
A Comparative Study of BIST PRBS Pattern Generation for
Signed Parallel Multipliers

Canturk Isci

Department of Electrical Engineering
Princeton University

Princeton, NJ
609 986 7446

canturk@princeton.edu

Richard C. S. Morling
University of Westminster,

 Department of Electronic Systems,
Applied DSP & VLSI Research Group

London W1W 6UW, UK
+44 20 7911 5084

morling@cmsa.wmin.ac.uk

 Izzet Kale
University of Westminster,

Department of Electronic Systems,
Applied DSP & VLSI Research Group

London W1W 6UW, UK
+44 20 7911 5157

kalei@wmin.ac.uk

ABSTRACT
Multipliers are often the critical functional blocks of datapath
architectures. Due to their deeply embedded configurations in
datapath architectures and two dimensional iterative array
structure, they attain very low controllability and observability,
which entails Built in Self Test (BIST) for multiplier testing. In
this paper BIST techniques for a signed parallel multiplier are
investigated. Deterministic fault simulation for single stuck at
model is used to determine the fault coverage characteristics of
the investigated methods, which are also compared to cell fault
model (CFM). Various well-known and original input pattern
generation techniques are investigated, with emphasis on PRBS
generation using Linear Feedback Shift Registers (LFSRs) and
Cellular Automata (CA), and use of repeated patterns.

Categories and Subject Descriptors
M.1.6 [Design Methods]: Testing and test generation.

General Terms
Design, Verification.

Keywords
BIST, multiplier, testing, LFSR, Cellular Automata

1. INTRODUCTION

Figure 1, Design and Tool flow

RENOIR HDL
Design Entry

 Design Data

VHDL
library

Compile for
Simulation

HDL

Generate

MODELSIM

Simulate
VHDL

VHDL lib.
for synthesis

AUTOLOGIC

Synthesize,
VHDL EDDM

Netlist
Synthesize

EDDM
design Lib.

QuickFAULT

With the immense present and ongoing technological
developments in communications and computerization, digital
signal processors (DSPs) and general purpose processors are two
of the most active fields in VLSI and Application Specific
Integrated Circuit (ASIC) design. Datapath architectures, which
constitute the operational backbone of these two systems are of
particular importance, as even though the significant advances in
computation speed, electronic design automation (EDA) tools and
IC technology instigate faster, smaller and less power dissipating

circuits with less production time overhead, the requirements for
efficient testing methodologies get stubbornly more demanding as
such architectures are deeply embedded in overall system
structure, with low controllability and observability, and
increased gate to pin ratios.

Multipliers are critical functional blocks of datapath architectures
in terms of speed and area and due to their deeply embedded
configuration, the low observability and controllability, which are
even deteriorated by the general regular 2 dimensional iterative
array structure[3], make multiplier testing a significant bottleneck
in the design process. Therefore, BIST architectures are the
preferred solution in multiplier testing for most applications
([3],[4]), as efficient BIST methods provide testing at the
operation speed of the overall system – at speed testing –, very
high fault coverage with moderate amount of test vectors –
constant or linearly dependent on multiplier size – and reduced
test time, which in turn reduce the test cost.

In this paper, we investigate several BIST techniques for a signed
parallel multiplier. The second section describes the
design/simulation flow. The third section describes the design and
design units. The fourth section discusses alternatives for BIST
and fault simulation and the fifth section summarizes the
significant outcomes.

2. DESIGN DATA AND TOOL FLOW
For the design of multiplier and BIST circuit, we used HDL
design entry with VHDL, using Mentor Graphics' Renoir. This
allowed us faster, flexible design phase yet required an
intermediate synthesis step for detailed fault simulation with
Mentor's QuickFault as shown in the overall design and data flow
in figure 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Fault Simula te
schematic

Documentation
of Results

Compile for
Synthesis

As seen in the data and tool flow, the VHDL design is converted
to Electronic Design Data Model (EDDM), which is the general
data format for most Mentor tools. QuickFault is the preferred
fault simulator for deterministic fault simulation. We relied on
deterministic fault simulation, for accurate results trading for
computation time.

