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Abstract 

 
Power modeling and measurement are crucial elements for power aware research and there have been 

several attempts at varying levels of detail to address good and yet efficient modeling and measurement 
methodologies. 

In our conference paper we introduced our live, runtime power estimation project and presented a 
synchronized real power measurement and power modeling technique at runtime for Intel Netburst 
architecture, P4-Willamette core implementation, using performance counters as a means to estimate 
component access rates. We used this access information for component power approximation. 

This report provides the complete set of used access rate heuristics and expands the results presented in 
the conference paper to a larger group of benchmark applications. 

Overall, we conclude that performance counter based component power estimation provides useful 
results for runtime power modeling and program power phase analysis regardless of any apriori program 
structure knowledge. 
 

1 Introduction 
As processor power densities keep their exponential trend [2], power and thermal issues 

present more stringent challenges due to battery life increasing with a slower pace and cost of 
heat removal systems increasing significantly above 60-70 oC. Therefore, a great deal of research 
effort focuses on power and thermally aware or adaptive systems in several levels of abstractions 
including software power profiling and compiler level power optimizations (for example [11, 10, 
5, 8]), power modeling for power aware OS (for example [14, 13, 12]) down to microarchitectural 
level power estimation techniques [6].Most of these techniques need to rely on some amount of 
power measurement or modeling schemes that reflect modern processors, in order to quantify 
CPU power dissipation. In the ideal case, designers require detailed power breakdowns for 
processor units in order to assess realistic power measures, however these breakdowns are not 
available to acquire directly from the processors due to the lack of on chip ’energy meters’, and 
simplistic measures such as constant maximum component power assumptions do not reflect 
modern processors’ behavior because of microarchitectural power management mechanisms such 
as clock gating. In general, architects, OS and compiler developers either rely on timely 
simulations or resort to other metrics such as constant processor power [9], on/off processor 
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power [14], instruction power profile based energy estimation [11, 8], IPC [1] as proxies for 
power measures. 

Although simulators are pushed to architecture level sacrificing precision for computation 
speed, they are still not feasible to use for long timescale observations. In typical architectural 
simulators such as SimpleScalar[4] or Wattch [3], 1 second of real program run takes simulation 
times in the order of hours. Therefore, an important requirement for simulations of such 
characteristics is the provision of fast real-time modeling techniques. Moreover, dynamic thermal 
and power management require runtime modeling and measurement mechanisms to utilize in the 
dynamic decision making schemes. 

At the bottomline, our project targets at estimating component based power breakdowns and 
processor temperature distribution at runtime, while providing real time verification based on real 
measurement, all regarding a Pentium 4 processor. We divide the overall work into two major 
phases: Runtime power modeling and runtime thermal modeling. In this paper, we present the 
complete first phase of the project, which is originally based upon similar ideas as the Castle 
project [7]. Our work for runtime component power modeling spans three distinct aspects. We 
use P4 performance counters to approximate component access rates, our modeling framework 
converts the approximated access rates into estimated component powers and our real power 
measurement setup provides measured total processor power for verification feedback. Our 
project provides the first Pentium 4 based power modeling scheme, with a piecewise linear 
approach due to conditional clock power offset and limited maximum power. It devises a strictly 
physical component based power model, rather than more abstract processor breakdowns, black 
box assumption [1] for total power estimation or software level power profiling [11, 8], to enable 
thermal modeling on top of our power model. Our power measurement setup produces no 
intervention to processor hardware and our performance counter reader implementation produces 
invisible power or performance overhead to actual system operation. Moreover, our power model 
aims at modeling low utilization powers accurately as high utilization powers, thus enabling us to 
model more practical applications such as web browsing and text editing with reasonable 
accuracy. 

