiments
reported in this paper to a specific virtualization technology,
our solution can be retrofitted into a variety of existing
virtualization managers, and could be employed by other
application managers such as WebSphere Extended Deploy-
ment [1].

The rest of this paper is organized as follows. In Section
2, we motivate the need for an improved CPU demand
estimation approach. In Section 3, we describe and derive
our CPU demand estimation method. After discussing our
prototype system implementation in Section 4, we present in
Section 5 results that demonstrate (i) the superior accuracy of
our estimator, (ii) substantial improvements in dynamic VM
placement decisions with the help of our estimator, and (iii)
significant performance benefits resulting from the improved
placement decisions. We discuss related work in Section 6,
and summarize our conclusions in Section 7.

II. Motivational Example

The advantages of our work, and the motivation for it, are
best demonstrated with a simple example, shown in Figure 1.
Consider a virtualized cluster of three hosts, each with a total
CPU capacity of 100%, and eight VMs, each of which can
demand up to 100% of a host’s capacity. A dynamic resource
manager is responsible for allocating virtual machines to
physical hosts. Its goal is to ensure that the number of hosts
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Fig. 1. Dynamic resource balancing with usage-
based demand estimation. The bottom values
show (<Usage>%,<demand>%) for each VM.

VMs1-8:
(10%,10%)

VMs1-8:
(12%,25%)

VMs1-8:
(25%,25%)

that are powered on is minimized, while ensuring that each
host’s utilization does not exceed 85% and each VM receives
the CPU resource that it requires. To accomplish this task,
the resource manager is permitted to exercise three controls:
migrate a VM, power on a host, and power off a host.

Initially, at step 71, all eight VMs are close to idle, each
demanding 10% of a host’s CPU. Here, all VMs fit within
a single host (8-10% = 80% < 85%), and so the dynamic
resource manager has powered down two of the three hosts.

Next, at step 72, each VM’s demand increases to 25%.
Clearly, the best solution is to power on two more hosts,
and migrate VMs such that no more than three occupy any
host. However, observe what happens if the dynamic resource
manager bases its estimate of CPU demand on the observed
utilization. At step 72, the physical host is overloaded, with a
CPU utilization approaching 100%. Due to competition, each
VM consumes about 12% of Host 1’s capacity. Since the
resource manager believes that each VM requires just 12%
of a host’s capacity, the best solution appears to be to power
on one host and migrate two VMs to it, leaving six VMs on
the first host; this would appear to result in a resource usage
on the first host that is less than 85%.

Once the migration is performed, it comes to light that
removing two VMs from Host 1 is not sufficient after all.
Each of the remaining six VMs expands to about 16% of
Host 1’s capacity. Since Host 1 continues to be overloaded,
one more VM is migrated to Host 2 at step 73, with the
expectation that such a move will reduce Host 1’s utilization
to about 80% without raising Host 2’s above 85%.

At step T4, five VMs remain on Host 1. Each has
expanded its CPU usage to 20%, so Host 1 is still overloaded.
This forces the resource manager to perform one more
migration, which in turn requires it to power on Host 3,
as Host 2 cannot contain a fourth VM without exceeding
85% usage. At this point, the VMs finally receive the CPU
capacity that they require. However, since Host 1 is violating
the constraint that its CPU utilization not exceed 85% usage,
a final migration of a VM to Host 3 is performed at step 7'5.

The example of Figure 1 illustrates two related problems

that are addressed by this paper. First, estimates of resources
required by a VM (or, more generally, any process) are con-
sistently too low if they are based solely upon the observed
utilization. Second, these underestimates cause dynamic re-
source managers that employ them to converge too slowly to
an efficient VM placement (or, more generally, an efficient al-
location of resources). In this example, the dynamic resource
manager inched towards an efficient allocation in which
eventually all eight VMs obtained the 25% CPU that they
required in a sequence of four potentially time-consuming
steps. The demand estimation technique introduced in this
paper allows this good state to be reached in a single step.

III. VM Demand Estimation Framework

One of the core ideas of our work is to track easily-
observed hypervisor scheduling metrics to derive reliable
estimates for actual VM resource demand. The fundamental
set of metrics used is listed in Table I. These metrics can be
defined for each VM, as well as each physical processor.
Our demand estimation method tracks these metrics over
a sampling period, T, which is smaller than the average
decision making period used by a dynamic resource manager.

