
A Comparative Study of BIST PRBS Pattern Generation for 
Signed Parallel Multipliers 

Canturk Isci 
 

Department of Electrical Engineering 
Princeton University 

Princeton, NJ 
609 986 7446 

canturk@princeton.edu 

Richard C. S. Morling 
University of Westminster, 

 Department of Electronic Systems, 
Applied DSP & VLSI Research Group 

London W1W 6UW, UK 
+44 20 7911 5084 

morling@cmsa.wmin.ac.uk 

 Izzet Kale 
University of Westminster, 

Department of Electronic Systems, 
Applied DSP & VLSI Research Group 

London W1W 6UW, UK 
+44 20 7911 5157 

kalei@wmin.ac.uk 
 
 

ABSTRACT 
Multipliers are often the critical functional blocks of datapath 
architectures. Due to their deeply embedded configurations in 
datapath architectures and two dimensional iterative array 
structure, they attain very low controllability and observability, 
which entails Built in Self Test (BIST) for multiplier testing. In 
this paper BIST techniques for a signed parallel multiplier are 
investigated. Deterministic fault simulation for single stuck at 
model is used to determine the fault coverage characteristics of 
the investigated methods, which are also compared to cell fault 
model (CFM). Various well-known and original input pattern 
generation techniques are investigated, with emphasis on PRBS 
generation using Linear Feedback Shift Registers (LFSRs) and 
Cellular Automata (CA), and use of repeated patterns.  

Categories and Subject Descriptors 
M.1.6 [Design Methods]: Testing and test generation. 

General Terms 
Design, Verification. 

Keywords 
BIST, multiplier, testing, LFSR, Cellular Automata 

1. INTRODUCTION 

Figure 1, Design and Tool flow 
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With the immense present and ongoing technological 
developments in communications and computerization, digital 
signal processors (DSPs) and general purpose processors are two 
of the most active fields in VLSI and Application Specific 
Integrated Circuit (ASIC) design. Datapath architectures, which 
constitute the operational backbone of these two systems are of 
particular importance, as even though the significant advances in 
computation speed, electronic design automation (EDA) tools and 
IC technology instigate faster, smaller and less power dissipating 

circuits with less production time overhead, the requirements for 
efficient testing methodologies get stubbornly more demanding as 
such architectures are deeply embedded in overall system 
structure, with low controllability and observability, and 
increased gate to pin ratios.  

Multipliers are critical functional blocks of datapath architectures 
in terms of speed and area and due to their deeply embedded 
configuration, the low observability and controllability, which are 
even deteriorated by the general regular 2 dimensional iterative 
array structure[3], make multiplier testing a significant bottleneck 
in the design process. Therefore, BIST architectures are the 
preferred solution in multiplier testing for most applications 
([3],[4]), as efficient BIST methods provide testing at the 
operation speed of the overall system – at speed testing –, very 
high fault coverage with moderate amount of test vectors – 
constant or linearly dependent on multiplier size – and reduced 
test time, which in turn reduce the test cost. 

In this paper, we investigate several BIST techniques for a signed 
parallel multiplier. The second section describes the 
design/simulation flow. The third section describes the design and 
design units. The fourth section discusses alternatives for BIST 
and fault simulation and the fifth section summarizes the 
significant outcomes. 

2. DESIGN DATA AND TOOL FLOW 
For the design of multiplier and BIST circuit, we used HDL 
design entry with VHDL, using Mentor Graphics' Renoir. This 
allowed us faster, flexible design phase yet required an 
intermediate synthesis step for detailed fault simulation with 
Mentor's QuickFault as shown in the overall design and data flow 
in figure 1.  
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As seen in the data and tool flow, the VHDL design is converted 
to Electronic Design Data Model (EDDM), which is the general 
data format for most Mentor tools. QuickFault is the preferred 
fault simulator for deterministic fault simulation. We relied on 
deterministic fault simulation, for accurate results trading for 
computation time. 