3. MULTIPLIER AND BIST CIRCUIT
 DESIGN
The multiplier is designed as a signed, parameterized, parallel
carry propagate array (CPA) multiplier. The designed BIST
circuitry comprises of a parameterized LFSR for input pattern
generation and a parameterized signature analyzer for output
compression. Although the BIST circuit design follows after the
investigation of various techniques, we demonstrate only the
representative final circuits as the pattern generation is done in
software for different techniques during fault simulation.
Although only CPA multiplier is implemented in design, [3]
suggests the fault coverage is very slightly dependent on
multiplier architecture.

A0BN-1 A0B1 A0B0

HA

A1B0

FA MSB
FA

A1BN-2 A1BN-1

AN-1

P2N-2 P2N-1 P2N-3

P1

P0

A0BN-

1

A0B2

FA

A1B1

HA

A2B0

FA MSB
FA

A2BN-2 A2BN-1

FA

A2B1

P2

FA

AN-1(B0)’

FA MSB
FA FA

AN-1(B1)’ AN-1(BN-2)’AN-1(BN-1)’

PN PN-1

Figure 5, NxN CPA multiplier structure

3.1 Multiplier Architecture
In general, the multiplier function is divided into two major parts:
1) Bit product generation 2) Addition of bit products to form the
final product. Different multiplier architectures emerge from how
these two steps are performed. In unsigned multiplication, the
second step is mere addition, while in signed multiplication, the
second step includes an addition or subtraction in the final level of
partial product accumulation depending on the most significant
bit (MSB) of multiplier. In unsigned multiplication, final product
for an NxN multiplication is 2N bits. However, for signed
multiplication, 2N-1 bits are sufficient as long as both multiplier
and multiplicand do not take their most negative value
simultaneously. Two distinct properties of signed multiplication
are: 1) Multiplier and multiplicand are not completely symmetric
in hardware architecture 2) In order to keep track of sign, sign
extension must be handled during partial product additions.

In twos complement addition. considering multiplication as the
accumulation of partial products of multiplicand by the individual
bits of multiplier, the sign extension is performed as one bit per
partial product, except for the first row, which requires 2 bit sign
extension as described in figure 2.

The shaded bits are extended signs for correct signed addition. (.)'
denotes the complement of the binary value. As can be deduced,
the last set of partial products is either all 0s if SB2 is 0, or twos
complement negation of multiplicand if SB2 is 1; which is stated
as “(-SB2).MD”. As observed in figure 2, unlike signed
multiplication, the partial summations require N+1 bitwise
additions for each accumulation step. In unsigned addition, the
MSB of sum is gathered from the carry out output of the MSB
adder however, in signed multiplication, the adder terms are sign
extended and the MSB is the final adder’s sum output, where the
carry out is discarded as shown in figure 3.

However, as described in [6], a slight modification in the MSB
adder can alleviate this redundancy. In the sum function for SN,
SN = AN-1 ⊕ BN-1 ⊕ CN, expanding CN as maj(AN-1,BN-1,CN)1
reveals:

SN = AN-1BN-1 + AN-1(CN-1)’ + BN-1(CN-1)’ (1)

This expression is almost the same as the carry out function for
Nth adder, with the carry in inverted. Therefore we modify the
carry out of the Nth adder into the above equation to produce SN
bit without the expenditure of the N+1th adder. With this modified
MSB Full Adder (FA), the adder circuit demonstrated in figure 4
is almost at equivalent cost to an unsigned adder circuit.

Using this described modification, the parameterized multiplier is
designed in VHDL. The generic structure of multiplier is shown
in figure 5.

