228 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

Characterizing Power and Temperature Behavior of
POWERG6-Based System

Victor Jiménez, Francisco J. Cazorla, Roberto Gioiosa, Mateo Valero, Fellow, IEEE, Carlos Boneti,
Eren Kursun, Senior Member, IEEE, Chen-Yong Cher, Canturk Isci, Alper Buyuktosunoglu, Senior Member, IEEE,
and Pradip Bose, Fellow, IEEE

(Invited Paper)

Abstract—Microprocessor architectures have become increas-
ingly power limited in recent years. Currently power and thermal
envelopes dictate peak performance limits more than any other
design constraint. In this work, we characterize thermal behavior
and power consumption of an IBM POWERG6-based system. We
perform the characterization at several levels: application, oper-
ating system, and hardware level, both when the system is idle,
and under load. At hardware level, we report a 25% reduction in
total system power consumption by using the processor low power
mode. We also study the effect of the hardware thread prioriti-
zation mechanism provided by POWERG6 on different workloads
and how this mechanism can be used to limit power consumption.
From this static characterization study we derive a model based
on performance counters that allows us to predict the total power
consumption of the POWERG6 system with an average error under
3% for CMP and 5% for SMT. To the best of our knowledge, this is
the first power model of a system including CMP+SMT processors.
The work reported in this paper can be generalized to model power
consumption for a broader class of systems. Such power modeling
is required for studying promising power reduction techniques.
In terms of dynamic methods, intelligent thread placement can
result in a boost in power efficiency. Our results show that such a
power-aware thread placement results in up to 5Xx improvement
in energy-delay squared product for our POWERG6 system.

Index Terms—Design,
performance.

experimentation, measurement,

I. INTRODUCTION

S PROCESS technologies advance, the trend is to have
more cores per chip, where each core can further increase
the amount of concurrent threads via SMT, such as the IBM

Manuscript received January 21, 2011; accepted April 28, 2011. Date of cur-
rent version November 09, 2011. This work was supported by a Collaboration
Agreement between IBM and Barcelona Supercomputing Center (BSC) with
funds from IBM Research and IBM Deep Computing organizations, by the Min-
istry of Science and Technology of Spain under Contract TIN-2007-60625 and
Grants AP-2005-3776 and AP-2005-3318, and by the HIPEAC Network of Ex-
cellence (IST-004408). An earlier version of this paper was published in the
19th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), Vienna, Austria, September 11-15, 2010. This paper was rec-
ommended by Guest Editor V. Narayanan.

V. Jiménez, R. Gioiosa and M. Valero are with the Barcelona Supercom-
puting Center, Barcelona 08034, Spain (e-mail: victor.javier @bsc.es; roberto.
gioiosa@bsc.es; mateo.valero@bsc.es).

F. J. Cazorla is with the Barcelona Supercomputing Center, Barcelona
08034, Spain, and also with the IIIA-CSIC, Spanish National Research
Council, Madrid, Spain (e-mail: francisco.cazorla@bsc.es).

C. Boneti was with Barcelona Supercomputing Center, Barcelona 08034,
Spain. He is now with Schlumberger BRGC, Rio de Janeiro, Brazil (e-mail:
cboneti@slb.com).

E. Kursun, C.-Y. Cher, C. Isci, A. Buyuktosunoglu and P. Bose are with
IBM T. J. Watson Research Center, Yorktown Heights, NY 1098 USA
(e-mail: ekursun@us.ibm.com; chenyong @us.ibm.com; canturk @us.ibm.com;
alperb@us.ibm.com; pbose @us.ibm.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2011.2169630

POWERS [1] and POWERG6 [2] and the Intel i7 [3]. While
CMP processors provide better performance per watt ratios than
monolithic architectures, the power dissipation continues to be
a key performance limiter also for multithreaded architectures.
Consequently, power and thermal characteristics of processors
are one of the primary design constraints, and motivate an
active research area.

Energy, power and thermal management are of paramount im-
portance in many environments ranging from embedded to High
Performance Computing (HPC) systems. In the former case, im-
provements in battery capacity simply have not kept pace with
ever-more-powerful processors, limiting device use to short time
periods. In the latter case, supercomputers and data centers pro-
videhuge amounts of computation power (necessary, forinstance,
for weather forecasting, climate research, molecular modeling
and other areas), with very high associated energy costs. A study
fromthe U.S. Environmental Protection Agency (EPA) estimates
that national energy consumption by servers and data centers will
reach more than 100 billion kWh annually and representing $7.4
billion in electricity cost [4]. In HPC systems, besides the heat
dissipation issue, the increasing power consumption leads to ad-
ditional problems in the power delivery and energy costs that
account for a considerable percentage of the expenses of a data
center. It is certain that managing and reducing the temperature
and power consumption is a critical problem that must be ad-
dressed in all levels of computing systems, from the application
layer to the hardware. As an example, most of the latest proces-
sors available in the market employ several techniques to reduce
power consumption [5], [6]. From the OS perspective, the Linux
kernel also implements features to reduce power [7]-[9].

POWERG is a processor from IBM designed for high-end
server systems. The processor is a dual-core processor where
each core is an SMT capable of running two hardware threads.
Moreover, the POWERG6 provides power monitoring capabilities
and temperature sensors to monitor the processor status and a
special nap mode to control power consumption. In addition to
the low-power nap mode, the POWERG6 processor implements
microarchitectural mechanisms for power management such as
pipeline throttling, multiple voltage domains, memory controller
dynamic modes and memory throttling [5]. POWERG6 also in-
cludes a Hardware Thread Prioritization technique. While this
is not designed for power management, it can also be used to
improve the power and thermal behavior of the system [5].

This work specifically focuses on characterizing and modeling
the power and thermal behavior of the POWERG6 architecture. We
explore power and thermal behavior with various power manage-

2156-3357/$26.00 © 2011 IEEE

JIMENEZ e al.: CHARACTERIZING POWER AND TEMPERATURE BEHAVIOR OF POWERG6-BASED SYSTEM 229

ment techniques provided by POWERG6 and evaluate their impact
atmultiple levels: application level, OS level, and hardware level.
Such multi-level characterization is particularly important to un-
derstand the impact of the architectural and system-level man-
agement techniques across the computing system hierarchy.

Characterizations are performed at system level under mul-
tiple operating conditions, from idle to extreme load conditions
using specifically designed microbenchmarks that stress partic-
ular processor resources, and the SPEC CPU2006 benchmarks.
The main contributions of this work are as follows.

* Hardware Level: We present the first characterization of a
real hybrid CMP/SMT implementation. We also demon-
strate the impact of POWERG6’s hardware-thread prioritiza-
tion mechanism on power consumption. Our results show
that workload-aware manipulation of thread priorities im-
proves the system’s energy-delay product by as much as
25%.Finally, we show the power and thermal characteristics
of the nap mode, and the combined effect of employing the
nap mode and hardware thread priorities. These evaluations
show very significant benefits, reducing up to 26% the core
temperatures and 25% the total system power consumption.

* OS Level: We explore the effectiveness of power and
thermal management techniques present in modern OS
for the POWER architecture, including tickless kernel
and idle power managers. We demonstrate the benefits of
these approaches and their dependence on other system
components such as timer interrupt periods.

» Application Level: We characterize system behavior with a
set of microbenchmarks and SPEC CPU2006 benchmarks.
We correlate power and temperature with performance
counters and derive an accurate model that represents
the power and temperature impact of different workload
performance characteristics. We show that high IPC appli-
cations have a bigger effect on the core temperature and
memory-intensive applications do not heat the cores as
much but cause the system to consume more power [10].

Based on that we derive several conclusions and we show two
use cases to improve power behavior:

* Power Model: We develop a model, based on performance
counters, to predict the power consumption of a POWERG6
system. The model accurately predicts system power con-
sumption with an average error under 4.5%. To the best of
our knowledge, this is the first model for real CMP/SMT
processor-based systems.

* OS Scheduling: A JS22 system includes two POWER6G
chips, each of which is a CMP/SMT chip. In such a system,
thread placement affects both performance and power con-
sumption. By placing threads in a workload- and package-
aware manner, we can achieve significant energy improve-
ments, without incurring significant performance degrada-
tion, with a 3.7X reduction in energy-delay product.

The rest of this paper is structured as follows. Section II pro-
vides the necessary background and details on the processor and
the Linux kernel features that we analyze. Section III describes
the methodology, the infrastructure and the benchmarks used.
Section IV shows the results of our experiments on a JS22 blade,
both in idle conditions and under load. In Section V we present
two use cases that follow from our characterization results: (i)
a system-level power model and (ii) power-aware thread place-
ment. Section VI lists the related work and Section VII con-
cludes this study.

SMT2 core SMT2 core

4MB L2 $ 4MB L2 $

32MB L3 $

SMP interconnect fabric

I | - Not present on
Memory Memory a JS22 system
controller controller

I I
I I

Memory subsystem

(b)
Fig. 1. (a) Floorplan and (b) chip structure of POWERG6 [2].

II. BACKGROUND

A. The IBM POWERG Processor

Fig. 1 shows the floorplan and the chip structure of POWERG6.
POWERG is a dual-core chip where each core can be run in a
two-way SMT mode. It is an in-order processor with limited
out-of-order execution for floating point operations. Each core
has a 64 KB L1 I-cache and D-cache. The cores have a 4 MB pri-
vate L2 cache connected to the L3 controller and to the memory
controller through the symmetric multiprocessor (SMP) inter-
connect fabric. The optional off-die L3 cache is shared by both
cores. Depending on the configuration, each chip has one or two
memory controllers that interface to the DRAM memory.

POWERG systems integrate a thin hypervisor layer that ab-
stracts the real hardware and allows running several virtual ma-
chines simultaneously on the same physical resources. This vir-
tualization mechanism is completely transparent and does not
require any modification of the guest OS. However, collabora-
tion between the guest OS and the hypervisor has significant
benefits for improving chip utilization and throughput as well
as for effective power management.