3. MULTIPLIER AND BIST CIRCUIT 
 DESIGN  
The multiplier is designed as a signed, parameterized, parallel 
carry propagate array (CPA) multiplier. The designed BIST 
circuitry comprises of a parameterized LFSR for input pattern 
generation and a parameterized signature analyzer for output 
compression. Although the BIST circuit design follows after the 
investigation of various techniques, we demonstrate only the 
representative final circuits as the pattern generation is done in 
software for different techniques during fault simulation. 
Although only CPA multiplier is implemented in design, [3] 
suggests the fault coverage is very slightly dependent on 
multiplier architecture. 
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Figure 5, NxN CPA multiplier structure  

3.1 Multiplier Architecture 
In general, the multiplier function is divided into two major parts: 
1) Bit product generation 2) Addition of bit products to form the 
final product. Different multiplier architectures emerge from how 
these two steps are performed. In unsigned multiplication, the 
second step is mere addition, while in signed multiplication, the 
second step includes an addition or subtraction in the final level of 
partial product accumulation depending on the most significant 
bit (MSB) of multiplier. In unsigned multiplication, final product 
for an NxN multiplication is 2N bits. However, for signed 
multiplication, 2N-1 bits are sufficient as long as both multiplier 
and multiplicand do not take their most negative value 
simultaneously. Two distinct properties of signed multiplication 
are: 1) Multiplier and multiplicand are not completely symmetric 
in hardware architecture 2) In order to keep track of sign, sign 
extension must be handled during partial product additions. 

In twos complement addition. considering multiplication as the 
accumulation of partial products of multiplicand by the individual 
bits of multiplier, the sign extension is performed as one bit per 
partial product, except for the first row, which requires 2 bit sign 
extension as described in figure 2.  

 

The shaded bits are extended signs for correct signed addition. (.)' 
denotes the complement of the binary value. As can be deduced, 
the last set of partial products is either all 0s if SB2 is 0, or twos 
complement negation of multiplicand if SB2 is 1; which is stated 
as “(-SB2).MD”. As observed in figure 2, unlike signed 
multiplication, the partial summations require N+1 bitwise 
additions for each accumulation step. In unsigned addition, the 
MSB of sum is gathered from the carry out output of the MSB 
adder however, in signed multiplication, the adder terms are sign 
extended and the MSB is the final adder’s sum output, where the 
carry out is discarded as shown in figure 3. 

 

However, as described in [6], a slight modification in the MSB 
adder can alleviate this redundancy. In the sum function for SN, 
SN = AN-1 ⊕  BN-1 ⊕  CN, expanding CN as maj(AN-1,BN-1,CN)1 
reveals: 

SN = AN-1BN-1 + AN-1(CN-1)’ + BN-1(CN-1)’     (1) 

This expression is almost the same as the carry out function for 
Nth adder, with the carry in inverted. Therefore we modify the 
carry out of the Nth adder into the above equation to produce SN 
bit without the expenditure of the N+1th adder. With this modified 
MSB Full Adder (FA), the adder circuit demonstrated in figure 4 
is almost at equivalent cost to an unsigned adder circuit. 

 

 

 
 

Using this described modification, the parameterized multiplier is 
designed in VHDL. The generic structure of multiplier is shown 
in figure 5. 
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Figure 3, Sign extended 2s Complement Addition  
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1 maj represents the majority function: 
  AN-1BN-1 + AN-1CN-1 + BN-1CN-1 



3.2 LFSR Architecture  
fter investigation of BIST input pattern generation techniques in 

section 4, the technique decided upon was repetitive pattern 
bit LFSR with seed x7B. 

LFSR will traverse 
n

 and cj=0 
represents no tap. Then, representing the yi values in time as a 
function of x in GF(2) as shown in equation 3: 

bstituting equation 
2 as ym m: 
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registers (MISRs) are extensively utilized in practice due to their 

rage. As 
be have 

s Ii(x) for time i, and D(x), as: 

S (x)=[xk-1I (x) + xk-2I (x) +…+ x1I (x) + x0I (x)]mod D(x)  (5) 

signa ature can be 
analytically derived from the expected outputs of the circuit, prior 

A

PRBS generation using an 8 
Nevertheless, to provide a more flexible top level system, a 
parameterized LFSR is designed in VHDL.  

