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Abstract

Adaptive computing systems rely on accurate predictions
of workload behavior to understand and respond to the
dynamically-varying application characteristics. In this study,
we propose a Statistical Metric Model (SMM) that is system-
and metric—independent for predicting workload behavior.
SMM is a probability distribution over workload patterns and
it attempts to model how frequently a specific behavior occurs.
Maximum Likelihood Estimation (MLE) criterion is used to es-
timate the parameters of the SMM. The model parameters are
further refined with a smoothing method to improve prediction
robustness. The SMM learns the application patterns during
runtime as applications run, and at the same time predicts the
upcoming program phases based on what it has learned so
far. An extensive and rigorous series of prediction experiments
demonstrates the superior performance of the SMM predictor
over existing predictors on a wide range of benchmarks. For
some of the benchmarks, SMM improves prediction accuracy
by 10X and 3X, compared to the existing last-value and table-
based prediction approaches respectively. SMM'’s improved
prediction accuracy results in superior power-performance
trade-offs when it is applied to dynamic power management.

1 Introduction

Today’s microprocessors rely on adaptive power and per-
formance management schemes that try to adapt to chang-
ing behavior of applications. Typically, these schemes exploit
changing phase behavior at certain time granularities to dy-
namically trade-off power and performance. In most cases,
the techniques are reactive in that they are enabled once the
phase transition occurs. In cases where the application phase
behavior is very dynamic, reactive systems can result in poor
performance and may lead to possible oscillations in the em-
ployed adaptive control.

Ideally, one would like to predict future behavior of an ap-
plication based on its past behavior and proactively manage
the system to avoid instability. Obviously, such a scheme
heavily relies on accurate prediction of application behavior.
Prior work proposed such proactive methods based on pat-
tern history tables [16], program flow behavior [22, 20], and
statistics over recent performance characteristics [10]. These
techniques predict application behavior by tracking recently
observed patterns or statistics in the observed application fea-
tures, which can be used to guide dynamic management deci-
sions.

While in general these predictors prove to be effective in
many scenarios, there are two critical caveats due to 1) their de-
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Figure 1. Vulnerability of table based predictor
to fluctuations in observed metrics.

ficiency in predicting global long range patterns, and ii) their
inability to model patterns of varying length. Figure 1 shows
an example to this with an actual execution trace from the
applu benchmark. Here, the two boxed regions show an ex-
emplary repetitive execution. The table based predictor used
in this example has a pattern length of 8 samples. The two
captured repetitive regions show an §-sample pattern, where
the second occurrence experiences a single fluctuation. While
the table based predictor learns the behavior following from
the first pattern, this small fluctuation actually leads to a pat-
tern mismatch. As a result, the table based predictor backs
off to last-value prediction, and the following two consecutive
samples labeled as i and j are mispredicted. However, an ad-
vanced predictor that is resilient to pattern fluctuations, can
actually discern this repetition and can correctly predict both
i and j from prior observations. This pattern discovered by
our proposed predictor—by modeling varying size patterns—
is highlighted with the smaller enclosed regions in the figure.
Our proposed predictor can be effective over both table based
and other historical predictors by modeling patterns of varying
length and by tracking global application patterns.

In this paper, we propose a Statistical Metric Model (SMM)
for metric prediction. The SMM estimates the probability of
a finite a sequence. The probabilities generated by the SMM
are used to predict the most likely next phase based on prior
observations. SMM alleviates the shortcomings of the prior
predictors with its ability to model patterns of different length
and long-term global patterns. A comprehensive set of experi-
ments demonstrates the effectiveness of the SMM predictor in
comparison to the previously proposed predictors. SMM pre-
dictor, when applied to dynamic power management, results in
better power-performance trade-offs compared to the existing
predictors.

The rest of the paper is organized as follows. Section 2
gives an overview of prior work on program phase prediction.