2 Related Work 
There is significant amount of work focusing on processor power modeling and measurement, 

as well as application of these modeling techniques to power aware systems. Here we discuss 
work that falls into one of two categories: First, research related to processor power measurement, 
and its application to power modeling; second, research that employs performance counters for 
power metrics. In the earlier work, Tiwari et al. [11], measure the current for an Intel 486DX2 
processor and DRAM to generate instruction energy cost tables and identify inter-instruction 
effects such as circuit state overhead and resource constraint effects. Russell et al. [9], model 
software power for two implementations of i960 embedded processor architecture by a simple 
constant average power estimation. They consider a program’s runtime as the only determination 
factor in program energy consumption and use a series resistance to measure processor current for 
energy verification. Flinn et al. [5], developed PowerScope tool, which maps consumed energy to 
program structure at procedural level. They sample current drawn by the processor with a DMM 
and an energy analyzer software generates procedure power profiles from the raw energy data. 
Lee et al. [5], uses a cycle based energy consumption measurement system based on charge 
transfer to derive instruction energy consumption models for a RISC ARM7TDMI processor. 
They follow a black box approach similar to [1] to model total processor power based on linear 
regression to fit the model equation to measured energy consumption at each clock cycle. As a 
first example of Pentium 4 power measurement, Seng et al. [15], investigate the effect of 
compiler optimizations on average program power, by measuring the processor power for 



benchmarks compiled with different optimization levels. They use two series resistors in Vcc 
traces to measure the processor current. 

Regarding employment of performance counters for power metrics, Bellosa [1], uses 
performance counters, to identify correlations between certain processor events, such as retired 
floating point operations, and energy consumption for an Intel PentiumII processor. This counter 
based energy accounting scheme is proposed as a feedback mechanism for OS directed power 
management such as thread time extension and clock throttling. Castle project, developed by 
Joseph et al. [7], uses performance counters to model component powers for a Pentium Pro 
processor. It provides comparisons between estimated total processor power and total power 
measured using a series resistor in processor power lines. Kadayif et al. [16], use Perfmon counter 
library to access performance counters of the UltraSPARC processor. They collect memory 
related event information and estimate memory system energy consumption based on analytical 
memory energy model. Haid et al. [6], propose a coprocessor for runtime energy estimation for 
system-on-a-chip designs. The developed JouleDoc coprocessor estimates component energy 
consumptions at runtime with special event counters in conjunction with power macromodels. 
 

3 Modeling Power for P4 Sub-Units Details 
In our conference paper we have described how we estimate component-wise powers for the 

P4 processor at runtime using the available event counting metrics. We described the steps 
involved in the estimation framework as first defining the components from annotated die layout, 
which decomposed the processor into 22 different units. We emphasize, the choice of physical 
components as the modeled units in turn enables one to build a thermal model on top of the power 
estimation framework in a structured manner. Afterwards, we discussed some of the heuristics 
that we used, to approximate the access rates for these components, which consequently serve as 
the proxies to component power dissipations. Next, we described the applied empirical method to 
convert these access rates into component power consumption estimates, with the help of tuning 
benchmarks and described the actual implementation. 

In the following subsections, we include some additional information related to our power 
modeling framework that were not included in the paper due to space limitations. We 
demonstrate the experimental setup, provide more details on performance metrics and tuned 
power estimates. 

3.1 Experimental Setup for Power Estimation and Concurrent Verification 
In Figure 1, we demonstrate the overall setup for power estimation and verification with 

respect to total power. The left branch over the Ethernet represents the performance counter data 
collection from the machine under test for power estimation. The right branch shows the power 
measurement flow from the current probe over the power lines to the digital multimeter and from 
the multimeter to the logger machine. The leftside monitor is the runtime total power monitor that 
displays total measured vs. estimated power over a 100s sliding window. The rightside monitor 
shows the component breakdowns at each instant. 

 



 
 

Figure 1, Complete Experimental Setup 
 
 

3.2 Complete Set of Event Metrics for Component Access Rate Estimation 
Although we present some of the performance metrics in the original paper, the complete list 

was too long to include. Here we present the used metric combinations for each of the modeled 
components as well as brief descriptions of masks and scalings. For each component, the final 
metrics are used as representatives of access rates. 