CPU Used Time spent while using the CPU

CPU Wait Time spent waiting for some resource other than the CPU
CPU Ready Time spent waiting for CPU to be available

CPU System Time spent in the hypervisor/kernel

TABLE I. Hypervisor scheduling metrics used in
demand estimation.

The CPU Used metric tracks the amount of time a VM
was actually running on the physical hardware. CPU Wait
describes the time spent waiting on some other resource such
as disk or network I/O. During wait time, the VM cannot
progress even if there is available CPU. CPU Ready captures
the time when the VM was ready to run on the CPU, but
had to relinquish the processor to some other VM or task
competing for the same resource. During ready time, the
VM could actually make useful progress had it been given
more processing resources. Finally, CPU System represents
the time spent in lower-level hypervisor or kernel tasks.
Each VM’s lifetime is distributed among the four states CPU
Used, CPU Wait, CPU Ready, and CPU System depending
on (i) resources available to the VM, and (ii) the VM’s
actual desired demand. Therefore, these four metrics are the
fundamental components for accurate CPU accounting.

In general, the sum of all four metrics should approximate
the total elapsed time for a VM. For an idle VM, Used and
Ready times are close to 0%, while Wait is around 100% of
the total elapsed time for the VM. For a completely CPU-
bound VM, the sum of Used and Ready is expected to come
close to 100% of the total elapsed time for the VM.

A. Intuitive Derivation

Figure 2 shows a hypothetical example that illustrates how
a VM’s time is distributed among the four states. System time
is omitted from the description for clarity. We consider 8 VMs
executing on a single host, which has 2 CPUs for a total CPU
capacity of 200%. Each VM has a CPU demand of 80%. In
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Fig. 2. Example timeline of 8 VMs showing the
distribution of time into CPU accounting states.

the example, ¢ represents the time quantum during which
only two VMs can run—one for each of the two cores. For
simplicity, we assume the VMs are scheduled in a pairwise
round-robin fashion. That is, at t = 1, VM1 and VM2 run,
while the remaining six VMs wait their turn; at t =2, VM3
and VM4 acquire the cores, while the others wait; and so
on. In addition, the VM load is constructed such that each
VM performs CPU operations worth 47 time, followed by
a 1t idle period. This load pattern, with its period of 5¢, is
repeated to achieve the 80% CPU demand over a sampling
period T > 5¢. The three different states are represented by
U (CPU Used), W (CPU Wait) and R (CPU Ready). The
columns of the figure represent the time slices of length ¢.

Att =1, all VMs are ready to run. The first two VMs are
scheduled on the CPUs, and are therefore in the U state. The
other VMs stay in R state, as they are ready to run, but no
CPUs are available. At t =2, VM1 and VM2 relinquish the
CPUs (and go into the R state), and the CPUs are allocated to
VM3 and VM4. This pattern continues until r = 13. At this
point, VM1 and VM2 run for the fourth ¢ interval. After this,
both VM1 and VM2 have each received 4t CPU time, and
so have completed their CPU-bound operations. Therefore, at
t = 14, they enter the W state, and remain idle for 1. VM3
and VM4 acquire the CPUs to perform their fourth ¢ interval
of CPU-bound execution and then (at + = 15) go into the
W state. This continues for every pair of VMs. After each
VM has idled in the W state for 1¢, it starts competing for
resources again. As the highlighted region shows, the overall
execution pattern has a period of 16¢. Therefore, a sampling
interval of 7 >> 16¢ will capture a similar distribution of states
to that shown in the highlighted 16¢ region.

Focusing, therefore, on the representative 16¢ region, we
see that each VM shows a state distribution of {U =4¢,W =
1z,R = 11¢}. While the amount spent in R is generally
dependent on the amount of consolidation and competition
between VMs, W and U can be expected to be moderately
consistent regardless of the level of overcommitment. From
these observations, we can state that the demand of a VM
is captured by the ratio of how much time it spends in the
U (Used CPU) state and the W (Wait CPU) state. We see
that the ratio of the Used CPU time (4t) to the sum of CPU
Used and CPU Wait (5t) represents the actual CPU demand
for each of the VMs (80%). Based on this, the estimated
actual demand for a VM, i, can be represented as shown in
Equation 1, where T represents the sampling period for the
tracked VM metrics.