Section 3 describes the baseline predictors that SMM is com-
pared against. Section 4 provides a description of the foun-
dation and the formulation of the SMM predictor. Section 5
summarizes our methodology. Section 6 demonstrates the ex-
perimental evaluation of SMM and its application to dynamic
power management, and Section 7 offers our conclusions.

2 Related Work

A large body of research focuses on tracking, character-
izing and predicting application characteristics. These stud-
ies leverage various characterization metrics including perfor-
mance monitoring counters, programmatical flow and system
statistics. One line of research explores characterization of
observed behavior via runtime statistic collection and archi-
tectural or system-level simulations [14, 15, 21, 1, 3, 9, 12].
These techniques mainly focus on interpreting specific work-
load execution behavior and detecting some indicative charac-
teristics. Other work [2, 4, 8, 5, 24] uses system statistics to
guide dynamic adaptations such as power and thermal man-
agement. While these techniques provide significant insights
to workload behavior and its impact on dynamic management
decisions, they do not explore online prediction of future be-
havior. The resulting dynamic management techniques can
be considered as reactive approaches. Our proposed approach
aims to provide the necessary means for proactive adaptations.

In addition to the characterization studies, significant num-
ber of studies also target at predicting future application be-
havior [10, 16, 13, 22, 18, 19, 26]. Duesterwald et al. [10]
describe different statistical and table based predictors for
within- and across-metric predictions of performance monitor-
ing information. They show that the table-based predictor gen-
erally outperforms the other predictors they tested. Sarikaya
et al. [19] describe an optimal prediction technique based on a
predictive least squares minimization. Isci et al. [13] develop
a table based runtime predictor to predict future behavior from
past pattern characteristics. Zhou et al. monitor memory ac-
cess patterns and estimate memory behavior of workloads for
energy efficient memory allocation [26]. Sherwood et al. de-
scribe microarchitectural phase predictors based on repetitive
program flow behavior [22]. Shen et al. detect such repetitions
from reuse distance patterns for dynamic memory configura-
tions via profiling and instrumentation [20]. In summary, all
these studies provide useful prediction techniques suitable for
different applications. This paper, on the other hand, shows
the benefit of statistical metric modeling for tracking varying
pattern history lengths and modeling long term patterns.

3 Baseline Predictors

This section gives a brief overview of the predictors that
serve as the baseline in our work.

3.1 Last Value Predictor

One simple, yet effective metric predictor is the last value
predictor. Last value predictor assumes that the next metric
sample is the same as the last observed sample. The last value
predictor can be very accurate for slowly varying metric se-
quences. However, its performance suffers greatly for rapidly
varying metrics. The main appealing feature of the last value

predictor is its simplicity from the computational and storage
perspective. Other more elaborate predictors introduce com-
putational and storage overheads to the prediction process.

3.2 Table Based Predictor

Table based predictors track the patterns in prior applica-
tion history to deduce future workload characteristics. Such
approaches rely on the repetitive application execution char-
acteristics to produce a reliable model of future behavior. An
example of these predictors, namely a global phase history ta-
ble predictor [13] is depicted in Figure 2. Such a table based
predictor can be implemented either in software or hardware
depending on the desired prediction quantum and policy ap-
plication time granularities [13, 10, 22].
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Figure 2. Table based predictor structure.

The table based predictor consists of a global register that
tracks a certain number, N, of most recently observed sample
characteristics. At each sampling period, this register records
the last observed sample. The contents of this register are used
to index into a pattern table, which holds a certain number of
previously encountered patterns. The predictions are also de-
terministically encoded into this table and performed for each
previously observed pattern. An age entry is used to track the
reuse time of different entries for a least recently used (LRU)
replacement policy. After a prediction is performed, the regis-
ter contents are added to the table by either replacing the oldest
entry or by inserting into an available invalid entry.