C0 FA
1

B0 A0

C1

S0

FA
2

B1 A1

C2

S1

FA
N-1

BN AN

CN-1

SN-2

CN-2 FA
N

BN-1 AN-1

CN

SN-1

0 FA

BN-1 AN-1

CN+1

N+1

SN

Figure 3, Sign extended 2s Complement Addition

C0FA
1

B0A0

C1

S0

FA
2

B1A1

C2

S1

FA
N-1

BN-2 AN-2

CN-1

SN-2

CN-2

BN-1 AN-1

MSB
FA

SN

 N
SN SN-1

Figure 4, Modified signed adder
Figure 2, Twos Complement Multiplication

1 maj represents the majority function:
 AN-1BN-1 + AN-1CN-1 + BN-1CN-1

3.2 LFSR Architecture
fter investigation of BIST input pattern generation techniques in

section 4, the technique decided upon was repetitive pattern
bit LFSR with seed x7B.

LFSR will traverse
n

 and cj=0
represents no tap. Then, representing the yi values in time as a
function of x in GF(2) as shown in equation 3:

bstituting equation
2 as ym m:

 locations
numerator

oly

ic

maximu

.

registers (MISRs) are extensively utilized in practice due to their

rage. As
be have

s Ii(x) for time i, and D(x), as:

S (x)=[xk-1I (x) + xk-2I (x) +…+ x1I (x) + x0I (x)]mod D(x) (5)

signa ature can be
analytically derived from the expected outputs of the circuit, prior

A

PRBS generation using an 8
Nevertheless, to provide a more flexible top level system, a
parameterized LFSR is designed in VHDL.

LFSR is a shift register configuration with the XOR feedback –
modulo 2 sum – of the selected flip-flop outputs, named taps.
When the taps are chosen properly, the
through all possible 2 -1 states except for one forbidden state,
where n is the length of LFSR, and will produce a maximum
length PRBS sequence named M-sequence. For PRBS generation,
the LFSR is first initialized to a well-known stage, named seed. In
a type-A LFSR – as in figure 6 – the serial feedback at time i, yi,
of LFSR can be represented as the summation, in Galois Field of
2 (GF(2)), of all previous serial feedbacks in time as:

(2)

where cj=1 represents an existing tap for flip-flop j

∑
∞

=
−=

1j
jiji ycy

(3)

where xm represents the mth timestamp; and su

∑
∞

=

=
0

)(
m

m
my xyxG

 in equation 3, we arrive at the division equation for y
−−

−−
−

− + j
j

j
j

j xyxy 1(
)1(

(4)

 ∑
=

=

+
= n

j

j
j

j
y

xc
xG

1

1

1
)(

This equation describes the initial condition and tap
the LFSR and is a GF(2) division of seed dependent

nomial to the only tap location dependent denominator

 of

p
polynomial, referred as the characteristic polynomial ([1],[8])

Regarding this division process, it is proven ([1], [9]) that for
Gy(x) to have maximum period, the characteristic polynomial
must be not factorizable. Moreover, as Gy(x) will still be period
with 2n-1, the characteristic polynomial must be a factor of

121 −+
n

x . The polynomials that satisfy above conditions are
primitive polynomials, which are a special case of irreducible
polynomials, and are used as the characteristic polynomial for

m length LFSRs.

A generic representation of the design that uses the seed x7B
(“01111011”) with characteristic polynomial 1 + x1 + x5 + x6 + x8
is demonstrated in figure 6

easy and low cost implementation and efficient fault cove
described in section 4, signature analysis is observed to
very low fault masking and is the implemented BIST technique
for output compression. MISR, in principle is not different from
the single input signature analyzer, but instead of taking one serial
input from the first flip-flop, every flip-flop in the MISR has one
input coming from the primary outputs of the to be tested circuit
as shown in figure 7. Therefore, for an n output circuit, at least an
n stage MISR is used. In figure 7, the cn switches define the

If the initial state of the MISR is known to be S0(x), then, the kth
state can be computed, using the set of all primary outputs to be
compressed, defined a

divisor polynomial D(x) and the Q outputs show the internal
stages. The residue is usually clocked out serially through one of
the flip-f

Figure 7, Multiple Input Signature Analyzer

lop outputs.

3.3 Multiple Input Signature Analyzer
For BIST of m input signature

Figure 6, Structure of LFSR

ultiple output circuits, multiple

k 0 1 k-2 k-1

where, the Ii(x) polynomials represent the ith set of inputs to the
ture analyzer. Consequently, the expected sign

to application of signature analysis.