LFSR is a shift register configuration with the XOR feedback – 
modulo 2 sum – of the selected flip-flop outputs, named taps. 
When the taps are chosen properly, the 
through all possible 2 -1 states except for one forbidden state, 
where n is the length of LFSR, and will produce a maximum 
length PRBS sequence named M-sequence. For PRBS generation, 
the LFSR is first initialized to a well-known stage, named seed. In 
a type-A LFSR – as in figure 6 – the serial feedback at time i, yi, 
of LFSR can be represented as the summation, in Galois Field of 
2 (GF(2)),  of all previous serial feedbacks in time as:  
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This equation describes the initial condition and tap
the LFSR and is a GF(2) division of seed dependent 

nomial to the only tap location dependent denominator 

 of 

p
polynomial, referred as the characteristic polynomial ([1],[8])  

Regarding this division process, it is proven ([1], [9]) that for 
Gy(x) to have maximum period, the characteristic polynomial 
must be not factorizable. Moreover, as Gy(x) will still be period
with 2n-1, the characteristic polynomial must be a factor of 

121 −+
n

x . The polynomials that satisfy above conditions are 
primitive polynomials, which are a special case of irreducible 
polynomials, and are used as the characteristic polynomial for 

m length LFSRs. 

A generic representation of the design  that uses the seed x7B 
(“01111011”) with characteristic polynomial 1 + x1 + x5 + x6 + x8 
is demonstrated in figure 6

easy and low cost implementation and efficient fault cove
described in section 4, signature analysis is observed to 
very low fault masking and is the implemented BIST technique 
for output compression. MISR, in principle is not different from 
the single input signature analyzer, but instead of taking one serial 
input from the first flip-flop, every flip-flop in the MISR has one 
input coming from the primary outputs of the to be tested circuit 
as shown in figure 7. Therefore, for an n output circuit, at least an 
n stage MISR is used. In figure 7, the cn switches define the 

 

If the initial state of the MISR is known  to be S0(x), then, the kth  
state can be computed, using the set of all primary outputs to be 
compressed, defined a

divisor polynomial D(x) and the Q outputs show the internal 
stages. The residue is usually clocked out serially through one of 
the flip-f

Figure 7, Multiple Input Signature Analyzer   

lop outputs. 

 

3.3 Multiple Input Signature Analyzer  
For BIST of m  input signature 

Figure 6, Structure of LFSR  

ultiple output circuits, multiple

k 0 1 k-2 k-1

where, the Ii(x) polynomials represent the ith set of inputs to the 
ture analyzer. Consequently, the expected sign

to application of signature analysis.  

In terms of fault masking, assuming uniform distribution of error 
bits, for a length 'n' signature analyzer, output width of 'm' (m ≤ n) 
and length 'L' input test set, the fault masking probability is 
shown to be ([1]): 

n alyzer is 
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which reduces to P 1=  for large L. 
nfm 2

4. BIST TECHNIQUES  

For the top level design, a parameterized sig ature an
implemented in VHDL as in figure 7 as a generic example. 

matic 
representation of the multiplier is used as the design input for 

c fault simulator, based on 

tuck at faults will also 
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−++
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As described in design flow, the VHDL design for multiplier is 
synthesized into EDDM for fault simulation and the sche

QuickFault, which is a deterministi
single stuck at model. During the investigation of different BIST 
schemes, we used automatically generated stimulus files, either 
created by QuickFault or by Matlab Scripts. With the quick 
turnover of this software approach, various techniques are 
investigated without the necessity of building the BIST hardware. 
After we concluded the investigation, the preferred BIST structure 
is implemented as described in section 3. 