4 Statistical Metric Model

4.1 Intuition for SMM

The SMM is inspired from the way natural language is
generated. In a natural language we use words to construct
sentences. The SMM treats the metric samples as the words
in a language and builds a language model for each metric.
Note that, as metric samples are real numbers one has to quan-
tize the real numbers into a set of discrete values, which are
called “quantization bins”. In a natural language, words do not
follow each other randomly because of the underlying gram-
mar. There is an underlying structure defined by the grammar,
which determines the order in which we bring words together
to make meaningful sentences. Our intuition is that, like in
natural languages, we can treat the metric modeling as a lan-
guage modeling problem. We assume that there is an under-
lying structure in each metric, and if indeed there is such an
underlying structure (e.g. repetitive patterns) SMM can reveal
and model this structure. However, if there is not any structure,
that is to say, the metric is a completely random sequence of
numbers then SMM will not do a worse job than any other pre-
dictor, as long as it is trained on sufficiently large data. In the



rest of the manuscript we will often draw parallels between the
natural language modeling and the SMM to explain the con-
cepts used in this work.

4.2 Foundations of SMM

We consider a metric as a sequence of quantized sample
values. From now on, we refer to a “quantized sample” sim-
ply as “sample”. The SMM is a conditional distribution on the
identity of the ith sample in a metric sequence, given the iden-
tities of all previous samples. In other words, the next sample
in a metric depends on all the previous samples. In general,
this is a true statement but such a model will suffer from pa-
rameter estimation problems. Therefore, we have to make a
computationally convenient approximation that a sample de-
pends only on the previous n samples, where n depends on
the amount of available data to estimate the model parameters.
Again, going back to natural language modeling analogy, in
general, what word we will speak next, depends more on the
most recent previous n words than the words we have spoken
a while ago.

The SMM we use is based on a class of Markov models,
which is known as, the n-gram models [17]. N-gram mod-
els have received intensive research since their invention and
have been widely used in speech and natural language process-
ing [7]. The parameters of n-gram models are estimated from
alarge training text. The models produce a reasonable nonzero
probability for every word in the vocabulary. From a theoreti-
cal perspective SMM is identical to the n—gram models. Here
n refers to the maximum length of the finite sequence of the
metric samples (e.g. patterns of n = 4 samples as given in Fig-
ure 3). The probability of the nth sample is conditioned on
the previous n — 1 samples. Unlike natural language models,
which are built offline only once and then used for the appli-
cation without any update, the SMM is updated as many times
as the observed metric samples.

The SMM model of order n = 4 is shown in Figure 3. The
model has two set of entries: the finite sequences and the asso-
ciated probabilities with each sequence. The model contains
sequences of length 1 to n where the last sample in each se-
quence is the output given the remaining n — 1 history sam-
ples. For example, the first entry has the (s1,s2,s3) as the his-
tory for the next sample s4 with the probability P(s4|s3,s2,51).
The probabilities are called the model parameters that are es-
timated from the observed data. As we highlighted before, the
SMM consists of models of lower order m (1 < m < n), in-
creasing the likelihood of finding a matching subsequence for
a given finite sequence.

There is an inverse relationship between the predictive
power of the SMM and robust parameter estimation. As n in-
creases the predictive power of SMM increases at the expense
of unreliable parameter estimation, which in turn may start to
hurt the predictive power of the model. Following extensive
experimentation, 2 < n < 6 are found to work best for natural
language models. In this work, for program behavior predic-
tion we use n = 8 to have a fair comparison with prior work.
However, we also provide an evaluation of SMM performance
with smaller n. By restricting the conditioning information to
the previous seven (n — 1) samples, we are making a simpli-
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Figure 3. Description of the statistical metric
model with back-off for n = 4.

fying assumption. Although samples further back in history
potentially also have an influence on the identity of the next
sample, higher order models provide diminishing returns due
to the fact that the number of parameters in the SMM model
is exponential in n. Converting the entire sequence of metric
samples that are observed up to now to a set of finite sequence
of n samples, allows us to compare any sequence with any
other sequence in an efficient manner.