Used; Used;

CPU D d; = =
emandi Used; +Wait; T — Ready;

(e))

B. Analytical Derivation

The result shown in Equation 1 can also be derived
analytically. At each time quantum #, a VM can be in one of
three possible states: (i) u (Used) = VM “gets” the CPU; (ii)
w (Wait) = VM is waiting on another resource; (iii) r (Ready)
= VM is waiting on the CPU resource.

Let T,, T,,, and T, be the accrued counts for each of the
states over the sampling interval of 7. Assume that the VM’s
behavior is statistically stationary, such that for 7 > ¢ the
following ratios defined in Equation 2 are time-independent
and well-defined. Moreover, as the VM is only in one of
these states during any quantum, U +W +R = 1.

T, T, T
U=2 w=2R=" 2
T T T )

No Resource Contention Case: When there is no resource
contention, the VM receives all of the CPU it requires, so R =
0. Since the VM’s demand is identical to its usage, demand
estimation reduces to the trivial case, CPU Demand = Uy =
U. The goal of our approach is to estimate Uy given values
of U, W, and R when there is CPU contention.

Resource Contention Case: Here we treat the CPU schedul-
ing algorithm as a random process in which, at each time
quantum, the CPU is “given” to the VM with probability
1 — ppusy, and to something other than the VM with probabil-
ity ppusy- In this case, where there is contention for resources,
we have T, > 0 and R > 0 for the contending VMs.

Further, we assume that the sequence of VM states
508182 ... ,Sp € {u,w,r} in this case differs from that in the no-
contention case solely in the rate at which the VMs progress
over time. If, at a given time, the VM would have been in
state u, but the CPU is given to another VM, then the VM
goes into state r and its program counter does not advance.
Alternatively, if the VM is in state w when the CPU is given
to something else, the VM is unaffected.

When there is no contention, the sequence of VM states
consists solely of states u and w, and has the length of
T =T,+ T,. When there is contention, this sequence is
transformed by replacing each u state with a sequence of
r*u, where r* denotes a sequence of 0 or more r states. The
length of the r* sequence is geometrically distributed with
a probability of success of 1— pp,sy, and its expected value
is Ppusy/ (1 — Prusy). The sequence thus becomes longer and
lasts 7".

When this transformed sequence is measured over interval
T, we obtain the following set of CPU accounting relations.
T _ T Phbusy

TL{/:TMF7 TI/(/_TWF7 Tr/:Tu/l_pbusy7 T:T,;+]1:,+7-;,/
(3)

Now, starting with measured values U, W, R, we have the
following equations.

T, T, T
U= 7{‘ == Up o 4)
T, T, T

R=Tr="rt wog i w_g_ (6



Solving Equations 4 and 5 for Uy produces Equation 7,
while solving Equations 4 and 6 leads to Equation 8.

U
CPU Demand = Uy = 7
U+w
U
CPU Demand = Uy = 1-R ()

IV. Real-System Implementation: Experimental
Measurement and Evaluation Platform

We have developed and validated a fully-functional proto-
type for our demand estimation framework and for our im-
plementation of demand-estimation-based dynamic resource
management. Figure 3 shows a simplified architectural view
of this prototype. Its main components are:

(i) The virtualized environment including the hosts, VMs,
and the management endpoint.

(ii) The Load Driver, which manages the load on the VMs
and collects application-level performance data.

(iii) The Data Collection and Performance Evaluation com-
ponent, which gathers the application-level performance
data from the Load Driver and visualizes each VM'’s
progress at runtime for our quantitative evaluations.

(iv) The Demand Estimation and Dynamic Resource Man-
agement layer, which performs on-the-fly monitoring of
hypervisor-level performance statistics, demand estima-
tion and dynamic resource management.

The virtualized environment we use to validate our proto-
type is based on VMware VirtualCenter v2.5 and ESX v3.5.
The virtual machines run common Linux distributions.

The Load Driver is a distributed component that helps
manage the desired amount of load within each VM. Each
VM includes a Load Driver Client that communicates with
the central Load Driver Server. The server uses separate
trace definitions for each VM that specify the time-varying
nature of the load in terms of memory usage and CPU
utilization. The server updates the clients when their load
level changes and the clients change the intensity of the
load they are running accordingly. The clients also update
the server each time they complete a fixed unit of work.
The server can then determine the time it took to complete
each unit of work for each VM. These durations, referred
to as “service times”, represent the current application-level
performance of each VM. An increase in the service time
of a VM, therefore, indicates that the VM is suffering from
performance degradation.