In this paper we are particularly interested in the interaction
between the guest OS and the hypervisor for effective power

230 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

and performance management. POWERG6 implements specific
methods for the guest OS to release hardware threads and cores
when there are no runnable processes available. This is done by
invoking the cede_processor hypervisor call, which enables the
hypervisor to dispose of the hardware thread and assign the re-
sources to another virtual machine or to employ power manage-
ment techniques on the unused resources. In our environment,
we run only one virtual machine, thus, the hypervisor performs
one of the following operations when the cede_processor is in-
voked from a given hardware thread: (i) If the other hardware
thread on the same core is under use, the hypervisor turns off the
hardware thread and puts the core in Single Thread (ST) mode.
This effectively assigns more hardware resources to the running
process, thus improving single-thread performance. Moreover,
while this mode does not directly target at reducing power, as
several functional units are not utilized during ST mode, overall
power consumption also decreases. (ii) If hypervisor has already
turned off the other hardware thread in the core (i.e., the core is
already in ST mode), the hypervisor puts the core in nap mode.

1) Nap Mode: POWERG implements a low-power mode per
core called nap mode. This mode turns off the internal clocks
and restricts the operation of the functional units in the core.
Reducing active power consumption by turning off the clocks
reduces the temperature as well, which further reduces leakage
power. We show the effect of nap mode on both system power
consumption and core temperature.

2) Thread Priorities: POWERG6 processor has a thread pri-
ority mechanism, through software/hardware co-design, that
controls the instruction decode rate for each hardware thread
with eight priority levels [12], [13]. Software-controlled prior-
ities range from O to 7, where 0 means the thread is switched
off and 7 means the thread is running in Single Thread mode
(i.e., the other thread is off). The thread’s priority is enforced
by hardware at decode stage, determining the actual number of
decode cycles assigned to the hardware thread. In general, the
higher the priority of a thread with respect to the other thread on
the same core, the higher the number of decode cycles assigned
to the thread. Consequently, the thread with a higher priority
receives more resources and can obtain higher performance.

The main motivation of the software-controlled priority is to
address instances where biasing thread performance is desirable
because one thread is not really progressing or because it re-
quires some level of Quality of Service. For example, as shown
in Fig. 2, the POWERSG Linux kernel reduces the priority of the
idle process or of any process spinning on a lock in order to give
more hardware resource to the other running thread. Moreover,
depending on the application, software-controlled priorities can
significantly improve both throughput and execution time [13].
We also show how software-controlled priorities can be used for
power management, to improve the performance-per-watt ratio.

B. Linux Kernel

The Linux guest OS, running on POWERG implements sev-
eral mechanisms to reduce power consumption [7]-[9]. These
mechanisms are grouped under CPU Idle Power Manager (PM)
Support and tickless kernel.

1) CPU Idle PM Support. When a CPU is idle (i.e., there is no
process available to run on that CPU other than the idle process)
the OS runs the Idle Process which basically loops over the code
shown in Fig. 2. In general, the Idle Process tries to take advan-
tage of the low-power mechanisms provided by the underlying

1| if (__get_cpu_var(smt_snooze_delay)) {
2| start_snooze = get_tb() +

3 __get_cpu_var(smt_snooze_delay) =

4 tb_ticks_per_usec:

5| local_irq_enable ();

6| set_thread_flag (TIF_POLLING_NRFLAG);

8| while (get_tb() < start_snooze) {
9 if (need_resched() || cpu_is_offline(cpu))

10 goto out;

11 ppc64_runlatch_off ():

12 HMT_low () /% priority 2 %/
13 HMT_very_low (); /« priority 1 =/
14 }

16| HMT_medium (); /% priority 4 =/

17| clear_thread_flag (TIF_POLLING_NRFLAG);

18| smp_mb ():

191 local_irq_disable ():

20| if (need_resched() || cpu_is_offline(cpu))
21 goto out:

22|}

24| cede_processor ();

26| out:
27| HMT_medium () ;

/% priority 4 x/

Fig.2. Code snippet from the idle loop for the POWERG processor. This piece
of code is continuously called from the function Cpu_ld le while the system is
idle.

architecture if available, otherwise the process simply executes
a long latency instruction.

In POWERG, the guest OS does not have direct access to
the physical hardware and therefore gives the thread up to the
hypervisor (cede_processor, line 24 in Fig. 2) when idle. The
hypervisor, in turn, decides to put the core in ST or in low-
power mode. It is highly probable that another process becomes
runnable shortly after the Idle Process has been scheduled on
the CPU. Therefore, the kernel does not directly go into low
power mode but waits for some (programmable) amount of time
(snooze loop, lines 8§—13) to improve responsiveness.

Since the snooze loop does not perform any useful work,
the kernel reduces the priority of the Idle Process while
in the snooze loop down to the minimum (HMT _low and
HMT _very_low). In this way the process running on the other
hardware thread receives more hardware resources and its per-
formance may increase. At the same time, since HMT _very_low
also reduces the number of instructions decoded per second, the
OS also saves power. Thus, by using hardware thread priorities,
the OS reduces power consumption while improving system
throughput. If no process becomes runnable after the snooze
delay, the OS invokes the hypervisor call cede_processor (line
24) and releases the hardware thread to the hypervisor.

In Section IV-A-1 we evaluate Linux CPU Idle PM Support
implementation for POWERG6 processors and analyze the idle
power behavior with different kernel implementations.

2) Tickless Kernel: As explained in the previous section, when
a core is idle, the OS tries to put it in low power mode. One
challenge in this power management scheme is the interrupt be-
havior of the system. Any interrupt received in the low-power
state forces the CPU to go back to the active state to handle the
interrupt. Timer interrupts are the most common interrupts re-
ceived by a CPU and local timers fire interrupts periodically.
Moreover, if the CPU is idle, the timer interrupt handler does
not perform any operation, while still forcing the CPU to wake
up. Thus, reducing the amount of interrupts delivered to the idle
cores increases the time the cores stay in low power mode and
improves overall system power efficiency.

The tickless kernel mechanism (kernel version > 2.6.21) re-
duces the effect of timer interrupts by disabling the periodic

JIMENEZ et al.: CHARACTERIZING POWER AND TEMPERATURE BEHAVIOR OF POWER6-BASED SYSTEM 231

TABLE I
Loop BoDY OF THE DIFFERENT MICROBENCHMARKS
[Name [Loop Body |
cpu_int [a = a4 (it = (it — 1)) —x; it : x; € {1,2,...,54}
cou f Sequence of approximately 200 FP operations (fadd,
pu_ip fsub, fmul) using SW pipelining for increasing ILP.
ld_I1
Id_12 p = *p; // repeated 100 times
Id_mem
st_mem | Memory store operations.

timer interrupts when a CPU is idle [8]. In practice, instead of
programming the local timer to expire in 1/HZ second (peri-
odic timer), the kernel programs the timer to expire in the next,
non-periodic, timer event (e.g., a software timer programmed by
a task that called the sleep() system call). In Section IV-A-2 we
evaluate the effect of this mechanism on the power consumption
of the POWERG system.

III. METHODOLOGY

1) System Infrastructure: In our experiments we use an IBM
JS22 BladeCenter, with two dual-core, 2-way SMT POWERG6
chips running at 4.0 GHz. Thus, the system presents 8 logical
CPUs to the hypervisor and the OS layer. Our system does not
include an off-chip L3 cache. Therefore, the last level of cache
in our system is the 4 MB L2 cache private to each core. Only
one memory controller per processor is available in our config-
uration. The amount of DRAM memory is 15 GB. The system
runs SUSE Linux Enterprise 10 SP2 with kernel version 2.6.28
patched with perfmon2 3.8 in order to access the performance
counters. Our JS22 blade is located in a room where the temper-
ature is kept constant.

We use the EnergyScale architecture [14] to measure power
and temperature in the JS22 via a standard service processor,
called the Flexible Support Processor (FSP). The EnergyScale
implementation includes an optional plug-in card, containing a
micro-controller called Thermal and Power Management De-
vice (TPMD). The FSP and TPMD are controlled by the Blade-
Center (chassis) management module. The sensors incorporated
into this device are also used to protect the system from thermal
emergencies and to cap power consumption in case of necessity.
Thus, we can assure that they are calibrated and accurate enough
to perform our study. Our observations during the experimental
process confirm this claim as well.

We develop an external framework that monitors each core’s
temperature and total system power consumption using the man-
agement module. Although some details on the physical location
of the temperature sensors can be seen in [S5], we mostly treat the
information read from the management console in a black-box
fashion. This monitoring framework allows us to gather temper-
ature measurements at 1 s granularity and power measurements at
1 min granularity. Although the architecture performs finer-grain
power measurements, the monitoring interface only exposes 1
min averages for the power. While these granularities are suf-
ficient for characterization purposes, we also develop a power
model that provides fine-grain power estimations by monitoring
performance counters, as one of the contributions of this paper.
This power model can be used for dynamic power management
policies that operate at smaller time scales.

Power and temperature measurements are, unless stated oth-
erwise, normalized to the ones obtained when the system is idle
to obfuscate the actual values.

2) Benchmarks: Real applications present phases and signif-
icant dynamic variations during their execution, complicating
fine-grain architectural characterization. Microbenchmarks with
well-defined characteristics simplify this problem by allowing us
to understand the behavior of the different architectural compo-
nentsinisolation, where we canindependently quantify the effects
of the mechanisms we want to study. Therefore, we develop a
set of synthetic microbenchmarks that stress different parts of
the microarchitecture. Several of these microbenchmarks can be
concurrently executed as MPI processes. This allows us to create
multiprogrammed workloads and mix of workloads with different
characteristics. We use six of these microbenchmarks in our eval-
uations: cpu_int,cpu_fp,ld_I1,1d_12,|d_memandst_mem.

The microbenchmarks are composed of a main loop that it-
erates for a configurable number of iterations. Table I describes
the loop body for the ones used in this study. cpu_int mainly
executes integer arithmetic operations accounting for 85.5% of
the total executed instructions. cpu_fp is an FP-intensive bench-
mark, where 94% of the instructions are floating point arithmetic
operations. |d_I1, Id_I2 and Id_mem are benchmarks mostly per-
forming memory load operations (95% of the instructions are
loads). They stress different levels of the memory hierarchy.
Id_I1 always hits in L1 cache. |d_I2 always hits in L2 cache but al-
ways misses in L1 cache. Finally, [d_mem always misses in both
L1 and L2, and brings the data from main memory. All of them
perform a pointer traversal across an array which is configured
to produce the desired memory access behavior. st_mem con-
tinuously performs memory writes missing in all levels of the
cache hierarchy. This high miss rate forces to evict lines from
the L2 cache and effectively access the main memory.