4.3 Formulation of SMM

The SMM model is a probability distribution, P(s), over L
samples S = s1,52,..., 5, that attempts to reflect the frequency
with which each finite sequence s = 51,52, ...,5; (I < L) occurs
in a metric.
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In SMM, the probability of a string P(s) is expressed as the
product of the probabilities of the samples that compose the
sequence, with each sample probability is conditional on the
identity of the last n — 1 samples. Without loss of generality,
we can express the probability of a s, P(s) as:
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where s{ denotes samples s;, ...,s;. In order to simplify the de-
scription and formulation of the SMM we consider the case
n = 2. The extension of formulation and results to higher or-
der models are trivial. By setting n = 2, we make the approx-
imation that the probability of a sample only depends on the



identity of the immediately preceding sample, hence we can
approximate P(s) as

l
P(S) = 'I__!P(Sib‘i,]) (3)

This probability distribution can be estimated with maximum
likelihood estimation (MLE) technique:

C(S,'_l,si)
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where C(x) denotes the number of times the sequence x occurs
in the metric. This is called the maximum likelihood (ML)
estimate for P(s;|s;—1).

4.4 Model Smoothing

While intuitive, the ML estimate has certain drawbacks due
to data sparseness when the amount of metric data is small
compared to the size of the built model. For example, for a
model with n = 8, we can potentially have 208 = 25.6 bil-
lion unique sequences of length 8. However, in practice, all
applications combined exhibit less than 10K unique patterns,
which is negligible compared to 25.6 billion. The conventional
probability estimate for each unseen sequence would be zero.
However, just because an event has never been observed so far
does not mean that it cannot occur in the future. To overcome
these shortcomings of the ML probability estimates, we apply
“model smoothing” to the relative frequencies to make sure
that each probability estimate is larger than zero.

Various smoothing techniques can be devised to ensure that
the probability estimates are greater than zero for samples
which do not occur in the training data.

A widely used set of smoothing methods is based on abso-
lute discounting, which interpolates higher order n—gram mod-
els with lower order n—gram models. When there is insuffi-
cient data to estimate a probability in the higher order model,
the lower order model can often provide useful information.
The higher order distribution is created by subtracting a fixed
discount D < 1 from each nonzero count. We use an interpo-
lated version of the absolute discounting [7], which was shown
to provide the best performance in natural language modeling
applications. For finite metric sequences with nonzero counts,
this distribution has the following general form:
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4.5 Implementation of SMM

While our SMM-based prediction approach is inspired
from natural language modeling, there are unique differences
in our implementation stemming from the different character-
istics of computational flow in computing systems. First, typ-
ically, the natural language model is built from a previously
collected existing corpus once, and the same model is used for
speech recognition or information retrieval without any model
update. Even though the dialog or topic context information
could be used to further improve the prediction of the words to
be uttered at any point in the text/conversation, the information
contained in the existing corpus dominates the probability of
which word is to be expected next. Second, in natural language
a sentence contains a finite number of words. However, in
workload behavior prediction, the entire sequence of execution
is not observed when the SMM is used for prediction. In fact,
in practice monitored system execution is a continuous process
that produces a stream of workload characteristics without any
particular beginning or end. The metric data that is of interest
to the SMM predictor keeps coming from the beginning sys-
tem startup to the next system halt, which can span days or
months. Because of this, the SMM must be trained/updated
constantly. The key question here is whether the computa-
tional complexity of model training/updating presents a chal-
lenge on the practicality of the SMM.

We can estimate the computational complexity of the SMM
model training. For that, we need to know three parameters:
i) number of quantization bins, ii) length of finite sequence
(n), iii) how often we need to update the model. In our ex-
periments, we have V = 20 quantization bins, n = 8 and we
update the SMM parameters at every sample. For such a set-
ting, the computational overhead for each model update would
be bounded by 0 (kVn) division and multiplication operations,
where k is a small constant (k < 3). The storage requirements
could be a more important concern for large n value and very
long metric sequences.