In terms of fault masking, assuming uniform distribution of error
bits, for a length 'n' signature analyzer, output width of 'm' (m ≤ n)
and length 'L' input test set, the fault masking probability is
shown to be ([1]):

n alyzer is

12
12

1 −
−= −

−

mL

nmL

fmP
 (6)

which reduces to P 1= for large L.
nfm 2

4. BIST TECHNIQUES

For the top level design, a parameterized sig ature an
implemented in VHDL as in figure 7 as a generic example.

matic
representation of the multiplier is used as the design input for

c fault simulator, based on

tuck at faults will also

()∑ −
−++

n

j xyxc 1
1

) L

As described in design flow, the VHDL design for multiplier is
synthesized into EDDM for fault simulation and the sche

QuickFault, which is a deterministi
single stuck at model. During the investigation of different BIST
schemes, we used automatically generated stimulus files, either
created by QuickFault or by Matlab Scripts. With the quick
turnover of this software approach, various techniques are
investigated without the necessity of building the BIST hardware.
After we concluded the investigation, the preferred BIST structure
is implemented as described in section 3.

As discussed in [1] and [8], single stuck at model, which is the
most commonly used fault model is proven to also detect all
multiple stuck at faults in a two level combinational circuit and a
set of patterns, which detect all single s

4x4 bits
per pattern 0000 0000 0000 0000

0001 0001 " "
• • " "

detect bridging faults([1]). Although until recently this model was
observed to be fairly adequate in fault representation in real
circuits, particularly in bipolar technologies, the advanced CMOS
technologies begin to produce faults, which cannot be modeled
with the single stuck at model. A more comprehensive technique
named “Cell Fault Model”, which is proposed in [11], is defended
in [3] as a more realistic technique, but it lacks the required
simulation tools for general acceptance. Nevertheless, [12]
provides indirect techniques to utilize this model with the current
single stuck at fault simulators. However, as demonstrated in
4.2.1, although it can be verified that CFM is more
comprehensive than single stuck at model, the fault coverage
measurement method, "Cell Fault Coverage" (CFC), is seen not to
always reveal more pessimistic results than single stuck at model,
contrary to the outcomes of [3]. One drawback of the single stuck
at fault model is the nonstandard determination of primitive levels
for hierarchical faulting. As each vendor supplies different set of
leaf cells, the results of fault simulation are dependent on the used
technology. To prevent possible criticism about the level of
abstraction in fault simulation, we used the most detailed possible
representation of the circuit. Consequently, the used primitives
were AND, OR, NOT gates and D flip-flops. Although this
description is not very realistic, any vendor's cells will be a
superset of these, and the specified fault coverage for the circuit
will always represent a safe lower bound in any technology.

4.1 16 Bit Downcounter
As the first BIST technique, we applied a 16 bit fully exhaustive
downcounter test, which will serve us as a benchmark

Figure 8, Histogram for exhaustive downcounter test

when
evaluating other strategies. One of the expectations of this fault

eve 100% fault coverage with

 test. There exists a very

4.2 8 Bit Upcounter with Repetitive Patterns
Repetitive patterns have been widely used in testing of iterative

gic arrays and have been shown to provide excellent fault
ver the

With this patter era heme n exce nt coverage
f 97.02% is ach ed wi the me 228 of e cribed
ectors. Both the togram nd the fault coverage plot in figure 9
ow the sprea ith first 228 cy

activity includes very little redundancy, with most vectors

simulation is not being able to achi
even full-exhaustive testing, as the hierarchical design procedure
might inherently involve some untestable nodes at this detailed
level. Therefore, the fault coverage result of this test serves as the
upper bound for the following fault simulations. With the injected
6008 hierarchical faults, we achieved a 98.49 % fault coverage
after all the possible patterns are applied. Therefore, no test can
exceed this value of fault coverage. This also raises one
counterargument against Cell Fault Model and Cell Fault
Coverage (CFC) described in [3]. It is suggested on [3,p. 947] that
single stuck at fault simulation fault coverage values are always
larger than the CFC values. However, the CFC value of 99.40%
for the 8x8 CPA multiplier given on p. 945 is not even achievable
with single stuck at model with the primitives we use. As a
conclusion, we disagree with [3] that CFC is always more
pessimistic than single stuck at model and we assert that this
rather depends on the primitive levels used in hierarchical
faulting.