We also use SPEC CPU2006 benchmarks [15] for our charac-
terizations and to evaluate our power model. Other benchmarks
aiming to stress system’s I/O could have been used. However, I/O
subcomponents are not typically energy-proportional and thus,
their power consumption is approximately the same across dif-
ferentworkloads[16]. WeuseIBM XL (XLC10.1and12.1 XLF)to
compile all the benchmarks (except for bwaves, gamess, zeusmp,
tontoand xalancbmk, which are compiled withgcc4.1.2).

IV. RESULTS AND ANALYSIS

In this section we present and analyze our experimental re-
sults for the power and thermal characterization. The charac-
terization is divided into two parts. The first part analyzes the
system when it is idle (no processes are running besides ser-
vices and background processes). The second part studies the
behavior of the system when it is under load.

A. Idle System Characterization

Several techniques have been proposed to reduce temperature
and power consumption when the system is idle, both at hard-
ware and software level. This section evaluates their effective-
ness for our POWERG system.

1) Low Power Mode: POWERG6 employs several power re-
duction techniques for idle cores. Here we quantify the effects
of these capabilities. Specifically we look at the effects of thread
prioritization and enabling nap mode via cede_processor. We
consider four power management policy combinations: (i) No
power saving represents the baseline behavior without any
power management. In this case all calls to cede_processor and

232 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

~ 30
X
8 25
=
H
& 20
o
g 15
o
(3}
; 10
©
g 5
€
o

No poever saving HMT enabled CEDE enabled Both enabled
configurations
-temperature -+-power
Fig. 3. Temperature and power savings when the system is idle using different
low-power-saving mechanisms in the processor. Values are normalized to the
first configuration.

HMT xxx! have been disabled. (ii) HMT enabled only enables
hardware thread prioritization. Enabling the calls to HMT _xxx
allows the snooze loop to be executed with low priority. (iii)
CEDE enabled only enables the calls to cede_processor so that
the cores can go into nap mode, disabling the clock of most
of the circuits inside the core. This policy does not rely on
hardware thread priorities. (iv) Both enabled enables all calls
to both cede_processor and HMT _xxx, and thus is the most
aggressive power management policy.

Fig. 3 shows power and temperature characteristics of the idle
system with these four policies. With no power saving policy,
all the cores reach the highest temperature and the highest total
system power consumption. We will consider these values as the
baseline for this section, showing the reduction compared to this
baseline for the rest of configurations. HMT enabled mode con-
siderably reduces the activity within the core and both power con-
sumption and temperature are considerably reduced. The core
temperatures and the system power decrease 7-9% and 8.7% re-
spectively usingonly hardware thread prioritization. We see much
more dramatic improvements with the CEDE enabled policy. In
this case, although we prevent the processor from reducing thread
priorities in the snooze loop, higher power savings are achieved
by enabling POWERG6 nap mode. Compared to the baseline con-
figuration, the core temperatures and the system power consump-
tion are reduced by 22—-24% and 23.3%, respectively. Finally, ap-
plying both power management approaches in the both enabled
policy further reduces system power consumption by 1%. This
shows limited improvements for the idle system with hardware
thread priorities when the nap mode is enabled. However, the
nap mode can only be enabled when both threads in a core are
idle, whereas thread prioritization does not have such restrictions.
When only one thread is idle, by using prioritization, more re-
sources can be given to the other thread, increasing both perfor-
mance and energy efficiency. Overall, combining nap mode and
thread prioritization significantly reduces the energy consump-
tion when the processor is in idle mode.

2) Linux Tickless Kernel: Inthissection we measure the effect
of the tickless mechanism on the temperature and power, moni-
toring interrupts and events on an idle system. As the system is
idle, the number of external interrupts is negligible and thus, the
system is mainly disrupted by timer interrupts (tick events).

We develop four kernel versions to evaluate the impact of the
tickless mechanism, as shown in columns of Table II. We build

IPrioritization functions such as HMT_medium, HMT _low and
HMT _very_low.

TABLE II
TIMER INTERRUPTS FOR TICKLESS AND NON-TICKLESS KERNEL
CONFIGURATIONS (HZ = 100 AND HZ = 1000). POWER AND TEMPERATURE
ARE NORMALIZED TO THE FIRST CONFIGURATION

tickless | non-tickless || tickless | non-tickless

100 100 1000 1000
total ticks/s 30 399 39 3993
tem core 0 0 0 0 2.3
increie core 1| 0 0 0 0
% "7 |core 2 0 0 0 2.3

7 leore 3|| 0 0 0 2.1
power (}Zcrease 0 0.46 0.46 275

tickless and standard tick-based kernels with different tick rates
(timer events per second) of 100 Hz (default value for a server
configuration) and 1000 Hz. We measure idle core temperatures
and system power in all these configurations. For this section
and the rest of the paper we choose configuration both enabled
in Fig. 3 as the baseline for all power and temperature results.
For that configuration the system is idle and both low-power
mechanisms analyzed in the previous section are active, leading
to the minimum power consumption and core temperature.

In terms of number of tick timer events, there is a significant
difference (row 1 of Table II). The number of events per second
in a non-tickless system is much higher than in a tickless system,
increasing by 13X (from 30 to 399) for the 100 Hz kernel and
102X (from 39 to 3993) for 1000 Hz kernel. This shows the
effect of employing a tickless kernel, reducing the number of
times that cores have to wake up from their idle state to handle
each of these interrupt requests.

Temperature and power results shown in Table I demonstrate
the power and the thermal effects of the tickless kernel. It is in-
teresting to notice that the first three configurations (tickless-
100, non-tickless-100 and tickless-1000) do not show any sig-
nificant variation. However, the last configuration, non-tickless-
1000, has a power consumption 2.75% higher than the rest, with
a slight increase in temperature. The reason for this increase is
that the number of timer events per second is much higher in this
configuration than the rest (10X compared to non-tickless-100
and 54X compared to tickless-1000). As the number of timer
events per second grows, cores are more disrupted and cannot
stay much in the nap mode. This is not as significant for the
non-tickless-100 kernel due to the smaller number of ticks gen-
erated by the lower resolution timer.

Fig. 4 depicts the interrupt timing behavior in more detail.
Each of the spikes in the figure represents an expiration of the
tick timer. When the system is idle it consumes P4 (configu-
ration both enabled in Fig. 3) and on every tick timer expiration
the following actions are carried out:

* The core wakes up from nap mode to active mode. This tran-
sition takes ., ps. In [14]itis shown that ¢, fits in the con-
text switch delay, that is, in the order of few microseconds.
Ourresults show that for the POWERG6 processor, t,,;, equals
4 ps. As we have seen in Fig. 3 (configuration no power
saving), during this period the system power consumption
is the highest among the four configurations shown. Pexec
represents the absolute power for that configuration.

¢ Once in active mode, we have to account for the time it
takes the interrupt handler to run and to go from user to
kernel mode and vice-versa, faywake. In the interrupt han-
dler, the OS checks whether there is any job to do. As

JIMENEZ et al.: CHARACTERIZING POWER AND TEMPERATURE BEHAVIOR OF POWER6-BASED SYSTEM 233

power

PEXEC

Psnooze|- 30— Q

Pidle 4— —0

time
tup tawake tsnooze tdown

Fig. 4. Power spikes due to tick time events.

shown in [17], [18] both steps take in the order of few mi-
croseconds (1-3 ps). We assume 3 ps. During this period,
the power consumption remains at Peyec.

* In an idle system most of the time the OS just continues in
the idle loop and enters the snooze delay loop checking if a
contextswitchisneeded. Asthe hardware priority isreduced
when entering the snooze delay loop, the system power con-
sumption goes down to P00z (Fig. 3 shows 8.7% reduction
over Poxec). This phase lasts for tsn007¢, Which by default is
100 ps. Changing the hardware priorities requires executing
an O R operation, so we assume a delay of O us.

* Finally, the system goes back to nap mode in a transition
that takes tqown (8. Our results show that for the POWERG6
processor, tqown €quals 4 ps. During this period, the power
consumption increases again up to Pexe. and gradually de-
creases to Piqe.

The effect of ticks on power consumption is represented by
(1), where tiota1 is the observation period and #ticks is the
number of ticks occurred during that period.

P= ([(tup +tawake +tdown) X (Pexec - Pidle) +tsnooze
X (Psnooze - idle)] X #ti6k5+ttotal X Pidle)/ttotal~ (1)

‘We now apply (1) to understand the low impact of the tickless
mechanism (especially for HZ = 100). In the previous section,
Fig. 3 displays the power consumption for the idle loop using dif-
ferent configurations. These measurements are conducted when
all four cores are inthe same state, therefore forthe rest of this anal-
ysis we will assume that all cores treat the tick-timer expiration at
the same time. If we considered expirations independently, their
number would be higher but system power consumption would
be significantly lower as only one core would be active at a time.
Thus, both analysis would lead to very similar results.

For non-tickless-100 we have close to 100 tick-timer expi-
rations per second in the whole system. Using (1), the com-
puted power consumption in this scenario is 0.24% over Piqje.
For the case of non-tickless-1000, there are approximately 1000
wake-ups per second, leading to a power consumption of 2.3%
over the baseline. Both results are very close to the actual mea-
surements in Table II.

Overall, we conclude that the tickless mechanism does not sig-
nificantly reduce the power consumption for a standard tick res-
olution (HZ = 100) as the number of times the cores exit the nap
mode is notenough tonoticeably increase the power consumption
during the period of one second. This observation may change for
other systems with the following characteristics: 1) the time to go
from/tolow-power (Z,,, and £ 4w,) modeis high. This may happen
inprocessors in which low-power modes introduce changesin the
supply voltage, in which case t,,;, can be much higher; 2) the dif-
ference between Peye. and Pigje is high; or 3) tsno0ze 18 relatively

long. Such formulation of the interrupt behavior can help evaluate
different kernel configurations for POWERG6 systems without the
need to deploy them in an actual system.