On average the SMM model storage for model order 8 is
around 10KB, which is in the same ballpark as the table-based
predictor ! As the metric data becomes longer the SMM model
size will increase as well. However, this is not a concern from
a practical implementation point of view, as there are a number
of effective methods that can keep the model size under control
without compromising the model performance [11]. More-
over, the model size can inherently be controlled by limiting
the number of quantization bins and the model order. Fewer
quantization bins and smaller model order will lead to smaller
model size.

Based on the described computational upper bounds for the
model update, the overall computational overhead of the SMM
is constrained to be less than a thousand multiply and divide
operations. This translates to compute time overheads on the
order of microseconds. Therefore, the proposed schemes can
be implemented within the operating system software in con-
text switch time granularities with no visible performance im-
pact.

Each bin can be represented with a byte and each entry has model order
of 8. For a 1024 entry table the total storage is 1024 -8 = 8KB
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Figure 4. Normalized mean prediction error for IPC using table based predictor with various table sizes

of 128, 256, 512, 1024, 10000.

4.6 Advantages of SMM

By expressing various short term and long term sequen-
tial phenomena in terms of simple parameters in a statistical
model, SMM provides an easy way to deal with complex com-
puter metric prediction. One of the important features of the
SMM in comparison to the previous methods is its ability to
model long term patterns. Last value predictor, table based
predictor and others attempt to use short term dependencies,
focusing on the previous n — 1 samples to predict the next
sample. This of course is useful but not sufficient to model
long term dependencies where repetitive patterns go beyond
the window of past n samples.

Another major advantage of the SMM is its ability to model
patterns of variable length. We show in Figure 3 that SMM
has the ability to match patterns of variable length m, where
(1 <m < n). This is a major issue with table based predictor, as
its patterns are fixed in length. SMM takes a pattern of length
n and checks whether there is such an entry in the model, if
S0, it uses the probability for that entry. If not, then it checks
models of lower order. For a given history, the predicted next
sample is selected based on its probability.

5 Methodology

We perform the experiments on an IBM POWER4 [23]
server platform with the AIXSL operating system. The results
present per-thread behavior running in multi-user mode on a
lightly loaded machine. We use the hardware performance
counters, with a sampling tool that works on top of the AIX
Performance Monitoring API (PMAPI). The sampler ties to-
gether counter values to a particular thread, including all li-
brary calls and system calls performed by that thread. The
prediction is performed at 10 ms time scales. All the experi-
ments are performed with the SPEC CPU2000 suite using ref-
erence datasets. All benchmarks are compiled with XLC and
XLF90 compilers with the base compiler flags. The data in
the experimental sections shows prediction performance with
the instruction per cycle (IPC) metric. However, the same pre-
diction approach can be applied to other architectural metrics.
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Figure 5. Variation in benchmarks.
The results shown are based on a quantization level of 20 bins.
This represents the high end of the experimented phase granu-
larities, limiting within-bin quantization error range to 5%.

6 Experimental Results

We run a rigorous and extensive set of experiments to com-
pare SMM, table based and last value predictors. We also in-
vestigate SMM predictor in-depth for its performance in rela-
tion to various parameters. In order to provide a fair compari-
son, we also perform a sensitivity analysis for the table based
predictor using different table sizes. Figure 4 presents the nor-
malized mean prediction errors for different table sizes. Our
results confirm the previous studies [16] in that using table
sizes larger than 1024 does not provide significantly different
prediction results. Therefore, in our experiments we use a ta-
ble based predictor with a fixed size of 1024 entries.

6.1 Metric Variation

The value of a good prediction scheme is realized when the
predicted workload characteristics show significant variability.
In other words, if the workloads of interest show little temporal
variation, it is an overkill to design anything beyond a trivial
predictor such as the last value predictor. However, for bench-
marks with rapidly changing characteristics, such a predictor
performs unfavorably. Therefore, it is important to understand
the variability and “predictability” of different workloads used
in predictor evaluation.