The histogram plot of detected faults per each applied input test
vector is shown in figure 8, which reveals vast redundancies in
the fault detection with the upcounter
undesirable spread of detections in the first 20K cycles, and there
is still a very significant peak of detection around 32K –
specifically 32897th vector.

lo
co age with a small test set ([3],[4],[11]). For the multiplier,
a and b inputs of multiplier are applied the same patterns for
every k inputs where k is the defined "repetition length". If we
apply the same pattern to both lower and higher 4 bits of one of
the 8 bit inputs in our 8x8 multiplier, the repetition length of this
pattern is 4. To verify the effectiveness of repetitive patterns we
applied a BIST scheme with a repetition length of 4 and an 8 bit
upcounter, which can produce only 256 of the 216=65536 possible
input patterns, chosen as input pattern generator. The
corresponding input test vectors are then as shown in table 1.

Table 1, Repetitive pattern with repetition length(k)=4,
pattern generator 8 bit Upcounter

 a: b:
a(7:4) a(3:0) b(7:4) b(3:0)

n gen tion sc , a lle
iev th re th

 his a
d is w in the

1111 1111 " "
0000 0000 0001 0001
0001 0001 " "

• • " "
• • " "

1111 1111 " "
• •
• •

0001
•

0001
•

"
"

"
"

• • " "
1111 1111 " "

fault
256 des

cles and the detection

• • " "

16 patterns
of 'a' for
each 'b'

Total 256
patterns

0000 0000 1111 1111

o
v
sh

contributing to fault detection.

Figure 10, Histogram for 8 bit LFSR with seed x01 (k=4)

the next iteration, using seed x7B reveals an excellent
stogram and fault coverage curve, as shown in figure 11, and no
w late peaks are detected.

Corresponds to
seed x7B

terminating condition of completing one whole period of the input
sequence, i.e. starting from x"01", increasing the seed up to x"FE"
and then wrapping back to seed x"10" as the next seed candidate,
in which case we restart to observe the initial late peaks.
However, after at most two iterations, no more late peaks are
observed in the new histograms and the algorithm converged
efficiently. An example to the application of algorithm is shown
in figure 10, where the finally implemented seed, x"7B" is
determined from seed x"01".

Figure 11, Histogram and fault coverage (%) for
 8 bit LFSR with seed x07 (k=4)

4.3.2 Cellular Automata
A seco llula

Figure 9 also leads to two other observations. There are 2 very
effective regions right at the start of test, within the first 20

input t togram
d flat region input sequence

Figure 9, Histogram and fault coverage (%) for
Repetitive upcounter with k=4

 input test vector – indicated by the peaks in

CFC for the 8x8 CPA multiplier with repetition length 4
e with
vels is

pattern generation with LFSRs and
A is referred as pseudorandom pattern generation, which is the

ith the applied seed determination
technique, achieved very promising results. For the BIST circuits,

ich refer to
the peaks observed in the histogram after the initial "hyperactive"

determined patterns around the late peaks,
n as the initial state, eliminate the redundant
 the late peaks. Then, this algorithm is planned

ursively if new late peaks are observed with the

In
i
e

r

feedback is required. Therefore, the
gular shifting of data within the shift register is not existent in

CA ([8],[10]). The input to a CA cell depends only on its adjacent
eighbors and maybe itself depending on whether the cell is a 90

.

in
est vectors – indicated by the inactive regions in his

s in plot – and a very effective
th

an
starting around 127
histogram and steep jump in plot. These redundancy and peak
observations are later used to improve test by seed determination.