B. System Under Load Characterization

Next, we analyze the power and thermal behavior of our
POWERG6 system when it is under varying load levels. We also
demonstrate the impact of dynamically varying the number of
active cores on power consumption. In this section, because
of space constraints, we use a subset of SPEC CPU2006 with
distinct representative behavior (e.g., integer/floating point,
high/low IPC, high/low memory access count, etc.).

1) Effect of Workload Characteristics: Power and thermal
behavior of computing systems strongly depend on dynamic
characteristics of workloads. To characterize the effect of
workload characteristics on POWER6, we conduct several
experiments with different applications from METbench and
SPEC CPU2006 benchmark suites. While, in general, power
and thermal behavior change with the amount of activity in the
system, there is not a single characteristic factor that directly
reflects the power consumption of the system. It is rather a
combination of application features such as its IPC and memory
intensity. We present measured power and thermal character-
istics for METbench and SPEC CPU2006 benchmarks in
Table III. The table shows measured average temperature, T4
(percentage over the baseline), average system power, P..q
(percentage over the baseline), IPC, L1 misses per kilo-cycle
(L1 MPKC), and L2 load and store misses per kilo-cycle (L2
LD MPKC and L2 ST MPKC) for each benchmark.

The results in Fig. 5 and Table III show the strong influ-
ence of different workload characteristics on power and thermal
behavior. We observe strong deviations among benchmarks in
terms of their power and thermal behavior and their associated
performance metrics. Below we look at specific benchmark cat-
egories and derive the relations between major workload fea-
tures and their impact on power and temperature.

CPU-bound benchmarks: We see that high-IPC and
CPU-bound benchmarks generally lead to higher core tem-
peratures. Among METbench, cpu_int has the highest IPC
and a core temperature that is 7-9% higher than the other
microbenchmarks. Within SPEC CPU2006, the benchmarks
that cause higher core temperatures are h264ref, bzip2 and
cactusADM. These three benchmarks also present the highest
IPC among SPEC CPU2006.2

Memory-bound benchmarks: While benchmarks that are
CPU-bound achieve higher temperatures, they do not consume
the most power. As Table III shows, memory intensive bench-
marks generally consume more power. This is because of the
accesses to main memory, which carry significant power cost.
Among the microbenchmarks, Ild_mem and especially st_mem
are the workloads with the highest power consumption. st_mem
consumes more because, as opposed to the case of ld_mem,
evicted L2 lines are dirty and a write-back operation must be
performed. This additional access to main memory increases
power consumption. Although Id_mem power consumption
does not differ significantly from the other microbenchmarks
when only one process is used, Fig. 6 shows the increasing
power gap with increasing number of threads. For the SPEC

2METbench microbenchmarks are designed to exercise a single resource in
the system at a time. In contrast, SPEC CPU2006 stress different parts of the
system at once. Therefore, some SPEC CPU2006 benchmarks consume more
power than METbench.

234

power/temperature increase (%)

25

20

o

o

cpu_int

Id_I

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

11

ld_I2

Lituht

Id_mem st_mem cpu_fp h264ref

bzip2

gce

benchmarks
B Tavg OPavg v IPC

dealll

Iom cactusADM mcf

milc

soplex

IPC

o
N

0

Fig. 5. METbench and SPEC CPU2006 temperature/power results when executing 1 thread. Power and temperature are relative to the measured values when the

system is idle.

TABLE III

METBENCH AND SPEC CPU2006 TEMPERATURE/POWER RESULTS WHEN EXECUTING 1 THREAD. POWER AND TEMPERATURE ARE RELATIVE TO THE MEASURED
VALUES WHEN THE SYSTEM IS IDLE. THE TABLE SHOWS AS WELL THE MISSES PER KILO-CYCLE (MPKC) IN BOTH L1 AND L2 CACHES

[cpu_int [Id_I11d_I2 [Id_mem [st_mem [cpu_fp [h264ref | bzip2 | gcc | dealll | Ibm | cactusADM [mcf | milc [soplex |

Types INT INT | INT INT INT FP INT INT | INT | FP Fp Fp INT | FP FP
Tave (%) 19.8 125 | 13.0 10.2 14.6 10.2 227 20.7 | 16.8| 19.8 | 15.5 214 1481155 155
Payy (%) 6.0 5.1 5.6 6.4 9.4 4.1 7.8 74 |13 7.6 |13.1 10.0 77| 94 8.3
Aggregated Performance Counters
1PC 1.32 0.26 {0.034 | 0.0020 0.018 0.47 1.16 0.79 10441 0.66 [0.39 0.85 0.120.19| 032
L1 MPKC 0.0 0.0 | 325 1.94 3.62 0.0 11.0 89 | 58 59 (295 29.3 5.58| 83 8.2
L2 LD MPKC 0.0 0.0 0.0 1.94 0.0 0.0 0.00 0.05 |0.66| 0.25 |0.25 0.06 1.20| 1.84 | 0.95
L2 ST MPKC 0.0 0.0 0.0 0.0 3.61 0.0 0.02 0.13 10.16| 0.02 | 5.6 0.51 0.05]046| 037
1.20
TABLE IV 118
METBENCH RESULTS FOR 2 THREADS (MIXED WORKLOADS). POWER AND 1.16 T
TEMPERATURE ARE RELATIVE TO THE IDLE SYSTEM g 1.14
[[cpu_int, cpu_fp [cpu_intId 1T T cpu_intild_mem ;-; iiﬁ
Cores 1 1 1 g 1.08-
Tave (%) 18.2 19.6 17.1 £ 108
Pave (%) 6.6 7.2 8.2 1.04
Aggregated Performance Counters 1.02 1
IPC 1.77 1.56 1.31 1.00 4
L1 MPKC 0.00 0.00 1.97 cpu_int Id_11 Id_I2 Id_mem st_mem cpu_fp
L2 LD MPKC 0.00 0.00 1.95 Benchmarks
L2 ST MPKC 0.00 0.00 0.00 M 171C MW 2T1C [31/2C M4T/2C

CPU2006 benchmarks we see a similar trend. Memory-in-
tensive benchmarks like milc and |Ibm consume more power
than the rest of the benchmarks. For instance, relative to the
baseline, Ibm consumes 5.3% more than h264ref, with signif-
icantly lower temperature in comparison. Core temperature is
generally low for memory-intensive benchmarks as they spend
most of the time waiting for data from the main memory.

mcf is a low-IPC benchmark with a considerable amount of
L2 cache misses per kilo-cycle and with similar characteristics
to milc. However, the power consumption of mcf is consider-
ably smaller (1.7% less). The most significant difference be-
tween them is the number of L2 store misses per kilo-cycle,
which is 10X higher for milc. As we have seen before in Fig. 6,
accessing main memory because of a store operation leads to
a higher power consumption. Accordingly, Ibm, which has the
highest number of L2 store misses, also shows the highest power
consumption among the evaluated benchmarks.

FP benchmarks: An interesting application in this category
is cpu_fp. Despite having a medium IPC (0.47), it achieves the
lowest core temperature. We believe that the reason for this be-
havior is related to the fact that the floating point unit (FPU)
occupies a bigger area than other structures. Therefore, a fully
utilized FPU has a lower power density than other fully-utilized
parts of the core, such as the fixed point unit (FXU), which is
stressed by cpu_int. Hence cpu_fp yields a lower temperature.

Comparing METbench and SPEC CPU2006, we also notice
that SPEC applications tend to consume more power and reach
higher temperatures. METbench microbenchmarks are very
specific and they “light up” fewer parts of the processor than
SPEC CPU2006 benchmarks do.

Fig. 6. METbench power consumption for different number of threads (T) and
cores (C).

In Table I'V we also look at the impact of heterogeneous work-
load mixes. Here, we see that co-scheduling acomputation-inten-
sive benchmark and a memory-intensive one leads to both high
core temperatures and a high power consumption. For example,
considering cpu_int and |[d_mem, one thread continuously per-
forms arithmetic operations while the other exercises the memory
subsystem. In contrast, amore homogeneous mix, suchascpu_int
and cpu_fpleadstolower power consumption. In this case the core
temperature is higher as the core is more stressed.

Fig.6alsoalludestoanimportantcharacteristicofthe POWERG6
processor. As we increase the number of used cores from one to
two, we see a significant jump in power consumption. This is due
to the fact that a second core has to exit the nap mode to serve the
threads. We demonstrate in the following sections that every core
that leaves the nap mode adds a constant power increment of ap-
proximately 5% to the system power consumption. We will refer
tothisincrementas P4 ¢ inthe following sections.

Using the relations derived in this section, we develop a power
model for the POWERG6 system in Section V.

2) Effect of Core Usage: In this section we execute several
copies of a microbenchmark from the METbench suite in an
incremental way. First we execute 2 copies on contexts 0 and 1
(one core), then 4 copies on threads 0, 1, 2 and 3 (two cores),
and so on until using the 8 threads (four cores). We name each
of these steps an execution step. Each execution step is roughly
9 minutes long (360 iterations3).

3METbench can iterate a benchmark a certain number of times in order to
obtain better stability in the results.

JIMENEZ et al.: CHARACTERIZING POWER AND TEMPERATURE BEHAVIOR OF POWER6-BASED SYSTEM

1.45

=
EN

1.35

[
-

................................

Lo04
| S wl T
R S

Relative temperature (%)

1.05

1000

235

w
o

N
4]

e

Relative power (%)

2000

1500

time (seconds)

==temp(core0) ==temp(corel)

temp(core2) ==temp(core3) "' Relative power

Fig.7. Several copies of CpU_int are used to create an incremental execution (2, 4, 6 and 8 hardware threads). The values are relative to the power and temperature

measurements when the system is idle.