The data collection and performance evaluation compo-
nent is the processing backend of the Load Driver. It tracks
application-level performance for each VM and provides a
visualization of each VM’s performance using the LiveGraph
real-time data visualization, analysis, and logging framework.

The Demand Estimation and Dynamic Resource Manage-
ment layer, implemented as a virtual appliance, is the main
component of our prototype. It manages the cluster of hosts
and VMs, tracks the inventory, determines cluster-level and
host-level capacities and demands, makes placement deci-
sions, and applies the management actions across the cluster.
These functions are carried out by three main subcomponents:
(i) the Performance Monitor, which acts as an API client
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Fig. 3. Developed prototype implementation and
evaluation framework.

for the hosts and the management endpoint and collects the
host and VM performance metrics that are required by our
demand estimation technique; (ii) the Demand Estimator,
which uses information from the Performance Monitor and
applies our demand estimation methodology for each VM;
and (iii) the Dynamic Placement Engine, which computes
and enacts resource allocation actions to satisfy the estimated
VM demand requirements, and host and cluster capacity
constraints. The Dynamic Placement Engine uses simple,
standard heuristics to compute VM placements that operate
in a similar fashion as in prior work [4] for our experiments.

It is worth noting that our overall demand-estimation-
based dynamic resource management framework is a fully
black-box approach: both demand estimation and dynamic re-
source management operate without looking inside the VMs.
All monitoring is done from the view of the hypervisors or
the management endpoint. Demand estimation is restricted to
using hypervisor-specific characteristics. Dynamic placement
relies only on capacity measures, utilization information, and
the demand estimates.

The Load Driver, and the Data Collection and Performance
Evaluation components in our prototype system are merely
used to provide direct quantitative evaluations. The Load
Driver Client within each VM is also used to only generate
the load on the VM and to provide a detailed, “application-
level” performance characterization for purposes of experi-
mental evaluation.

V. Experimental Results

Here, we first show the accuracy of our demand estima-
tion method in comparison to utilization-based proxies for
resource demand. Then the subsequent subsections describe
experimental results that illustrate the favorable impact of our
demand estimation upon dynamic VM placement.

A. Evaluation of Demand Estimation Accuracy

Here we present several experiments that assess the accu-
racy of our CPU demand estimator in comparison with the
traditional utilization-based estimator. In the first experiment,
we create 5 VMs and use the load driver described in Section
IV to set their CPU demands to the levels shown in Table II.



Initially, all VMs are placed on a single host with two
physical CPUs (equivalent to 200% CPU capacity), and they
compete for system resources with the same priority. Since
the total CPU demand for the 5 VMs is 300%, the host is
overcommitted with an overcommit ratio (defined as the ratio
of total CPU demand to host capacity) of 1.5X.

CPU Demand
VM1 100%
VM2 80%
VM3 60%
VM4 40%
VM5 20%

TABLE IIl. CPU demand configurations for the
five VMs used in demand estimator validation.

Figure 4 shows the actual VM demand, estimates produced
by our estimator, and estimates produced by a utilization-
based estimator. The results are averaged over 7 runs, and
the error bars show F1 standard deviation.

Overall, our demand estimator is substantially more accu-
rate and reliable than the utilization-based estimator. Across
all experiments, our estimator achieves an RMS error of
only 6.6%, while the same error for the utilization-based
estimation is 32.6%. The fluctuations across runs are small
and comparable between the two cases, averaging 2% across
all VM configurations, and never exceeding 4%.

Demand Estimation with Different Overcommit Ratios

In a second experiment, we explore how the accuracy
of our demand estimation varies with the overcommit ratio
for a fixed number of VMs. We create 5 VMs with equal
CPU demands ranging from 20% to 100% in steps of 20%,
resulting in overcommit ratios ranging from 0.5X to 2.5X.

Averages over four experimental runs are depicted in
Figure 5. For utilization-based estimation, the estimates are
always lower than the actual demand, and both the absolute
and the relative error grow consistently as the level of over-
commitment increases, from 3.7% absolute error at 0.5X to
61.5% at 2.5X, with an average of 29%. In contrast, the errors
for our demand estimation technique are much smaller and
do not grow substantially with increasing overcommit ratio.
Here, the errors range from 0.7% to 6.5%, with an average of
3%. These results show that, with higher overcommitment,
utilization-based estimates deviate substantially from actual
demand, while our demand estimation method follows actual
demand closely in all cases.