4.2.1 CFC vs. Single Stuck at Fault Coverage
This BIST technique also provides the opportunity of comparing
CFC with Single Stuck at Fault Coverage. As stated in [3], the

counter/PRBS test is 99.40%. However, the fault coverag
the single stuck at model, with the described primitive le
only 97.02%. Therefore, it should be noted that, although CFC
provides more pessimistic results for the fault coverage when the
same cells are taken as primitives and applied single stuck at fault
simulation, it cannot be securely suggested that CFC is
independent of gate level implementation as a more detailed
hierarchical faulting can produce worse results with single stuck
at model, as observed herein.

4.3 PRBS Techniques with LFSRs and CA
The two previous techniques discussed can be classified as
deterministic techniques, and
C
main interest of this paper.

For the investigation of PRBS techniques we started with 16 bit
LFSRs, and determined a simple yet efficient methodology for
seed determination. We then, extended the investigation of LFSRs
to repetitive patterns and w

the outputs are generated with Matlab, regarding the LFSR
structure described in section 3.2. The fault simulation details are
listed in Table 2 and are not repeated here for brevity.

4.3.1 Seed Determination Methodology
For both 16 and 8 bit LFSR structures, we initially started with a
seed of x"0001" or x"01", and as described in section 4.2,
identified the redundant regions and "late peaks", wh

region. Then, we
which, when chose
regions and include
to be applied rec

h
n

nd less studied alternative for PRBS generation is ce
automata. CA have a similar structure to LFSRs with the ultimate
difference that all the cell interconnections have some XOR
operation and that no global
re

n
or 150 cell, as shown in figure 12

Figure 12, 90 and 150 CA cells

that,
a

An

erators tive and 8 bit repetitive
patterns, again using the sam nation methodolo
The acquired res ilar profile as LFSRs,

ith and seed

O
fo

ther functions of the three outputs are also investigated and it is
rmally proven that, only 90 and 150 cells produce m-sequences
r PRBS generation. Moreover, not all combinations of 90 and

50 cells can produce m-sequences. It is theoretically proven
r n≤150, at most 2 150 cells are sufficient to produce
nfiguration of 90 and 150 cells that produce m-sequences.
emplary 4-stage max-length CA is shown in figure 13.

fo
1
fo
co
ex

he generated sequence for a CA can be analytically determined
sing a tridiagonal transition matrix T, whose 1st diagonals are all

1s and main diagonal only 1 for 150 cells. Then, the next states of
e CA can be determined from this matrix mapping. As an
ample, the next state of the above CA for current state "1111" is

found as2:

(7)

Figure 13, 4 Stage max-length CA





 0010

T
u

th
ex

Despite the increased circuit size, CA are expected to perform
better than LFSRs as they don't possess the inherent shifting
behavior of LFSRs, thus intuitively imitate randomness better.
Therefore, similar to LFSR case, CA are investigated as BIST
pattern gen





 1100

 for both 16 bit exhaus
e seed determi

ults revealed a very sim
both the application repetitive patterns

gy.

w
determination method improving fault detection characteristics.
However, compared to LFSRs, CA revealed only very slight
improvements, which are also demonstrated in table 2.

Table 2, Summary of BIST Results
ST method Fault Coverage vs. # of patterns

2 Hence all the operations are in GF(2)

BI

8 bit Upcounter Using Repetitive patterns with k=4 97.02% with 228 patterns
16 bit LFSR with seed=x0001 97.2% with 157 patterns
16 bit LFSR with seed=xEA58 97.2% with 134 patterns
16 bit LFSR with seed = x8080 97.2% with 153 patterns
8 bit LFSR using repetitive patterns with k =4 and seed=x01 97.12% with 228 patterns
8 bit LFSR using repetitive patterns with k =4 and seed=x7B

97.2% with 154 patterns
97.1% with 109 patterns

8

bit LFSR using repetitive patterns with k =4 and seed=xB7 97.0% with 82 patterns
97.24% with 230 patterns

16 bit CA with seed= 59 patterns x0001 97.2% with 1
x8080 97.2% with 116 bit CA with seed= 38 patterns