 
1) Bus Control: 
As there is no 3rd Level cache we assume Bus Sequence Queue (BSQ) allocations are similar 

to Input Output Queue (IOQ) allocations. Regarding Figure 2, we devise two metrics to account 
for BSQ and IOQ, and to account for driving the actual backside bus. The first used metric is bus 
accesses from all agents, which go to the IOQ. The used event is “IOQ_allocation”, which counts 
various types of bus transactions. We assume this metric should account for BSQ as well, and 
therefore do not include a second “BSQ_allocation” metric. The allocation metrics are access 
based rather than duration. The used event mask is “0x0EFE1”, which corresponds to: “Default 
req. type, all read (128B) and write (64B) types, include OWN,OTHER and PREFETCH. The 
second metric is bus utilization (The % of time Bus is utilized). The used event is 
“FSB_data_activity”, which counts DataReaDY and DataBuSY events on Bus. The mask is 
“0x03F’ and makes the counter count when processor or other agents drive/read/reserve the bus. 
The expression for bus utilization then is “FSB_data_activity x BusRatio / Clocks Elapsed”, 
where bus ratio is used to account for clock ratios between bus and processor core. 

Final access rate is represented as: 
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Figure 2, Memory subsystem. 

 
2) L2 Cache: 
The metric used is 2nd level cache references. The event used is “BSQ_cache_reference”, 

which counts cache references as seen by the bus unit. The mask is: “0x0507” and corresponds to 
all MESI reads (LD & RFO) and 2nd level WR misses. 

Final Expression is: 
 

 
 
3) 2nd Level BPU: 
We use two metrics. First metric is instructions fetched from L2, as instructions are not 

decoded yet, they need to go to the BPU to check if they are branches for the least and need to be 
predicted if they are. The event used is “ITLB_Reference”, which counts ITLB translations. The 
mask is “0x01” and corresponds to all hits. The expression we use for instructions fetched is 
“8xITLB_Reference” as there are minimum 8 instructions per L2 cache line. The L2 cache line is 
128 bytes and the maximum instruction length for IA32 instructions is 16 bytes. The second 
metric is “Branches retired” as the retirement logic does the history update at these instances for 
the front end BPU. The event used id “branch_retired”, which counts branches retired. The mask 
is: “0x0F” to count all Taken/NT/Predicted/Mispredicted. 

The Final expression is: 
 

 
 
4) ITLB & I-Fetch: 
We use two metrics. First metric is ITLB translations performed, for the ITLB accesses. The 

event used is “ITLB_Reference”, which counts ITLB translations. The mask is “0x07” and 
accounts for all hits and misses. The second metric is Intruction fetch requests by the front end 
BPU, for the fetch unit. The event used is “BPU_fetch_requests”, which counts Ifetch requests 
from the BPU. The mask is “0x01”, which is TC lookup misses. This is all that is documented for 
the time being as the available option for counting 

Final expression is: 
  

 
 



5) L1 Cache: 
We use two metrics. First metric is loads and stores retired that successfully completed data 

speculations, and possible replays. The event used is “Front End Event”, which counts tagged 
uops that retired. The mask is “0x03” to count both non-speculative (NBOGUS) and speculatives 
(BOGUS). There is a supporting event for front end tagging, named “Uop type”, which can tag 
types of instructions – Load and Store instructions for our case. The mask is “0x06” to tag both 
Loads and Stores. The second metric is replays for extra accesses due to data speculation. The 
used events are “LD port replay”, which counts replayed events at load port with mask “0x02”, 
Split LD (all that is available for now), and “ST port replay” (same as “Memory Complete”, with 
mask: SSC), which counts replayed events at store port. The mask for this event is “0x02” to 
count Split ST (all that is available for now). 

Final expression is: 
 

 
 
6) MOB: 
There is no metric that we could devise for MOB accesses directly. Therefore the metric used 

is LD Replays triggered by MOB. The event used is “MOB load replay” that counts the load 
operations replayed by MOB. The mask is “0x03A” and corresponds to all replays due to 
unknown address/data, partial data match, misaligned addresses. 