As discussed in [1] and [8], single stuck at model, which is the 
most commonly used fault model is proven to also detect all 
multiple stuck at faults in a two level combinational circuit and a 
set of patterns, which detect all single s
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detect bridging faults([1]). Although until recently this model was 
observed to be fairly adequate in fault representation in real 
circuits, particularly in bipolar technologies, the advanced CMOS 
technologies begin to produce faults, which cannot be modeled 
with the single stuck at model. A more comprehensive technique 
named “Cell Fault Model”, which is proposed in [11], is defended 
in [3] as a more realistic technique, but it lacks the required 
simulation tools for general acceptance. Nevertheless, [12] 
provides indirect techniques to utilize this model with the current 
single stuck at fault simulators. However, as demonstrated in 
4.2.1, although it can be verified that CFM is more 
comprehensive than single stuck at model, the fault coverage 
measurement method, "Cell Fault Coverage" (CFC), is seen not to 
always reveal more pessimistic results than single stuck at model, 
contrary to the outcomes of [3]. One drawback of the single stuck 
at fault model is the nonstandard determination of primitive levels 
for hierarchical faulting. As each vendor supplies different set of 
leaf cells, the results of fault simulation are dependent on the used 
technology. To prevent possible criticism about the level of 
abstraction in fault simulation, we used the most detailed possible 
representation of the circuit. Consequently, the used primitives 
were AND, OR, NOT gates and D flip-flops. Although this 
description is not very realistic, any vendor's cells will be a 
superset of these, and the specified fault coverage for the circuit 
will always represent a safe lower bound in any technology. 

4.1 16 Bit Downcounter 
As the first BIST technique, we applied a 16 bit fully exhaustive 
downcounter test, which will serve us as a benchmark 

Figure 8, Histogram for exhaustive downcounter test

when 
evaluating other strategies. One of the expectations of this fault 
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4.2 8 Bit Upcounter with Repetitive Patterns  
Repetitive patterns have been widely used in testing of iterative 

gic arrays and have been shown to provide excellent fault 
ver the 

 
 

 

With this patter era heme n exce nt coverage 
f 97.02% is ach ed wi the me 228 of e cribed 
ectors. Both the togram nd the fault coverage plot in figure 9 
ow the sprea ith first 228 cy

activity includes very little redundancy, with most vectors 

simulation is not being able to achi
even full-exhaustive testing, as the hierarchical design procedure 
might inherently involve some untestable nodes at this detailed 
level. Therefore, the fault coverage result of this test serves as the 
upper bound for the following fault simulations. With the injected 
6008 hierarchical faults, we achieved a 98.49 % fault coverage 
after all the possible patterns are applied. Therefore, no test can 
exceed this value of fault coverage. This also raises one 
counterargument against Cell Fault Model and Cell Fault 
Coverage (CFC) described in [3]. It is suggested on [3,p. 947] that 
single stuck at fault simulation fault coverage values are always 
larger than the CFC values. However, the CFC value of 99.40% 
for the 8x8 CPA multiplier given on p. 945 is not even achievable 
with single stuck at model with the primitives we use. As a 
conclusion, we disagree with [3] that CFC is always more 
pessimistic than single stuck at model and we assert that this 
rather depends on the primitive levels used in hierarchical 
faulting.  

The histogram plot of detected faults per each applied input test 
vector is shown in figure 8, which reveals vast redundancies in 
the fault detection with the upcounter
undesirable spread of detections in the first 20K cycles, and there 
is still a very significant peak of detection around 32K – 
specifically 32897th vector. 

 

 

lo
co age with a small test set ([3],[4],[11]). For the multiplier, 
a and b inputs of multiplier are applied the same patterns for
every k inputs where k is the defined "repetition length". If we
apply the same pattern to both lower and higher 4 bits of one of 
the 8 bit inputs in our 8x8 multiplier, the repetition length of this 
pattern is 4. To verify the effectiveness of repetitive patterns we 
applied a BIST scheme with a repetition length of 4 and an 8 bit 
upcounter, which can produce only 256 of the 216=65536 possible 
input patterns, chosen as input pattern generator. The 
corresponding input test vectors are then as shown in table 1.  
 

Table 1, Repetitive pattern with repetition length(k)=4, 
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Figure 10, Histogram for 8 bit LFSR with seed x01 (k=4) 

the next iteration, using seed x7B reveals an excellent 
stogram and fault coverage curve, as shown in figure 11, and no 
w late peaks are detected. 