16 bit CA with seed=x534F 97.2% with 122 patterns

8 bit CA using repetitive patterns with k =4 and seed = x01 97.1% with 139 patterns
97.2% with 179 patterns

8 bit CA using repetitive patterns with k =4 and seed = x6D 97.2% with 124 patterns
97.0% with 123 patterns

8 bit CA using repetitive patterns with k =4 and seed = xAB 97.19% with 125 patterns
97.1% with 110 patterns

As observed in the table, different implem ble
 target fault coverage. Nevertheless, two
ns of BIST investigati titive
ed determination algo mely

adv SRs.
cis ttern

generation has been for 8 bit LFSR with see

.4 Signature Analysis

k to signature
analyzer, a high weight divisor polynomial is used and application

ealed 96.80% fault coverage,

x16 circuit could be fault

attern scheme, the 16 bit 'a' and 'b' inputs of multiplier
are connected to the 8 bit LFSR outputs as:

 LFSR(1:4)

se.

entations are favora
depending on the
important deductio on are, the repe
patterns and the se rithm work extre
well and CA have no significant antage over LF
Consequently, the implementation de ion for input pa

d x7B.

16 bit CA with seed=xD5D5 97.2% with 127 patterns

4
After the conclusion of input pattern generation, output

compression is performed with signature analysis. The regular
multiplier structure suggests that it is not probable to have a
single stuck at fault that causes two distant separate multiplier
outputs change at the same time and therefore we expect a very
low fault masking probability with signature analyzer. In order to
reduce fault masking before the faulty bit is fed bac

[] []




×=

1010
0111

11110011

of 8 bit LFSR with seed x7B rev
which is almost as high as original fault coverage with direct
measurement of 16 multiplier outputs.

Inclusion of the BIST circuit in fault simulation is observed to
produce almost same fault coverage as faulting only the
multiplier.

4.5 Larger Multipliers
In order to verify the effectiveness of repetitive patterns, we
synthesized larger circuits with the same 8 bit LFSR with seed
x7B, using repetitive patterns with k=4. 16x16, 32x32 and 24x24
multipliers are synthesized, but only 16
simulated, with 26456 injected faults, due to computation
memory problems of deterministic fault simulation. Using the
repetitive p

b(15:12), b(11:8), b(7:4) and b(3:0)

a(15:12), a(11:8), a(7:4) and a(3:0) LFSR(5:8)

Producing a constant test of 256 vectors as in 8x8 multiplier.

Counterintuitively, as shown in figure 14, we achieve an
unexpectedly good result. The fault coverage reached 97% in just
57 cycles and it climbed up to 98.83% in the whole test, revealing
an even better fault coverage than the 8x8 ca

This interesting result reveals a very promising conclusion.
epetitive patterns provide very high fault coverage with a fixed
umber of patterns independent of the size of the multiplier.

5. CONCLUSIONS
 this paper we presented a comparative investigation of BIST
chniques for a signed parallel CPA multiplier, with the modified

MS es ar
mpared w CA as well as

Figure 14, Fault coverage plot (%) 16x16 multiplier
with 8 bit LFSR with seed x7B (k=4)

R
n

In

e

 also
presented. With the over-detailed hierarchical fault model,

r fault coverage are acquired.

igh

ultipliers.

ENTS
ur thanks to Mr. Alan Wood for his system support throughout
e course of this research.

7. REFERENCES
] Russell, G. and Ian L. Sayers, “Advanced Simulation and

Test Methodologies for VLSI Design”, London: Van
Nostrand Reinhold (International), 1989,
ISBN 0-7476-0001-5

] Psarakis, M., D. Gizopoulos, A. Paschalis, N. Kranitis and Y.
 Architectures for
Multipliers”, VLSI

chalis and Y. Zorian, “An Effective

[4] n, “Effective built-
multipliers”, IEEE Design & Test of

[5]