Figure 5 shows the available variation in the workloads
used in this work under two criteria. The upper plot shows
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Figure 6. Improvements with the SMM predictor, compared to last-value and table-based predictors.

the average sample-to-sample variation in the tracked metrics.
normalized to the overall dynamic range of the workload. In
the lower plot, the magnitude of variation is decoupled from
the occurrence of a variation by profiling how often two con-
secutive samples belong to different phases. This measure is
useful to understand the deviation of each workload from a
purely flat workload. In the figure, the benchmarks are sorted
in increasing variability. Thus, workloads towards the right
end exhibit the highest variability with the last six workloads
showing more than 5% sample-to-sample variation.

6.2 Metric Tracking Using SMM Predictor

The optimal model order n depends on the specific bench-
mark and available data to train the SMM. In this study, we set
n = 8, simply because the table based predictor, which is con-
sidered as one of the baseline methods uses a sequence length
of 8. We also use the last value predictor both as a baseline to
compare and as a backoff predictor for the table based predic-
tor. Using larger model orders can allow us modeling longer
patterns but the underlying model parameters may not be ro-
bustly estimated. However, using smaller model orders may
not have enough predictive power to model any patterns em-
bedded in the metric sequence. We believe that n = § is a rea-
sonable compromise between these two competing goals. In
later sections, we also look at this tradeoff for different values
of n.

Figure 6 shows a comparison of last value, table based and
SMM predictors across all benchmarks. The SMM predic-
tor improves prediction errors by 19% on average over all the
experimented workloads compared to the table based predic-
tor. This improvement is even further emphasized, with 43%
relative reduction in prediction error for the top five highly-
varying applications, namely as mgrid, equake, facerec,
art_refl, art_ref2. In comparison to the last value pre-
dictor, SMM improves prediction errors on top five highly-
varying applications by 63%. The largest improvements of
about 10—fold (15.3% vs. 1.6%) and 3—fold (4.8% vs. 1.6%)
are achieved compared to the last value and table based pre-
dictors, respectively on the equake benchmark.

Figure 7 shows how the prediction performance of the
different prediction approaches change over time, with the
equake benchmark. In the first panel the entire IPC sequence

Normalized equake IPC
1 T T T

1
4000

1 1 l
12000 14000 16000

Tedictor

i
2000
1 T T T T

I I I
Predig?r?r? Error Us%%%‘last Va]L?eo
T

16000

14000

10000 12000
Prediction Error Using Table Based Predictor
1 T T T T

2000 4000 6000 8000

2000

4000 6000
Prediction Error U:

1 T T T

8000 10000
sing SMM Predictor
T T

12000 14000 16000

0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 7. Normalized IPC prediction errors for
different predictors over the quantized samples.

of equake, normalized to its max, is plotted. In the other pan-
els, the prediction errors are plotted for the last value, table
based and SMM predictors. We clearly observe from the plots
that the table based predictor outperforms the last value pre-
dictor and the SMM predictor outperforms both predictors. As
expected, as the amount of data increases the SMM parame-
ter estimation becomes more reliable. As a result the SMM
prediction performance improves towards the end of the fig-
ure. Online learning and adaptation are two critical features
that an adaptive predictor must have. SMM has the ability to
learn and adapt itself constantly. As it learns and adapts it-
self to the changing phase behavior, the prediction accuracy
improves. On the other hand, in the same figure, the errors
for last value predictor appears to be evenly distributed across
the time scale. This is expected, as this simple predictor does
not employ any adaptation based on previously-observed ap-
plication behavior. The table-based predictor’s performance
also improves slightly with increasing amount of data, since it
also aims to discern the patterns in application behavior. How-
ever, the improvements in the prediction accuracy do not come
close to those of the SMM predictor, as the SMM predictor can
successfully leverage both long-term and varying-duration ap-
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Figure 8. Normalized IPC prediction errors for
different predictors over an execution segment.

plication characteristics.