Corresponds to 
seed x7B 

terminating condition of completing one whole period of the input 
sequence, i.e. starting from x"01", increasing the seed up to x"FE" 
and then wrapping back to seed x"10" as the next seed candidate, 
in which case we restart to observe the initial late peaks. 
However, after at most two iterations, no more late peaks are 
observed in the new histograms and the algorithm converged 
efficiently. An example to the application of algorithm is shown 
in figure 10, where the finally implemented seed, x"7B" is 
determined from seed x"01". 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11, Histogram and fault coverage (%) for 
 8 bit LFSR with seed x07 (k=4)
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Figure 9, Histogram and fault coverage (%) for 
Repetitive upcounter with k=4 
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feedback is required. Therefore, the 
gular shifting of data within the shift register is not existent in 

CA ([8],[10]). The input to a CA cell depends only on its adjacent 
eighbors and maybe itself depending on whether the cell is a 90 

.  

in
est vectors – indicated by the inactive regions in his

s in plot – and a very effective
th

an
starting around 127
histogram and steep jump in plot. These redundancy and peak 
observations are later used to improve test by seed determination. 

 
4.2.1 CFC vs. Single Stuck at Fault Coverage  
This BIST technique also provides the opportunity of comparing 
CFC with Single Stuck at Fault Coverage. As stated in [3], the 

counter/PRBS test is 99.40%. However, the fault coverag
the single stuck at model, with the described primitive le
only 97.02%. Therefore, it should be noted that, although CFC 
provides more pessimistic results for the fault coverage when the 
same cells are taken as primitives and applied single stuck at fault 
simulation, it cannot be securely suggested that CFC is 
independent of gate level implementation as a more detailed 
hierarchical faulting can produce worse results with single stuck 
at model, as observed herein. 
 

4.3 PRBS Techniques with LFSRs and CA 
The two previous techniques discussed can be classified as 
deterministic techniques, and 
C
main interest of this paper.  

For the investigation of PRBS techniques we started with 16 bit 
LFSRs, and determined a simple yet efficient methodology for 
seed determination. We then, extended the investigation of LFSRs 
to repetitive patterns and w

the outputs are generated with Matlab, regarding the LFSR 
structure described in section 3.2. The fault simulation details are 
listed in Table 2 and are not repeated here for brevity. 

4.3.1 Seed Determination Methodology 
For both 16 and 8 bit LFSR structures, we initially started with a 
seed of x"0001" or x"01", and as described in section 4.2, 
identified the redundant regions and "late peaks", wh

region. Then, we 
which, when chose
regions and include
to be applied rec
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automata. CA have a similar structure to LFSRs with the ultimate 
difference that all the cell interconnections have some XOR 
operation and that no global 
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n
or 150 cell, as shown in figure 12

 

 

 



Figure 12, 90 and 150 CA cells 
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he generated sequence for a CA can be analytically determined 
sing a tridiagonal transition matrix T, whose 1st diagonals are all 

1s and main diagonal only 1 for 150 cells. Then, the next states of 
e CA can be determined from this matrix mapping. As an 
ample, the next state of the above CA for current state "1111" is 

found as2: 

(7) 

Figure 13, 4 Stage max-length CA 
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Despite the increased circuit size, CA are expected to perform 
better than LFSRs as they don't possess the inherent shifting 
behavior of LFSRs, thus intuitively imitate randomness better. 
Therefore, similar to LFSR case, CA are investigated as BIST 
pattern gen
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 for both 16 bit exhaus
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ults revealed a very sim
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w
determination method improving fault detection characteristics. 
However, compared to LFSRs, CA revealed only very slight 
improvements, which are also demonstrated in table 2. 

 

 

 

 

 

 

 

Table 2, Summary of BIST Results 
ST method Fault Coverage vs. # of patterns  

2 Hence all the operations are in GF(2) 

BI

8 bit Upcounter Using Repetitive patterns with k=4  97.02% with 228 patterns 
16 bit LFSR with seed=x0001 97.2% with 157 patterns 
16 bit LFSR with seed=xEA58 97.2% with 134 patterns 
16 bit LFSR with seed = x8080 97.2% with 153 patterns 
8 bit LFSR using repetitive patterns with k =4 and seed=x01 97.12% with 228 patterns 
8 bit LFSR using repetitive patterns with k =4 and seed=x7B 
 

97.2% with 154 patterns 
97.1% with 109 patterns 

8 
 

bit LFSR using repetitive patterns with k =4 and seed=xB7 97.0% with 82 patterns  
97.24% with 230 patterns  

16 bit CA with seed= 59 patterns x0001 97.2% with 1
x8080 97.2% with 116 bit CA with seed= 38 patterns 