100% r . Configured Demand

90% I m With Demand Estimation

80% [ m Without Demand Estimation
70% F
60% P
50% b
40% b
30% p
20% |}
10% |
0%

Estimated VM Demand

VM(20%)

VM(40%)  VM(60%)  VM(80%)  VM(100%)
VM Configuration
Fig. 4. Demand estimation results with our

prototype implementation.

100% 1

Configured Demand
=& With Demand Estimation
80% 4 —¢—Without Demand Estimation . /"~ ... .

60% 1

40% 4

Estimated VM Demand

20% 4

0%

0.5X 1.0X 1.5X 2.0X 2.5X
Overcommit Ratio

Fig. 5. Demand estimation accuracy with in-
creasing level of overcommitment.
100%. .............................................................

sond /"’—."-.

60% - -cceeneen TN -

40% oo N -

Configured Demand
=&—With Demand Estimation
—&—Without Demand Estimation

20% o

Estimated VM Demand

o 2VMs (0.8X) ) 4VMs (1.6X) ) 8VMs (3.2X) '16VMs (6.4X)'
Consolidation Level (Overcommit Ratio)

Fig. 6. Demand estimation accuracy with in-
creasing level of VM consolidation.

Demand Estimation with Different Consolidation Levels

Next, we study how the accuracy of our demand estimation
approach is affected by higher levels of VM consolidation.
For this evaluation, we increase the number of VMs on a
host, while keeping the demand of each VM at 80% CPU
in all cases. Starting with 2 VMs, the number of VMs on
the host (and hence the consolidation level and overcommit
ratio) is doubled up to 16 VMs (and 6.4X overcommit ratio).
We cannot increase consolidation further due to memory lim-
itations imposed by the VMs. We repeat each configuration
four times and show the averages in Figure 6.

Figure 6 shows that, even at the highest levels of con-
solidation, our demand estimator performs quite well, and
significantly better than the utilization-based estimator. While
the latter yields errors ranging from 2.9% to 65.5%, with an
average of 38.8%, our demand estimation method achieves
errors ranging from 1.6% to 12.7%, averaging 7.7% in this
experiment. With increasing consolidation, our demand esti-
mation technique tends to overestimate demand somewhat, in
contrast to the strong underestimate of the utilization-based
approach. However, even under such stringent constraints, our
demand estimator proves to be a very reliable proxy of actual
resource demand.

B. Demand Estimation with Resource Constraints

In practice, there are several management operations that
can profoundly affect the resource scheduling and utilization
of VMs, including setting (i) relative priorities (via shares);
(ii) resource caps (via limits); and (7ii) resource guarantees
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Fig. 7. Prediction results with different VM priorities, resource guarantees and resource limits.

(via reservations). For our demand estimation technique to
be generally useful, it must robustly determine the true CPU
demand of the VMs under these constraints. To assess our
technique’s effectiveness under these conditions, we consider
three additional scenarios using the set of 5 VMs of Table II.

Figure 7(a) shows the demand estimation results when the
priority of VM1 (VM(100%)) is increased by doubling its
shares. As can be seen, the CPU usage of VMI increases
dramatically from the default case (Figure 4), while the
other VMs experience a decrease. Nonetheless, the estimated
demands of VMs still closely track their actual requirements.

Figure 7(b) illustrates the impact of setting the CPU
reservation of VM1 to 100% of the host CPU capacity. The
VM1 CPU usage follows its demand, while the other VMs
have their usage further reduced. Yet our estimation technique
continues to closely track the actual demand for all VMs.

Finally, Figure 7(c) shows what happens when resource
limits are used to constrict VM1 to around 23% of the
physical CPU capacity. VM 1’s CPU usage is reduced to about
1/5 of its actual demand, but again demand estimation tracks
the actual resource requirements very well.

Overall, even under a range of common resource con-
straints that affect the scheduling and utilization of the
individual VMs, our estimation technique robustly determines
the true CPU demand with good accuracy.

C. Resource Management with Demand Estimation

Having established the superior accuracy and robustness of
our demand estimation method, we now return to the scenario
described in Figure 1 and demonstrate the favorable impact
of our improved estimation upon dynamic VM placement.