We also zoom into a segment of the equake data to pro-
vide more concrete insights on how different predictors are
performing. In the first panel of Figure 8, we plot a segment
of the normalized equake IPC data. This segment of the data
is somewhat periodic with significant differences in values be-
tween consecutive samples. In the second panel, the corre-
sponding normalized prediction error is plotted using the last
value predictor, where the errors are almost on the same scale
as the data samples. In the third panel table-based predictor
errors are displayed. The table-based predictor models the
periodicity in the data to some extent, as seen in the begin-
ning and end of the plot. However, each time there is a slight
variation in the observed behavior, the fixed-pattern-based ap-
proach fails and the predictor backs off to the last value pre-
dictor as seen between samples 25 and 40. However, SMM
is very robust to small variations in the patterns and is able to
provide accurate prediction.

Figure 9 underlines one of the main strengths of SMM as
compared to the table based predictor. That is, SMM backs off
to lower order models when the maximum sequence match is
not found. In the figure, we highlight two patterns with boxes,
which contain identical samples of length 6. Even though, the
first 5 samples are the same in both boxes, table based predic-
tor does not have any match simply because it stores samples
of length 8. When there is no match, then it backs off to the last
value predictor, which does not produce good prediction, as
pointed out by the arrows. However, SMM backs off to lower
order models and finds the matching pattern of length 6, which
is observed in the first box, and uses it to perform accurate pre-
diction in the second box. This is of course the case, given the
past 5 samples in the box, the next sample 10 has the high-
est probability among all the possible outputs (1.,...,20). SMM
prediction considers the conditional (on the history) probabil-
ity of the each possible metric output and picks the one that
has the highest probability.

The other main strength of the SMM predictor is its ability

Zooming into mgrid IPC
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Figure 9. Benefit of backing off to lower order
models for SMM.

to model long range patterns, which improves the prediction.
In order to underline this feature of SMM, we extend the run-
time duration of the experimented benchmarks by a factor of 2
(shown as x2 in Figure 10) by concatenating workloads back
to back. With this approach we provide the predictors with
runtime histories which are twice as long as the original runs.
In Figure 10, we plot the normalized mean prediction errors
for the original benchmark runs and the extended benchmark
runs. We also plot the results for the table based predictor
in both cases. Not surprisingly, the prediction performance of
the table based predictor shows almost no improvement except
for two benchmarks. Those two benchmarks are gcc_exp and
gcc_integrate, which are both very short in metric sample
size. SMM, on the other hand, provides significant improve-
ments for almost all the benchmarks. The only exception is
swim, where we observe a slight increase in prediction errors
of both predictors. It is not surprising to see that SMM perfor-
mance improves on the extended-duration benchmarks, since
SMM has a memory of observing all the prior characteristics
before. SMM starts to improve the prediction in the second
half of the duplicated benchmark data. The average improve-
ment across all benchmarks is 15% for the SMM predictor,
whereas it is only 3% for the table based predictor. This shows
the substantial benefits of the SMM predictor in the longer
term.

It is important to emphasize that the ability of the SMM
predictor to capture long-term patterns is not directly propor-
tional to its chosen model order/history size, or its quantiza-
tion bins. The key strength of the SMM predictor stems from
a fundamental difference from the existing predictors. While
pattern-based or statistical predictors rely on recent history and
discard old pattern information in favor of new observations,
SMM actually eliminates this temporal dependence by relying
on its probability-based history information. Thus, older but
dominant patterns survive in SMM model, and provide sig-
nificant influence in future predictions. SMM brings out two
unique features: i) it can model patterns of varying length, ii)
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Figure 10. Improvement in SMM predictor accuracy with longer benchmark execution times.

it can model long range patterns by tracking observed patterns
with their respective probabilities. When capacity require-
ments dictate discarding some patterns, this pruning is done
not by temporal proximity, but with respect to the strength of
the patterns as indicated in the SMM pattern tables. This leads
to a much higher accuracy in predicting future behavior.