TABLE V
IPC, AGGREGATED IPC AND POWER CONSUMPTION FOR THE INCREMENTAL EXECUTION OF MULTIPLE PROCESSES. THE POWER CONSUMPTION VALUES ARE
NORMALIZED WITH RESPECT TO THE ONES OBTAINED WHEN THE SYSTEM IS IDLE. (a) cpu_int; (b) ld_mem

(@)
IPC per thread
#threads Sore0 chip0 Sorel “ord chipl o3 aggregated IPC | Pay, (%)
0 1 2 3 4 5 6 7
2 0.8482 | 0.8483 1.6965 8.3
4 0.8480 | 0.8480 | 0.8489 | 0.8489 3.3938 16.5
6 0.8478 | 0.8478 | 0.8489 | 0.8489 | 0.8485 | 0.8485 5.0904 23.9
8 0.8480 | 0.8480 | 0.8481 | 0.8481 | 0.8487 | 0.8487 | 0.8486 | 0.8486 6.7868 31.2
()
IPC per thread
#threads o0 chip0 coreT “ored chipl “ore3 aggregated IPC | Py, (%)
0 1 2 3 4 5 6 7
2 0.0017 | 0.0017 0.0034 10.6
4 0.0011 | 0.0011 | 0.0011 | 0.0011 0.0044 17.0
6 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0016 | 0.0016 0.0072 26.2
8 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 | 0.0011 0.0088 33.0

cpu_int: Fig. 7 shows the results with cpu_int. In the figure we
notice that power remains quite stable in the intervals between ex-
ecution steps. Power noticeably increases when two more copies
of cpu_int are started and a new core is used. We observe the first
increment around one minute after the program is started. This is
because of the 1 min access granularity of the TPMD for power
measurements.

From this experiment we estimate that forevery two new copies
of cpu_int that are running on the system, the system power con-
sumption increases approximately 7.6%. Another observation is
the interaction between cores within the same chip. In the figure,
around ¢t = 50 seconds, we see that the temperature of core 1 in-
creases approximately 8% when core O starts executing the bench-
mark. Later, around ¢ = 600 seconds the temperature of core 0
further increases 7% when core 1 starts running. This is due to
the lateral heat conduction between the cores within the chip. On
the other hand, as the two chips are physically separated, we do
not see any inter-chip effect in temperature.

Ascpu_intisnotusing any shared resources between the cores,
the aggregated throughput does not reduce as we increase the
number of used cores. This can be seen in Table V(a). The IPC
is stable around 0.85 per thread and the aggregated throughput
increases linearly with the number of threads being executed.

Id_mem: This benchmark continuously executes load in-
structions always missing in all levels of the cache hierarchy.
Therefore, it always needs to go to main memory to get the data.
As shown in Table V(b), its IPC is much less than for cpu_int.
As we have previously stated, memory-intensive workloads
typically consume more power than computation-intensive
loads. This can be seen again comparing the incremental exe-
cutions of cpu_int and Id_mem.

It is interesting to notice the reduction in IPC as more |[d_mem
threads are run. For instance, by comparing the cases where two
threads (on the same core) and four threads (on the same chip)
are executed on the system, the IPC for the first thread in the
core 0 decreases approximately 36%. This suggests that there
is contention in the shared hardware resources between cores.
Looking at the results for six threads, we observe that the IPC
for contexts four and five is approximately the same as it was
in the case of two threads for contexts zero and one. The drop
in IPC occurs within a chip when going from two to four con-
texts. Thus, the contention occurs within the chip, probably in
the SMP interconnect fabric, as both L1 and L2 cache are pri-
vate to each core and each core has its own memory controller
and channels interfacing the main memory.

3) Effect of Hardware Thread Priorities: It has been previ-
ously demonstrated that the hardware prioritization mechanism
in POWER processors can improve system throughput [13].
Here we look at hardware prioritization from a power manage-
ment angle. We show the effect of applying this mechanism in a
power-aware manner and present use cases where thread pri-
oritization can improve not only system throughput, but also
system power consumption. Although there are multiple priority
levels in POWERG6, we present only a subset of them, as we are
more interested in showing their possible use to improve energy
efficiency, rather than doing an extensive characterization.

In Section IV-A-1 we showed that by using hardware thread
prioritization, the power consumption for an idle system can be
reduced up to 9%. In this case, since the system was solely run-
ning the idle loop, performance was not a major concern. In the
case of a system that is executing workloads, hardware thread
prioritization cannot be blindly used to reduce power consump-

236 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

2 18
o 1.8 16 _
g 16 1 g
g 14 12 8
] 12 10 8
E 1 3
2 o0s 8 X
2 6 g
S 06 E
g 04 4 2

0.2 2

0 0

4.4 34 54 6,1
priorities

BPOWER CEDP -#I|PC(h264ref) +IPC(Ibm)

Fig. 8. Effect of hardware thread priorities on performance and power con-
sumption when running a mixed workload in SMT mode (only one core is used).

TABLE VI
EFFECT OF PRIORITIZATION ON POWER CONSUMPTION FOR A SINGLE CORE.
POWER VALUES ARE NORMALIZED TO THE CONSUMPTION WHEN THE SYSTEM
1S IDLE. EDP AND ED?P ARE NORMALIZED TO CONFIGURATION (4,4). (a)
Mixed workload (h264ref and Ibm); (b) Effect of priority (1,1)

(a)

[Prioriies | 44 | 34 | 54 | 61 |
IPC
ho64ref 055] 032 [072 | 1.15
Ibm 035 | 036 | 031 | 0.01
Aggregated 09 | 068 | 1.03 | 1.16
Pave (%) 161 | 151 | 151 | 87
EDP (relative) 1 1.73 | 075 | 0.56
ED?P (relative) | 1 | 229 | 0.65 | 0.43
(b)
[Benchmarks | cpu_int [Id_mem
| Priorities [L1 T44] L1 T 44
Aggr. IPC 0.07 1.80 | 0.0030 | 0.0034
Puve (%) 39 6.9 87 96
EDP (relative) | 642.9 1 12 1
ED?P (relative) | 16508.8 | 1 1.5 1

tion in a performance-agnostic manner. Careful consideration
of power-performance trade-offs is needed to choose the appro-
priate priority levels. We show that by exploiting workload char-
acteristics, we can use hardware thread prioritization to reduce
power consumption and increase system throughput.

Fig. 8 shows the results of executing a high-IPC applica-
tion (h264ref) together with a low-IPC, memory-intensive one
(Ibm) (Table VI(a) shows the measured values plus ED?P).
With the standard priority configuration, (4,4), the system has
a power consumption 16% over the baseline. Ibm is the main
contributor to that consumption. If the priority configuration is
changed to (5,4), so that the priority of the high-IPC workload is
increased, the system power consumption is slightly reduced as
less memory requests are performed by Ibm. Moreover, the ag-
gregated IPC is increased as more computational resources are
given to h264ref, thus obtaining a better relative energy-delay
product (EDP) [19]. It is important to notice that in this case the
individual IPC for Ibm is not drastically reduced (approximately
by 11%). In the most extreme configuration (6,1) the power is
further reduced and the performance is increased again. How-
ever, this comes at the expense of significantly reducing the per-
formance of the memory-intensive workload (Ibm).

We consider priority one as a special case for power manage-
ment. Table VI(b) characterizes the effects of this priority mode,
where it shows the results of executing a CPU-bound (cpu_int)
and a memory-bound (ld_mem) workload with priorities (4,4)
and (1,1). We notice that the effect of hardware thread priori-
tization depends on the characteristics of the workload. For in-
stance, running ld_mem with priority (1,1) does not significantly

1:27 14
[]

1.26 L = 1.0
5 %oo
g 1.25 :
I+] 0.8
o 1.24 O
g 07 a4
2 128 =
K| 0.6
[
& 122 05

121¢ 0.4

[]
12 0.3
0.00 0.02 0.04 0.06 0.08 0.10 0.12
L1 misses per cycle
B Aggregated IPC @ Relative power \ Linear Regression
for Relative power

1.36
= 1.34
o
5
g 132 "
2 a
> 13 o
s
o 1.28
= 0.5

[] 2
1.26
t []
24 8.0.0
0.000 0.002 0.004 0.006 0.008 0.010 0.012

L2 misses per cycle

B Aggregated IPC @ Relative power \ Linear Regression
for Relative power
(b)

Fig. 9. Effect of accesses to L2 cache and main memory on system power con-
sumption. Power values are relative to the idle system consumption. Several
instances of the same benchmark are executed to create a higher power delta.
The regression line is just an approximation to show the increasing trend. (a) L2
accesses effect; (b) memory accesses effect.

affectits IPC, as it is an extreme low-IPC memory-bound bench-
mark. The power consumption is also not significantly affected
as this benchmark consumes most of the power in the memory
subsystem. For cpu_int, a high-IPC workload, the behavior is
completely different. The power consumption is decreased 3%,
at the expense of reducing the IPC from 1.8 to 0.07. In general,
the higher the core activity, the higher the power reduction ob-
tained with priority one and the higher the performance impact.

One major advantage presented by this priority-based power/
performance management scheme is the ability to make “small”
changes to the system behavior to achieve desired power-per-
formance targets. Unlike most adaptation schemes that expose
drastically different operating points, the prioritization-based
approach can provide small shifts in power and performance
with very small impact to runtime behavior. Another advan-
tage of this mechanism is its very short latency until the ap-
plied power management actions take effect. The response time
of this mechanism is dramatically faster compared to external
mechanisms such as dynamic voltage and frequency scaling
(DVES). Therefore, hardware thread prioritization can be used
as a fast and flexible initial response in the case of a thermal/
power emergency [5].

V. APPLICATION OF THE RESULTS

In this section we apply some of the learning from the
characterization work that is presented in the previous sections.
Section V-A discusses an analytical power model that relies on
performance counters. Section V-B analyzes the impact of the
power and thermal behavior of the system on the OS scheduler.

A. Power Model

The possibility to obtain temperature and power measure-
ments is a useful feature that is provided by POWERG6 based
systems. However, some configurations may not include the ex-
ternal microcontroller responsible to obtain these measurements

JIMENEZ et al.: CHARACTERIZING POWER AND TEMPERATURE BEHAVIOR OF POWER6-BASED SYSTEM 237

7
T -1T/1C

61— [27/2C
= [0 4Ti4C
& sk 1 | =32
g 4 | [Eamc
=
Q
23 4
2
© .
@ 2

0 [l

. oS QO \\ + S > o & o)
¥ @ &S be?} ¥ s\'\'b N <\\ ®° {&’ o° \o"‘& ‘Q \ 6\+ 4@ & 6& e@Q & O @Q
& 9 & QO $ & N $ & & e
S @ R @ N & TS & ¢ (}o
] I3 ¥© & ofb
benchmarks

Fig. 10. Estimation accuracy for the power model trained with METbench data only, for different number of threads (T) and cores (C). For instance, 4T/2C means
4 threads are run on 2 cores (using SMT capabilities). The error is computed as: (|measured — predicted|/measured) x 100.