Using the Dynamic Placement Engine described in Sec-
tion IV, we perform two experiments starting with the 5 VMs
of Table II placed on a single host and completing once the
VM placement stabilizes. In the first, the Dynamic Placement
Engine uses utilization-based CPU demand estimates, and in
the second it uses the estimates produced by our method. In
both cases we use a utilization threshold of 90% as the target
maximum utilization for each host.

Table IIT shows the timeline of placement decisions ap-
plied in our prototype with and without demand estimation.
Without our demand estimation, the placement engine per-
forms as was illustrated earlier in Figure 1, requiring three
iterations to reach the desired state—first, VMS5 is migrated to
the second host, then VM4, and finally VM3. This is because
the CPU usage of individual VMs inflate after each step. In
contrast, when the Dynamic Placement Engine is provided
with our demand estimations, it is able to perform all of the
necessary balancing actions in a single iteration.

Timeline Without Demand Estimation
Migrate VM5 - Host2
Migrate VM4 - Host2
Migrate VM3 - Host2

ALL DEMANDS MET

With Demand Estimation
Migrate VM5, VM4 & VM3 - Host2
ALL DEMANDS MET

Iteration 1

Iteration 2

Iteration 3

Iteration 4

TABLE Ill. Timeline of dynamic placement ac-
tions, with and without demand estimation.

By reducing the number of iterations required to reach an
efficient assignment of VMs to hosts, our demand estimation
technique also improves average performance measurably,
as illustrated in Figure 8. We define a VM’s performance
in terms of service time—the time required to perform a
defined unit of work generated by the load driver. Figure 8
displays the service times for each VM during the experiment
both with and without demand estimation. Perf; denotes
the performance in an intermediate configuration, Perfy;gr,;
denotes the performance during a particular migration, and
Perfopr represents the final optimal performance.

In both cases, all VMs eventually reach the ideal service
time of Is. However, the length of the transient and the
VM performance during the transient are radically different.
Without demand estimation, the three iterations are clearly
discernible, as is the performance impact on the 5 VMs
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(b) Demand estimation.

Fig. 8. Overall execution timelines and corre-
sponding performance for all VMs for baseline
and demand-estimate-based cases.



during the intermediate iterations. Initially, VM1 and VM2
(which demand 100% and 80% CPU respectively) suffer
the highest performance degradation, as they remain on a
heavily-loaded server until the final iteration, when enough
competing VMs are finally migrated to other servers. How-
ever, with demand estimation, all three VMs are migrated
during the first (and only) migration interval, resulting in
better and more consistent VM performance, with a transient
phase that lasts less than half as long as was necessary
without demand estimation.

The performance gains from demand-estimation-based
dynamic placement are also significant in this case. Our
approach reduces the performance degradation of VM1 and
VM2 by 2X, and VM3 and VM4 by 1.5X. There is no
significant improvement for VM5, which gets close to its
20% CPU entitlement even in the overcommitted case.

D. Performance Evaluation with Data Center Traces

Thus far, we have demonstrated the accuracy of our
demand estimation method and its beneficial effect on VM
placement by using a set of VM load scenarios that were
designed to explore the parameter space. Here, we use
real data center workloads to demonstrate the substantial
end-to-end performance benefits of demand-estimation-based
resource management.

For these experiments, we obtained load profiles for over
fifty VMs in a real data center, and selected from them
a representative set of 14 VMs. We used these VMs to
create an aggressively consolidated virtualized environment
with dynamically varying workload characteristics. Figure 9
shows their individual and aggregate behavior over an 18
hour period.

In our experiments we focus on the 6 hour window
highlighted in Figure 9. This region represents a demand
burst after a long lower-utilization region. This is a critical
operating region for a dynamic resource manager, as the con-
solidated resources start to exhibit contention. Therefore, an
effective dynamic resource allocation scheme has to quickly
identify the bottleneck and carry out remedial actions.

We replay this 6-hour scenario in our prototype im-
plementation, where we employ our resource management
framework at 5 minute intervals. We perform the same data
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Fig. 9. Dynamic CPU demand characteristics of
selected VMs from actual data center profiles.
The highlighted region is the 6 hour window
evaluated in our real-system experiments.
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Fig. 10. Performance degradation of the
data center VMs with and without demand-
estimation-based dynamic placement.

center experiments with and without demand estimation to
show the comparative benefits of our demand estimation
approach.