Final expression is: 
 

 
 
7) Memory Control: 
We cannot find any relevant metric for memory controller accesses and make the 

conservative assumption that memory controller dissipates maximum power as long as machine is 
not idle. The metric we use to make this discriminations is non-idle clock cycles and the event is 
“Machine Clear”, which counts cycles when the pipeline is flushed. The mask is “0x01” and 
counts machine clears due to any cause. The expression for non-idle clock cycles is “TSC count – 
Machine Clear Cycles”. 

Final Expression is: 
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8) DTLB: 
The metric is accesses to either L1 or to MOB and therefore the total TLB access rates are 

considered as the total of L1 and MOB accesses. The expression is: “L1 Accesses + MOB 
Accesses” 

The final expression is: 
 

 
 
9) FP Execution: 
There is no aggregate metric for floating point operations, and therefore we use 8 different 

metrics to collect all the floating point execution information. Our metric is FP instructions 
executed and the events are: 

 



o event1: “packed_SP_uop”, which counts packed single precision uops 
o event2: “packed_DP_uop”, which counts packed double precision uops 
o event3: “scalar_SP_uop”, which counts scalar single precision uops 
o event4: “scalar_DP_uop”, which counts scalar double precision uops 
o event5: “64bit_MMX_uop”, which counts MMX uops with 64bit SIMD operands 
o event6: “128bit_MMX_uop”, which counts integer SSE2 uops with 128bit SIMD operands 
o event7: “x87_FP_UOP”, which counts x87 FP uops 
o event8: “x87_SIMD_moves_uop”, which counts x87, FP, MMX, SSE, SSE2 ld/st/mov uops 
 
The masks for events 1-7 are “0x08000” to count all, which is the only available option. The 

mask for 8th event is “0x018” to count SIMD moves/stores/loads. 
The final expression is: 
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10) Integer Execution: 
The desired metric for integer execution is integer uops executed, however there is no 

associated event with integer execution. Therefore we use a substitute metric as total speculative 
Uops executed and subtract the FP uops computed above. The used event is “Uop queue writes”, 
which counts number of uops written to the uop queue in front of TC. The mask is “0x07” to 
counts all uops from TC, Decoder and Microcode ROM. The expression for integer execution is: 
“Uop Rate – FP uop rate”, with some postfix for simple vs. complex ALU operations as described 
in our conference paper. 

In the hardcoded expression we actually I rescale FP uop rates as packed,SIMD and MMX 
uops do multiple concurrent FP operations. Moreover, there is a final fix to avoid negative integer 
counts. However, a simpler demonstration for final expression is: 
 

 
 
 

11) Integer Regfile 
The metric we use is integer uops executed, as there is no direct metric for total physical 

regfile accesses. 
Final expression is: 
 

RateAccessExecutionInteger  
 
12) FP Regfile 
The used metric is FP uops executed as there is no direct metric for total physical regfile 

accesses. 
The final expression is: 
 

RateAccessExecutionPointFloating  
 
13) Instruction Decode: 
The used metric is cycles spent in trace building. The event used is “TC Deliver Mode”, 

whichc counts the cycles processor spends in the specified mode. The mask is “0x038” to count 
the cycles logical processor 0 is in build mode. 

Final expression is:  
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14) Trace Cache: 
The used metric is uop queue writes from either trace cache modes. The event used is “Uop 

queue writes”, which counts number of uops written to the uop queue in front of TC. The mask is 
“0x07” to count all uops from TC and Decoder and ROM. 

Final expression is: 
 

 
 
15) 1st Level BPU: 
The used metric is branches retired. The event used is “branch_retired”, which counts 

branches retired. The mask is “0x0F” to count all Taken / Not Taken / Predicted / MisPredicted  
branches. 

Final expression is 
 

: 
 
16) Microcode ROM: 
The used metric is uops originating from microcode ROM. The event used is: “Uop queue 

writes”, which counts number of uops written to the uop queue in front of TC. The mask is 
“0x04” to count uops only from microcode ROM. 

Final expression is: 
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17) Allocation, 18) Rename logic, 19) Instruction queue1,  
20) Schedule, 21) Instruction queue2: 
For all these issue related components, we cannot devise separate metrics that can 

differentiate among them. Therefore, we use the common metric of uops that started their flight 
for all of them. The used event is: “Uop queue writes”, which counts number of uops written to 
the uop queue. The mask: is “0x07” to count all uops from TC and Decoder and ROM. 