(TPMD). Moreover, in some systems, it may not be possible
to access the console that provides the temperature and power
measurements. Typically, the console is password protected and
plain users do not have access to it. Clearly, it is beneficial for
users to understand the power and thermal behavior of their ap-
plications. In another context, since direct access to TPMD from
the OS is not possible, OS cannot use power and thermal infor-
mation to improve its decisions in terms of power consumption.
In this section, we present a model based on performance
counter (PMC) data to estimate power consumption of the system
that is under study. Since performance counter data is available
and accessible by the OS, an analytical model in this form can
alleviate all the shortcomings highlighted previously. This model
follows a similar thinking as presented in [16], [20]. To the best of
our knowledge, this is the first simple analytical power consump-
tion model for a POWERG6-based system. The model presents a
good accuracy and it only relies on the performance counters as
the hardware support. Moreover, since the set of performance
counters requiredis minimal, itiseasiertoimplementitinruntime
systems that take decisions based on performance counters data.
Similar to [16] we select a group of PMC that captures the ac-
tivity indifferentcomponents of the system suchas CPU, memory,
disk etc. In our case, we concentrate on the CPU and memory
parts since, as shown in [16], there is not a significant variation in
power consumption due to activity in the other components (95%
of the dynamic power consumption is due to activity in CPU and
memory). The selection of the right set of performance counters
for the model relies on a hybrid scheme, where expert knowledge
and pruning techniques based on statistical analysis are utilized.
The scheme leads to a set of performance counters that obtain
significant accuracy at predicting system power consumption.
The power consumption due to activity in the chip is mod-
eled by using IPC and the number of L1 load misses per cycle
(LILDMPC). The memory system contribution to the power
consumption is modeled by using the number of L2 misses per
cycle (L2ZLDMPC and L2STMPC). As the system does not have
a3 cache, every miss to the second level cache goes to the main
memory, thus L2 misses per cycle are good indicators of memory
power consumption. In [16], authors do not differentiate between
load and store misses. However, as discussed in Section IV-B-1,
in Table III, benchmarks with a high count of L2 store misses
consume more power than other type of workloads. Thus, the
analytical model includes L2 store misses to improve accuracy.
As we only have total system power consumption, it is impor-
tant to understand the power behavior of different components
and whether a linear model of those components is sufficient.
For this purpose, we use two microbenchmarks which can vary
the miss rate both for L1 and L2 from zero to cache/memory

saturation point. Fig. 9(a) displays the power consumption vari-
ation as the L1 miss ratio grows which provides an insight on
the L2 cache power contribution to the system power consump-
tion. Fig. 9(b) shows a similar information for L2 misses re-
flecting the memory power contribution to the system power.
In both figures, we observe that the power consumption values
grow linearly as the number of misses increase. Thus, we define
the model as a linear combination of these different factors that
contribute to the power consumption.

Equation (2) shows the model with its several components
that account for the total power consumption of the system. The
power is predicted as a percentage over the baseline when the
system 1is idle (i.e., no user-process is being executed and the
cores spend most of the time in the nap mode). From the char-
acterization step in Section IV-B-1, we observe that for each
core that exits the nap mode there is an increment in the power
consumption (P4¢). Nac is the number of active cores, so mul-
tiplying it by P4c gives the power consumption of all the cores
in the system which are not in nap mode.

P = Naic x Pac +a x IPC + 3 x LILDMPC
4+ x L2LDMPC + o x L2STMPC (2)

We conduct several descriptive statistic tests for the parame-
ters in the data set (e.g., normality test for residuals, and non-
presence of non-random patterns in the residuals). We also look
at the significance of the parameters and their correlation to the
response variable.

It is important to note that the coefficients that are found by
regression are subject to change if size or type of the com-
ponents of the system are changed (e.g., memory). Motivated
by this fact, we follow two different approaches to train the
model. (i) The first model (METbench training) creation ef-
forts rely on METbench data to train the model. Since MET-
bench runs five time faster than SPEC CPU2006, the amount
of time to collect training data for a new model is consider-
ably reduced. Thus, we only use METbench results to train the
model, and we test the model with SPEC CPU2006 data. In the
case of a new model requirement for a different system config-
uration, we can do it quickly by just using METbench to col-
lect the data and later to train the model. (ii) The second model
(shared training) creation effort combines all the data (MET-
bench and SPEC CPU2006) into a pool, and then relies on this
dataset to train the model. A more general and accurate model
is possible when a heterogeneous set of workloads are used. To
cross-validate the model, we use leave-one-out cross-validation
technique. Leave-one-out cross-validation is a standard statistic
technique to estimate the accuracy of a regression model [21].

238 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

@ ® > o
3 3 3 S

relative frequency
»
8

normalized estimated power

20

-2 = 3 —00 06 -0.04 -0.02 0 0.02

0 1 2
normalized measured power

normalized residuals

(@) (b)

Fig. 11. Model validation using all the available data (METbench and SPEC
CPU2006). (a) shows the normalized measured vs. estimated power. The values
are normalized by subtracting the mean of the error and dividing by the standard
deviation of the error. (b) shows the residue error distribution with the cross-val-
idation process. The residuals are normalized by dividing to the actual measure
value.

METbench Training: Fig. 10 shows the relative error between
our model estimation and the actual power measurement. Dif-
ferent bars for a benchmark correspond to different CMP (1T1C,
2T2C and 4T4C) and hybrid CMP+SMT configurations (2T1C
and 4T2C). As shown in Fig. 10, most of the benchmarks are pre-
dicted with an error equal or less than 5%. The relative error for
1T1C configuration is below 1% for almost all benchmarks. The
maximum error occurs for cactusADM when it is run as four pro-
cesses in SMT mode. We compute the average error using the ge-
ometrical mean, being under 4% for all the configurations.

In general, the estimation error increases as more processes
run on the system. We observe this effect for both CPU-bound
and memory-bound workloads. We attribute it to the accumu-
lation of the errors that are made to predict the power con-
sumption for each core in the system. When both SMT and
CMP capabilities are used, the estimation error grows with re-
spect to the CMP case. Specifically, the error is more evident in
high-IPC workloads such as h264ref, cactusADM and dealll.
These benchmarks present a higher degree of interaction when
they are co-scheduled on the same core. For memory-intensive
benchmarks such as Ibm, mcf and milc there is no significant
error increase when both SMT and CMP capabilities are used.
Nonetheless, the average error for the CMP+SMT case is be-
tween 2.5% and 5% for two and four processes, respectively.

Shared Training: By combining data from METbench and
SPEC CPU2006 to train the model, we capture wider resource
usage patterns, and thus we obtain a model that could poten-
tially predict unobserved data points in a more accurate way.
Fig. 11(a) shows the normalized measured versus estimated
power consumption. Model predictions are considerably close
to the real measurements for most of the data points. The
residual distribution with the cross-validation process, shown
in Fig. 11(b), resembles a normal distribution, with mean,
p = —7.2-107°, and only 4.6% of the individuals are out of
the confidence interval [p — 20, i1 + 20]. The error is under 6%
for all the cross-validation steps.

Overall, both of the approaches that are used to construct
the model obtain quite accurate results, with errors less than
6%. This level of accuracy is sufficient for users to study the
power consumption behavior of their applications. In addition,
this level of accuracy is also attractive for OS to implement such
a model to deploy optimization policies.

B. Thread Placement

With the arrival of SMT and CMP architectures, ensuring fair-
ness between the different running processes has become an im-
portant issue. Several techniques such as scheduling domains,

pipeline 7 pipeline ? pipeline §7
ts o ts f Ls o
SMT2 core SMT2 core SMT2 core
| [I
L2§ L2$ 7 L2$
Memory Memory 7 Memory
controller controller controller
| I I
Memory Memory Memory
subsystem subsystem subsystem
cpu-bound mem-bound cpu-bound
cpu-bound mem-bound mem-bound

i high interaction é low/medium interaction

Fig. 12. System interferences under different workload mixes when two
threads run on a single core.

load balancing and cache affinity have been implemented in ac-
tual operating systems.

Job scheduling techniques have also been used in order to
reduce power consumption. For instance, Linux provides a
setting, sched_mc_power_savings, that attempts to save power
consumption by grouping several processes into a single
chip, therefore leaving other chips idle. An analogous setting,
sched_smt_power_savings, exists to consolidate several pro-
cesses into a single core [9].

Workloads running on CMP and SMT architectures share re-
sources at different levels. Moreover, workloads’ characteristics
significantly alter the interaction between workloads. Fig. 12
shows the effect of thread interference when two threads run
on a single core. If both threads are CPU-bound there is a high
degree of interferences in the pipeline and low levels of interfer-
ences in the cache hierarchy. If the threads are memory-bound,
interferences appear in all the memory hierarchy. The last case
shows a mixed workload with a CPU-bound and a memory-
bound workload. In terms of resource conflicts this is the best
situation since each thread uses a different set of resources.
Given this variability in the distribution of resource interfer-
ences, intelligent thread placement is important for improving
system performance and efficiency.

In this section we study the effect of thread placement on
power consumption. Given a set of processes, there are different
possible ways of assigning them to hardware threads, consider-
ably varying the impact on power and performance. In order
to analyze this impact we conduct several experiments where
multiple processes are executed with different core usage pat-
terns. The second row in Tables VII(a) and VII(b) shows the
core usage pattern used. For instance, the binary pattern 1000
1000 means that the first hardware thread in the first core in
every chip is used to execute one process.