Figure 10 shows the individual and aggregated VM per-
formance results with and without demand estimation. In the
aggregate, demand estimation reduces performance degrada-
tion by a factor of about 2X, from 30% to 15%. Individually,
most but not all VMs experience better performance when
demand estimation is employed — for example, VMI12’s
performance degradation is reduced from over 65% to less
than 5%. The few VMs that fare better without demand
estimation do so because they receive a disproportionately
large share of resources during poor intermediate allocations.

The results show noticeable performance degradations
also with demand estimation. Some level of such perfor-
mance degradation is expected after the demand burst, as
the increased demand causes resource contention until all the
corrective actions are applied. This is further emphasized here
due to two more reasons. First, the high level of consolidation
applied in these experiments leads to additional overheads
incurred during hypervisor scheduling. Second, our current
placement engine does not take long-term demand character-
istics into account, and bases its decisions on the observed
VM behavior in its last observation period. Therefore, it
cannot proactively identify the optimal allocation for the
future dynamic variations of demand with its limited view.
Our current work involves integrating demand forecasting
into our placement engine to predict future VM load patterns,
which can help further improve demand-estimation-based
allocation decisions for such time-varying VM behavior.

Overall, the results show the substantial benefits of our
demand estimation method. Without demand estimation, the
placement engine takes incremental and potentially ineffec-
tive steps to resolve resource contention. In contrast, demand
estimation helps adapt to changing VM behavior much more
quickly, leading to significantly more effective management.

VI. Related Work

Several previous studies investigate methods that track
VM resource consumption for the purpose of managing
virtualized systems. Some explicitly use CPU usage as a
proxy for demand [7], [8], [9], [4], [10]. Others introduce
intervening hooks to the overlaying virtualized applications
for resource management and capacity planning [2], [11],
[12], [13], [5]. Some of these techniques argue for the



necessity of application-level intervention to distinguish de-
mand from usage [5]. In contrast, we obviate this need
by introducing a clear VM-, application- and OS-agnostic
technique that determines actual resource demand without
disruptive interventions to VMs or applications.

Riel [14] also points out that demand does not equal usage
in both native and virtualized systems and discusses some
indicators of resource contention, but does not develop from
them an estimation technique as presented here. Other works
also propose application and VM performance modeling and
estimation techniques [15], [16], [17], [18]. These approaches
rely on unconstrained environment requirements and track
resource usage to develop forecasting or application-level
performance modeling techniques. These studies do not pro-
vide a generally applicable representation of actual resource
demand.

Some prior work also aims to address the problem of
identifying the resource requirements of applications and
VMs. Cota-Robles et al. [19] inspect application and op-
erating system behavior inside the VM to deduce resource
contention. Pacifici et al. [20] also consider a dynamic CPU
demand estimation problem for web applications. They use
statistical and classification methods to determine the CPU
demand for different web request types. Song [21] proposes
determining VM CPU load based on its interrupt response
time. While these techniques indirectly determine whether a
VM or application is receiving its resource requirements, they
are either intrusive or rely on application domain knowledge.
Moreover, these approaches do not provide a direct measure
of a VM’s actual demand. In comparison, our technique
provides a simple, robust, non-intrusive and commonly-
applicable solution to the demand estimation problem.

VII. Conclusion

This paper introduces a resource demand estimation
method for applications and VMs that is accurate, lightweight
and robust, and shows that it substantially improves the
efficiency of dynamic resource allocation. The method is
completely agnostic to specifics of the application and the
underlying operating system, and requires no hooks inside
the VM or application. Derived from commonly-available
system metrics, it is generally applicable on a wide range
of platforms.

Evaluations with a real-system prototype show that our
demand estimator is significantly more accurate in tracking
actual demand than the commonly-used utilization-based
proxies, with a 5X reduction in estimation errors from 32.6%
to 6.6%. Moreover, while usage-based models deviate further
from reality as overcommitment and consolidation increase,
our approach consistently tracks actual demand, reducing
estimation errors by up to 9X in some circumstances.

Further experiments demonstrate that our CPU demand
estimates can substantially improve dynamic resource alloca-
tion in virtualized environments. Compared to a utilization-
based implementation, our demand-estimation-based dy-
namic placement framework reduced performance overheads
by an average of 2X on real data center workloads, and
by as much as an order of magnitude on specific VMs.
By accurately estimating the actual requirements of VMs
even when there is strong resource contention, our approach

transforms an iterative resource allocation process into a one-
shot decision, leading to faster convergence to an optimal
allocation.
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