, ISBN 0-201-08222-5

[8]
ue/Digital Techniques”, London: IEE Circuits,

[9]
es”, New York: John

[10]
434330-9

posium on Switching and

[12]
g

te
B full adder. Various input pattern generation techniqu

ith emphasis on PRBS techniques usingco
LFSRs, and repetitive patterns. A simple, yet efficient seed
determination heuristic for both LFSRs and CA is described. A
quantitative comparison of CFM and single stuck at model is

guaranteed worst case results fo

Compared to the deterministic exhaustive downcounter test,
exhaustive pseudorandom test with LFSRs and CA revealed much
better fault coverage characteristics. For non-exhaustive test,
repetitive patterns are seen to provide excellent results with
constant size test sets. For both exhaustive and non-exhaustive
tests, CA are seen to provide no significant improvement over
LFSRs despite their more random natured output sequence.
Described seed determination technique is observed to work very
efficiently in seed determination for both LFSRs and CA. A h
weight signature analyzer is seen to be very effective in output
data compression, with insignificant downgrade from direct
output measurement.

The comparison of fault modeling techniques CFM and single
stuck at model revealed, although CFM is more comprehensive
than single stuck at model for the same level of faulting hierarchy,
a significantly more detailed hierarchy produces worse fault
coverage results with single stuck at model than CFM.

Interestingly, use of repetitive patterns with a constant repetition
length – thus constant size test set – revealed even better fault
coverage with larger m

6. ACKNOWLEDGEM
O
th

[1

[2
Zorian, “Robust and Low-Cost BIST
Sequential Fault Testing in Datapath
Test Symposium, 19th IEEE Proceedings on. VTS 2001, pp.
15-20, 2001

[3] Gizopoulos, D., A. Pas
Built-In Self-Test Scheme for Parallel Multipliers”, IEEE
Trans. on Computers, vol. 48, no. 9, pp. 936-950, Sep. 1999
Gizopoulos, D., A. Paschalis and Y. Zoria
in self test for Booth
Computers, vol. 15, no. 3, pp. 105 -111, July-Sep.
1998
Weste N. H. E. and K. Eshragian, “Principles of CMOS VLSI
Design, A Systems Perspective”, Massachusetts: Addison-
Wesley, 1993

[6] Morling R. C. S. And I, Kale, lecture notes, “DSP and
Communication Processor Design”, MSc VLSI System
Design, Univ. of Westminster, Feb. 2001

[7] Roth, C. H., “Digital Systems Design Using VHDL”, Boston:
PWS, 1998, ISBN 0-534-95099-X
Hurst, S. L., “VLSI Testing, Digital and Mixed
Analog
Devices and Systems Series 9, 1998, ISBN 0-85296-901-5
Bardell P. H., McAnney W. H. and Savir J., “Built-In Test
for VLSI: Pseudorandom Techniqu
Wiley & Sons, 1987, ISBN 0-471-62463-2
 Lala, P. G., “Digital Circuit Testing and Testability”, San
Diego: Academic Press, 1997, ISBN 0-12-

[11] Kautz, W. H., “Testing for Faults in Cellular Logic Arrays”,
proceedings of the 8th Annual Sym
Automata Theory, pp. 161-174, 1967
 Psarakis, M., D. Gizopoulos and A. Paschalis, “Test
Generation and Fault Simulation for Cell Fault Model Usin
Stuck at Fault Model Based Test Tools”, Electronic Testing
Journal: Theory and Applications, vol. 13, no:3, Dec. 1998

	INTRODUCTION
	DESIGN DATA AND TOOL FLOW
	MULTIPLIER AND BIST CIRCUIT
	DESIGN
	Multiplier Architecture
	LFSR Architecture
	Multiple Input Signature Analyzer

	BIST TECHNIQUES
	16 Bit Downcounter
	8 Bit Upcounter with Repetitive Patterns
	CFC vs. Single Stuck at Fault Coverage

	PRBS Techniques with LFSRs and CA
	Seed Determination Methodology
	Cellular Automata
	
	BIST method
	Fault Coverage vs. # of patterns

	Signature Analysis
	Larger Multipliers

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