1) CPU-Bound Workload: Fig. 13(a) and Table VII(a) show
the effect of thread placement for 2 and 4 instances of the
CPU-bound benchmark h264ref. The first thing we notice is
that SMT configurations (columns 1, 4 and 5) present lower
power consumption with respect to the other scheduling op-
tions using the same number of threads. For example, the
configuration on column 1 reduces power consumption by
32% (1 — (1.096/1.133)) with respect to the configuration
in column 2. Analogously configuration 5 is 7.8% better than
configuration 6. However, as h264ref is CPU-bound, running

JIMENEZ et al.: CHARACTERIZING POWER AND TEMPERATURE BEHAVIOR OF POWER6-BASED SYSTEM 239

TABLE VII
EFFECT OF CORE CONFIGURATIONS ON POWER AND PERFORMANCE. POWER
1S NORMALIZED TO THE IDLE POWER. EDP AND ED?P VALUES ARE
NORMALIZED TO THE BEST CONFIGURATION WITHIN EACH GROUP (2 OR 4
THREADS). (a) h264ref; (b) Ibm

(@)
| [1 [23 4[5 76|
Pattern 1100 | 1010 | 1000 || 1111 | 1100 | 1010
0000 | 0000 | 1000 || 0000 | 1100 | 1010
HW threads 2 2 2 4 4 4
Cores 1 2 2 2 2 4
Pave (%) 9.6 133 | 128 || 20.2 | 19.3 | 294
1PC 1.75 | 233 | 2.34 || 3.51 | 3.51 | 4.68
EDP 1.74 | 1.01 1 1.65 | 1.64 1
ED?P 232 | 1.02 1 2.18 | 2.14 1
(b)
I |t [2 [3 [4]57]°6 |
Pattern 1100 | 1010 | 1000 || 1111 | 1100 | 1010
0000 | 0000 | 1000 || 0000 | 1100 | 1010
HW threads 2 2 2 4 4 4
Cores 1 2 2 2 2 4
Payve (%) 15.1 | 179 | 22.0 || 22.0 | 294 | 349
1PC 041 | 044 |1 0.76 || 0.42 | 0.83 | 0.88
EDP 3.24 | 2.88 1 3.97 | 1.08 1
ED?*P 6.01 | 498 | 1 833 | 114 | 1
2 threads 4 threads

29

2
2
21

19
1010 1010

IPC
S s AN NN
O N oo ow oo
© x o aw s
o =2 N W b
Power (%)
IPC
w N
W o s~ o
N
PEE N
Power (%)

1100 0000 1010 0000 1000 1000
Thread placement
=*POWER +IPC

1111 0000 1100 1100
Thread placement

=*+POWER —=+IPC

2 threads 4 threads

1.8
1.6
1.4

1.2

Normalized EDP
-8 =5
Normalized EDP

d
1000 1000 1111 0000

1100 0000 1010 0000 1100 1100 1010 1010
Thread placement Thread placement
-=EDP =EDP
(a)
2 threads 4 threads

PC
o o o o
o o N »
A e e
I B
Power (%)
IPC
o o o o o
o o N @ o
NNNN QO
BB 8388
Power (%)

0.4
1100 0000

15 0.4
1010 0000 1000 1000 1111 0000

Thread placement
#*POWER =+IPC

1100 1100
Thread placement
P +IPC

1010 1010

2 threads 4 threads

bl
o

4.5

4
3.5
3
T 25
2
1.5
1

1111 0000 1100 1100 1010 1010
Thread placement
=EDP

Normalized EDP
Y N

o N oo o
Normalized EDP

1
1100 0000 1010 0000
Thread placement

=+EDP

1000 1000

(b)
Fig. 13. Effect of thread placement on performance and energy-delay product
for CPU-bound and memory-bound workloads. EDP values are normalized to
the best configuration within each group. (a) CPU-bound; (b) MEM-bound.

both processes in SMT mode on the same core affects the
performance (24.9% and 25%, respectively). The energy-delay
product is worse for these configurations as the small power
reduction does not make up for the loss in performance. Similar
conclusions were obtained in [10].

2 threads 3 threads
2 15 2.5 1.5
2 3
1.8 14 Q 2.3 14 3
16 413 3 o 21 13 3
[N a N
=14 12 ® = 1.9 12 @
€ £
1.2 11 & 1.7 11 &
Z z
1 1 1.5 1
HOLO 0000 HO00 LO0O LOLO HO00 LOHO L00O
Thread placement Thread placement
~+IPC *EDP -+IPC *EDP
4 threads
3.5 1.5
&
3.3 1.4]
o 31 138
o N
= 29 1.2 g
27 11 5
2
2.5 1

HOHO LOLO HOLO HOLO
Thread placement

~+IPC +EDP

Fig. 14. Effect of thread placement on performance and energy-delay product
for mixed workloads. EDP values are normalized to the best configuration
within each group.

TABLE VIII
EFFECT OF CORE CONFIGURATIONS FOR A MIXED CONFIGURATION (h264ref
AND |bm). POWER 1s NORMALIZED TO THE IDLE POWER. EDP AND ED2P
VALUES ARE NORMALIZED TO THE BEST CONFIGURATION WITHIN EACH
GROUP (2, 3 OR 4 THREADS)

| v [T 2 [3 [4 [5 | 6]
Pattern HOLO | HO00 || LOLO | LOHO || HOHO | HOLO
0000 | LO0O || HO00 | LO0O LOLO | HOLO
HW threads 2 2 3 3 4 4
Cores 2 2 3 3 4 4
Pave (%) 21.1 19.7 26.2 26.6 34.9 32.6
1PC 1.54 1.56 1.60 1.93 278 3.06
EDP 1.05 1 1.45 1 1.23 1
ED’P 1.07 1 1.74 1 1.36 1

More interestingly, the power consumption remains the same
between using 2 cores in a single chip (configuration 2) and
using one core in each chip (configuration 3). We expect that in
configuration 2, the second chip would be in low power mode
most of the time, leading to a power consumption reduction.
However, the POWERG6 saves power at the core level, without
any extra reduction when a whole chip is idle. Therefore, what
really matters is the number of idle cores and not whether they
are in the same chip or not. The same behavior can be observed
when using 4 threads in configurations 4 and 5. If the processor
were able to reduce the power consumption when a whole chip
is idle, it would certainly be possible to consolidate several pro-
cesses into one chip in order to reduce total energy consumption.

Memory-Bound Workload: For memory-intensive workloads
the situation clearly changes. As they are not bounded by the
pipeline resources, executing 2 threads on the same core in SMT
mode does not significantly hurt the performance. Comparing
the IPC for configurations 1 and 2 in Table VII(b) (see Fig. 13(b)
too), we observe that the IPC reduces only by 6.8% (from 0.44
to 0.41). The same behavior is observed for configurations 5 and
6, where four threads are run and the IPC decreases by 5.7%.

Ibm is a memory-intensive application and it saturates the
memory bandwidth of the first chip, as we saw before in the in-
cremental execution of Id_mem (Section IV-B-2). As each chip
has two memory channels (one per core), distributing the pro-
cesses across both chips will better use the available bandwidth
to memory, compared to consolidating them into one chip. In
Table VII(b) we can observe that the performance nearly dou-
bles when we go from single chip configurations (1, 2, and 4) to
double chip ones (3, 5, and 6).

240 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2011

Effects on scheduling: Recent versions of Linux use sched-
uling domains for representing the CPUs hierarchy with a tree-
based shape. In our system, at the first level there are the chips
in the system. The second level has the cores belonging to the
chips from the previous level. The third level contains the HW
threads or contexts for every core.

When using the default behavior, the Linux scheduler tries
to distribute the threads throughout all the cores in the system,
avoiding to run two threads on the same core unless it is not
possible (i.e., there are more running threads than cores in the
system). As we have seen, running two threads in SMT mode is
not very efficient mainly when the threads are CPU-bound. Linux
prevents putting threads into the same core as long as there are
free ones available. However, if the sched _smt_power_savings
flag is active, Linux will group processes degrading overall
performance and energy efficiency. We have also seen that when
using processors with power-saving techniques at the core level,
grouping the threads in the same chip, leaving other idle, intro-
duces no benefit. This is due to the fact that what really matters is
the number of active cores. In this case, sched_mc_power _savings
would not lead to a power reduction.

In terms of performance and energy efficiency, we analyze
the effect of grouping threads into a single core/chip. In gen-
eral, the major source of slowdown between threads is sharing
the caches. In our setup, the L2 is private so threads do not suffer
any slowdown, due to the cache, whether they are placed on
different chips or on the same chip. However, there are other
resources shared at the chip level that have to be taken into ac-
count for memory-bound threads. In this scenario, multi-chip
configurations are much more efficient in terms of energy-delay
product with reductions up to 2.9x (configuration 3 versus 2)
and 3.7% (configuration 4 versus 5) as shown in Table VII(b).
Thus the decision on whether to consolidate tasks into the same
core/chip cannot be static. It depends on the low-power capabil-
ities of the underlying architecture and the characteristics of the
application.

2) Mixed Workload: A scheduler that is aware of the workload
characteristics can use this information to increase the system
performance and/or reduce the power consumption. Fig. 14 and
Table VIII show the results of executing a mixed workload con-
sisting of several h264ref and Ibm processes.* Comparing con-
figurations 5 and 6 we observe that the latter is a heterogeneous
workload mix at the chip level (each chip executes a CPU-bound
and a memory-bound workload), whereas the former is a homo-
geneous mix at the chip level. This will affect both performance
and power consumption. The performance of configuration 6 is
10% better and the power consumption is 2.3% less. This leads
to a 18.7% improvement in EDP and 26.3% in ED?P.

An even more noticeable situation is seen in configurations
3 and 4. As in the previous case, placing both memory-bound
workloads on the same chip limits their performance, without
decreasing the total system power consumption. Thus, by
co-scheduling the high-IPC and the memory-intensive work-
loads on the same chip we can reduce the interference between
them, boosting the performance and reducing the energy con-
sumption (1.7X improvement in the ED?P).

3) Effects on Scheduling: Current implementation of the
Linux scheduler does not take into account workload charac-
teristics. This means that the scheduler may fail to achieve the

“In this case, the patterns are composed of Hs and Ls, standing for h264ref
and |bm, respectively.

optimal performance and/or the minimum energy consumption.
For instance in Table VII(b) the scheduler may choose either
configuration 2 or 3, as none of them uses SMT. If the former
configuration is chosen, a 5X ED?P deterioration will be
experienced. In Table VIII the scheduler may choose either
configuration 3 or 4, leading to a 1.7X ED?P worsening.
These results show the importance of considering the workload
characteristics and interaction in order to take more efficient
scheduling decisions.