Final expression is: 
 

 
  

22) Retirement Logic: 
The obvious metric to is uops that arrive retirement. The used event is: “uops retired”, which 

counts number of uops retired in a cycle. The mask is “0x03” to consider also speculative uops 
retired. 

Final expression is: 
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3.3 Used Counters, Rotations and Corresponding ESCRs 
 

 
 

3.4 Power Numbers 
 

Unit Area 
% 

Area Based Max 
Power Estimate 

Max Power 
after Tuning 

Conditional 
Clk power 

L2 BPU 3.4% 2.5 15.5 - 

L1 BPU 4.9% 3.5 10.5   

Tr. Cache 8.6% 6.2 4.0 2.0 

L1 Cache 5.8% 4.2 12.4 (/2)   

L2 Cache 14.7% 10.6 300.6(/7)   

Int EXE 2.0% 1.4 3.4   

FP EXE 6.2% 4.5 4.5   

Rename 2.3% 1.7 0.4 1.5 

Retire 6.5% 4.7(/3) 0.5 2.0 

 



 

4 Extended Results 
 
 
 
 
 
 
 
 
 
 
 

5 Conclusion and Future Work 
In this paper we presented a runtime power modeling methodology based on hardware 

performance counters as proxies for processor component access rates, which, in turn, are used to 
estimate component power breakdowns for the processor. In our implementation we used a 
Pentium 4 processor that utilizes the highest extent of clock gating for power management among 
present modern processors. We used real power measurements to verify modeled total processor 
power against measured real processor power, thus providing a real validation scheme that can 
also be applied at runtime. We evaluated our power model with several examples from Spec2000 
suite to typical practical desktop applications and the acquired estimation results verified our 
proposed model follows even very fine trends in program behavior within good approximation 
for a runtime scheme based on a very complex processor. We also described an application to the 
implemented power model that can be used to distinguish power phase behavior based on simple 
similarity analysis. 

This research differs from previous power estimation work in several aspects. Our model is 
targeted towards a very complex high performance processor with fine microarchitectural details 
and highly variable power behavior due to employed aggressive clock gating and power 
management techniques. We utilize a power measurement technique that does not disrupt the 
processor hardware and a LKM based performance monitoring scheme that induces invisible 
power and performance overhead on the measured system. Both of these aspects make the 
modeling scheme very powrtable and easily repeatable. We rely on a strictly physical component 
based power breakdowns, with fine granularity, which enables implementation of a processor 
thermal model that can work in conjunction with the power model. Developed power model aims 
at estimating even low processor utilization powers accurately, thus providing reliable power 
values for any range of operation power. Therefore, we use a nonlinear power model with 
conditional component clock powers, unlike linear regression based examples that try to fit a 
model to sampled measured powers for different programs that generally produce significant 
processor utilization. 

There are several key contributions of this work. The measurement and estimation technique 
itself is portable, and can offer a viable alternative to many of the power simulations currently 
guiding research evaluations. The component breakdowns offer sufficient detail to be useful on 
their own, and their properties as a power signature for power-aware phase analysis seem to be 
even more promising. In conclusion, this work offers both a measurement technique, as well as 
characterization data about common programs running on a widely-used platform. We feel it 
offers a promising alternative to purely simulation-based power research. 



The most major prospect of the developed power model is the development of a thermal 
model that works in conjunction with the component power estimations. Realization of thermal 
modeling had been the driving reason to use physical layout based components in the first place. 
Another future direction that we aim to follow is investigation and evaluation of different 
estimation techniques for better power estimation. There are already examples that utilize linear 
regression of raw counter metrics to fit measured power for a set of training programs. However, 
we aim to investigate techniques that will produce power estimations that track processor powers 
in any range of power, while also preserving the component level breakdown information. 
Eventually, we aim to provide a combined runtime power and thermal modeling framework, with 
runtime verification, that estimates processor power and temperature distributions accurately; and 
to use it in future power and thermal related research. 
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