16 bit CA with seed=x534F 97.2% with 122 patterns 

8 bit CA using repetitive patterns with k =4 and seed = x01 97.1% with 139 patterns  
97.2% with 179 patterns 

8 bit CA using repetitive patterns with k =4 and seed = x6D 97.2% with 124 patterns  
97.0% with 123 patterns 

8 bit CA using repetitive patterns with k =4 and seed = xAB 97.19% with 125 patterns  
97.1% with 110 patterns 

 

As observed in the table, different implem ble 
 target fault coverage. Nevertheless, two 
ns of BIST investigati titive 
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adv SRs. 
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generation has been for 8 bit LFSR with see

.4 Signature Analysis  

k to signature 
analyzer, a high weight divisor polynomial is used and application 

ealed 96.80% fault coverage, 

x16 circuit could be fault 

attern scheme, the 16 bit 'a' and 'b' inputs of multiplier 
are connected to the 8 bit LFSR outputs as: 

 LFSR(1:4) 

se. 

entations are favora
depending on the
important deductio on are, the repe
patterns and the se rithm work extre
well and CA have no significant antage over LF
Consequently, the implementation de ion for input pa

d x7B. 

16 bit CA with seed=xD5D5 97.2% with 127 patterns 

4
After the conclusion of input pattern generation, output 

compression is performed with signature analysis. The regular 
multiplier structure suggests that it is not probable to have a 
single stuck at fault that causes two distant separate multiplier 
outputs change at the same time and therefore we expect a very 
low fault masking probability with signature analyzer. In order to 
reduce fault masking before the faulty bit is fed bac
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
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of 8 bit LFSR with seed x7B rev
which is almost as high as original fault coverage with direct 
measurement of 16 multiplier outputs.  

Inclusion of the BIST circuit in fault simulation is observed to 
produce almost same fault coverage as faulting only the 
multiplier. 

4.5 Larger Multipliers  
In order to verify the effectiveness of repetitive patterns, we 
synthesized larger circuits with the same 8 bit LFSR with seed 
x7B, using repetitive patterns with k=4. 16x16, 32x32 and 24x24 
multipliers are synthesized, but only 16
simulated, with 26456 injected faults, due to computation 
memory problems of deterministic fault simulation. Using the 
repetitive p

b(15:12), b(11:8), b(7:4) and b(3:0)

a(15:12), a(11:8), a(7:4) and a(3:0) LFSR(5:8) 

Producing a constant test of 256 vectors as in 8x8 multiplier.  

Counterintuitively, as shown in figure 14, we achieve an 
unexpectedly good result. The fault coverage reached 97% in just 
57 cycles and it climbed up to 98.83% in the whole test, revealing 
an even better fault coverage than the 8x8 ca



 

 

 
 

 

 

 

 

 

 

 

 

This interesting result reveals a very promising conclusion. 
epetitive patterns provide very high fault coverage with a fixed 
umber of patterns independent of the size of the multiplier. 

5. CONCLUSIONS 
 this paper we presented a comparative investigation of BIST
chniques for a signed parallel CPA multiplier, with the modified 

MS es ar
mpared w  CA as well as

Figure 14, Fault coverage plot (%) 16x16 multiplier 
with 8 bit LFSR with seed x7B (k=4) 
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Compared to the deterministic exhaustive downcounter test, 
exhaustive pseudorandom test with LFSRs and CA revealed much 
better fault coverage characteristics. For non-exhaustive test, 
repetitive patterns are seen to provide excellent results with 
constant size test sets. For both exhaustive and non-exhaustive 
tests, CA are seen to provide no significant improvement over 
LFSRs despite their more random natured output sequence. 
Described seed determination technique is observed to work very 
efficiently in seed determination for both LFSRs and CA. A h
weight signature analyzer is seen to be very effective in output 
data compression, with insignificant downgrade from direct 
output measurement. 

The comparison of fault modeling techniques CFM and single 
stuck at model revealed, although CFM is more comprehensive 
than single stuck at model for the same level of faulting hierarchy, 
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coverage results with single stuck at model than CFM. 
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length – thus constant size test set – revealed even better fault 
coverage with larger m
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