VI. RELATED WORK

Several papers focus on the energy/thermal power behavior of
CMP/SMT processors. However, either they do not consider a
hybrid CMP/SMT processor, like the POWERG6 [6], [16], [22] or
they use a simulation framework [10], [23] or they only consider
temperature but not power consumption [24]. To the best of our
knowledge, we show the first characterization of a real hybrid
CMP/SMT implementation.

There are different studies that characterize and propose tech-
niques to improve power consumption and to reduce the temper-
ature on real machines. Choi et al. [24] propose a thermal-aware
task scheduler for the IBM POWERS. They use heat slack in order
toreduce the temperature by using thread migration. Hanson ez al.
[22], [25] conduct a temperature and power characterization on
an Intel Pentium M processor. They also create a runtime system
which monitor the temperature on the system and tries to maxi-
mize the performance while ensuring the systemis working under
safe power and thermal constraints. Kursun et al. [26] charac-
terize process variation effect on processor’s temperature. They
also develop a scheduling technique that aims to reduce the pos-
sible hotspots created by process variation.

Using performance counters to estimate power consumption
on a system is an active topic where different studies exist.
Pusukuri et al. [27] propose a simple model that uses cycle count
and L3 misses to estimate power consumption on AMD pro-
cessors. Powell et al. [28] develop a technique that estimates
power consumption for the different parts of a processor. They
do so by correlating activity in these parts with the power con-
sumption using a few performance counters. Bircher and John
[16] use performance counters to estimate power consumption
for the whole system including memory, chipset, I/O, disk, and
the processor. The model for the IBM POWERG6 processor pre-
sented in this work is similar to the last one mentioned.

Fan et al. [29] perform a study on power consumption in a
Google’s data center. They show that servers spend a consid-
erable percentage of the time in idle mode between work re-
quests. They also state that if the idle power of a system can be
reduced down to 10% of its peak power consumption, the en-
ergy consumption can be reduced by 50%. Therefore, initiatives
like Linux tickless are very useful in order to create systems that
are more energy-efficient. In the same direction, Meisner et al.
[30] try to bring the power consumption close to zero when the
system is idle by switching off all the non-critical components
in the system until a new work request arrives. In addition, they
compare their approach to DVFS.

VII. CONCLUSION

In this work we present a power and thermal characteriza-
tion for a multichip POWERG6-based system. We characterize
the power consumption and the thermal behavior both when the

JIMENEZ et al.: CHARACTERIZING POWER AND TEMPERATURE BEHAVIOR OF POWER6-BASED SYSTEM 241

system is idle and when it is under load. Several levels are ana-
lyzed: hardware, operating system and application. The method-
ology followed in this work, by utilizing microbenchmarks, is
also applicable to other systems.

From the characterization study and using the information
provided by the performance counters we build a power con-
sumption model for the whole system. Moreover, by using mi-
crobenchmarks we create this model by combining the CPU and
the memory subsystem power consumption. We test the accu-
racy of the model by running a set of SPEC CPU2006 bench-
marks and comparing the estimated power consumption with the
actual measurements. The results show that our model is quite
accurate with an error below 3% for the CMP case and below
5% for the CMP+SMT case.

Finally, we show that by placing threads in a workload and
package-aware manner, we can achieve significant energy im-
provements, without incurring significant performance degra-
dation, with a 5X reduction in energy-delay squared product.
We expect that characterizations, like the one done in this paper,
will help in the design of power and temperature-aware sched-
ulers for fully exploiting the low-power and thermal capabilities
of the underlying CMP/SMT processors. Our two case studies
show examples of such applications.

REFERENCES

[1] B. Sinharoy et al., “POWERS system microarchitecture,” IBM J. Res.
Develop., vol. 49, no. 4/5, 2005.

[2] H. Q. Le et al., “IBM POWERG6 microarchitecture,” IBM J. Res. De-
velop., vol. 51, no. 6, 2007.

[3] J. Casazza, “Intel Core i7-800 Processor Series and the Intel Core
i5-700 Processor Series based on Intel microarchitecture (Nehalem),”
2009.

[4] U.S. Environmental Protection Agency, “EPA Report to Congress on
Server and Data Center Energy Efficiency,” Tech. Rep., 2007 [Online].
Available: http://www.energystar.gov/ia/partners/prodn development/
downloads/EPAn Datacentern Reportn Congressn Finall.pdf

[5] M. S. Floyd et al., “System power management support in the IBM
POWERG6 microprocessor,” IBM J. Res. Develop., vol. 51, no. 6, 2007.

[6] A.Naveh et al., “Power and thermal management in the Intel Core Duo
processor,” Intel Technol. J., vol. 10, no. 2, 2006.

[7] V. Pallipadi, “Cpuidle—Do nothing, efficiently . ..,” presented at the
Linux Symp. , Jun. 2007.

[8] S. Siddha et al., “Getting maximum mileage out of tickless,” presented
at the Linux Symp., Jun. 2007.

[9] V. Srinivasan et al., “Energy-aware task and interrupt management in
Linux,” in Linux Symp., Aug. 2008, vol. 2, pp. 187-198.

[10] Y.Lietal., “Performance, energy, and thermal considerations for SMT
and CMP architectures,” presented at the HPCA, 2005.

[11] V.Jiménez, F. J. Cazorla, R. Gioiosa, M. Valero, C. Boneti, E. Kursun,
C.-Y. Cher, C. Isci, A. Buyuktosunoglu, and P. Bose, “Power and
thermal characterization of POWERG6 system,” presented at the PACT,
2010.

[12] Power ISA Version 2.06 2009 [Online]. Available: http://www.power.
org/resources/downloads/PowerISA V2.06 PUBLIC.pdf

[13] C. Boneti et al., “Software-controlled priority characterization of
POWERS processor,” presented at the ISCA, 2008.

[14] B. Behle et al., “IBM energyscale for POWERG6 processor-based sys-
tems,” IBM White Paper, 2009.

[15] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SSIGARCH
Computer Architecture News, 2006.

[16] W. Bircher et al., “Complete system power estimation: A trickle-down
approach based on performance events,” presented at the ISPASS,
2007.

[17] R. Gioiosa et al., “Analysis of system overhead on parallel computers,”
presented at the ISSPIT, 2004.

[18] R. Gioiosa et al., “Transparent incremental checkpoint at kernel level:
A foundation for fault tolerance for parallel computers,” presented at
the SC, 2005.

[19] D.M. Brooks et al., “Power-aware microarchitecture: Design and mod-
eling challenges for next-generation microprocessors,” IEEE MICRO,
pp. 2644, 2000.

[20] H.Jacobson, A. Buyuktosunoglu, P. Bose, E. Acar, and R. Eickemeyer,
“Abstraction and microarchitecture scaling in early-stage power mod-
eling,” presented at the HPCA, 2011.

[21] F. Harrell, Jr., Regression Modeling Strategies.
Verlag, 2006.

[22] H. Hanson et al., “Power, performance, and thermal management for
high-performance systems,” presented at the HPPAC, 2007.

[23] R. Sasanka et al., “The energy efficiency of CMP vs. SMT for multi-
media workloads,” presented at the ICS, 2004.

[24] J. Choi et al., “Thermal-aware task scheduling at the system software
level,” presented at the ISLPED, 2007.

[25] H. Hanson et al., “Thermal response to DVFS: Analysis with an Intel
Pentium M,” presented at the ISLPED, 2007.

[26] E. Kursun et al., “Variation-aware thermal characterization and man-
agement of multi-core architectures,” presented at the ICCD, 2008.

[27] K. K. Pusukuri et al., “A methodology for developing simple and ro-
bust power models using performance monitoring events,” in WIOSCA,
2009.

[28] M. D. Powell et al., “CAMP: A technique to estimate per-structure
power at run-time using a few simple parameters,” presented at the
HPCA, 2009.

[29] X. Fan et al., “Power provisioning for a warehouse-sized computer,”
presented at the ISCA, 2007.

[30] D. Meisner et al., “PowerNap: Eliminating server idle power,” pre-
sented at the ASPLOS, 2009.

New York: Springer-

Victor Jiménez is a Ph.D. student at Polytechnic University of Catalonia, Spain,
and is also a resident student at the Barcelona Supercomputing Center, Spain.

Francisco J. Cazorla is currently a researcher in the Spanish National Research
Council, Madrid, Spain. He leads the group on operating system/computer
architecture interaction at the Barcelona Supercomputing Center, Barcelona,
Spain.

Roberto Gioiosa is a senior researcher in the group on operating system/com-
puter architecture interaction at the Barcelona Supercomputing Center,
Barcelona, Spain.

Mateo Valero (S’77-M’80-SM’00-F’01) is a professor at the Polytechnic
University of Catalonia, Spain, and Director of the Barcelona Supercomputer
Center, Barcelona, Spain.

Dr. Valero is an Intel Distinguished Research Fellow, and a Fellow of ACM .

Carlos Boneti is a software engineer at Schlumberger Brazil Research and Geo-
engineering Center (BRGC), Rio de Janeiro, Brazil.

Eren Kursun (S’00-M’06-SM’11) is a research staff member (computer sci-
ence) at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY.
Dr. Kursun is a member of ACM.

Chen-Yong Cher Chen-Yong Cher is a research staff member (Reliabilty- and
Power-Aware Microarchitectures) at IBM T. J. Watson Research Center, York-
town Heights, NY, since 2004.

Canturk Isci is a research staff member in the Distributed Systems Department
at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY.

Alper Buyuktosunoglu (S’00-M’03-SM’09) is a research staff member in the
Reliability and Power-Aware Microarchitecture Department at the IBM Thomas
J. Watson Research Center, Yorktown Heights, NY.

Dr. Buyuktosunoglu is an editorial board member for IEEE Micro.

Pradip Bose (S’79-M’79-SM’92-F’07) is a research staff member and man-
ager of the Reliability and Power-Aware Microarchitecture Department at the
IBM Thomas J. Watson Research Center, Yorktown Heights, NY.

Dr. Bose is an advisory board member of IEEE Micro.