6.3 Impact of Model Order on SMM Predictor Perfor-
mance

For SMM, model order (n) and the history size are related
via HistorySize = n — 1. We mentioned that the performance
of SMM predictor largely depends on the model order and
the available data to estimate the model parameters. Smaller
model order limits the predictive power of the SMM predic-
tor. However, using larger model orders may adversely affect
the parameter estimation step - which in turn may degrade the
prediction performance. We are not aware of a “grand” recipe
that would tell us the optimal model order given the amount
of training data. However, one should keep in mind that even
though the metric data sizes for specific applications are fixed,
in reality SMM is designed to operate continuously—for days
or even months—during system uptime, with a very large set
of running metric samples. In that case using larger model
order can benefit the prediction performance.

In this section, we implement three SMM versions with dif-
ferent model orders and observe their effect on the prediction
performance. Each benchmark can be described better with
a specific model order and may achieve the smallest predic-
tion accuracy. In Figure 11, we provide prediction errors for
all benchmarks with model orders: {4,6,8}. In general, as
the model order increases, overall prediction accuracy also in-
creases leading to lower prediction errors. Typically, models
with larger model order are good in describing the fine struc-
ture in the segment of the data that is observed so far. However,
in the absence of large data, this comes at the expense of poor
generalization for the unseen future observations, which are to
be predicted. There are few exceptions to this overall trend.
For example, model order 4 (n=4) for parser_ref achieves a
slightly lower prediction error than model order 8 (n=8). We
also observe that the improvements with the larger model or-
der appears to be leveling off for n > 6 for most of the bench-

marks with the exception of mgrid, where there is further pos-
sible reduction in prediction error with larger model sizes.

6.4 Application of SMM to Power Management

This section explores how the predictions provided by the
SMM predictor can be applied to dynamic power manage-
ment. For this evaluation we use SMM predictor to pre-
dict the memory access rate of applications, and use these to
control dynamic voltage and frequency scaling (DVFES). Such
workload-behavior-based DVFS is well studied in prior work
[24, 25]. These show that the memory access rates of appli-
cations are a strong indicator of the appropriate DVFS state
an application can run with limited performance degradation.
Applications with higher amount of memory accesses exhibit
higher potential for running at lower frequencies as the impact
of running the processor slower has much less performance
impact for these applications.

We profile the memory access rates for all applications.
Then, based on the observed memory behavior, we categorize
different execution characteristics into different representative
bins. We reference actual power and performance measure-
ments collected at different DVFS states [13] to define the bin
boundaries and to characterize the power-performance trade-
offs of running each representative bin at different DVFES set-
tings. We use memory access rates as the main differentiator
for categorizing execution into bins. In our evaluation system,
we consider eight bins, corresponding to eight DVES states.
That is, when a predictor predicts the next application phase
as bin; the processor is proactively set to DVFS setting i.

Figures 12(a) and 12(b) show the power-performance be-
havior of running the processor at different DVES states dur-
ing different execution characteristics. Here, binl corresponds
to an execution region with minimal memory accesses and
DV F Sstatel represents the highest DVFS setting. When the
execution behavior is similar to binl running the application
in DVFS states other than 1 result in significant performance
degradation. In contrast, using a higher DVES state for an ex-
ecution region with higher memory accesses—i.e., higher bin
number—is much more beneficial due to the smaller perfor-
mance degradation impact. While running such a region at a
lower DVEFS setting still improves performance slightly, there
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Figure 11. SMM prediction performance for different model orders of 4, 6, and 8.

is significant lost power savings opportunity.

In our evaluations, we consider the three predictors: last-
value predictor, table-based predictor and our SMM predictor.
Similar to the prior experiments, we continuously predict ap-
plication behavior at fixed sampling intervals. Based on the
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Figure 12. Power savings and performance
degradation at different DVFS states for differ-
ent bins.

predicted execution behavior, i.e., memory access rate, we set
the corresponding DVFS state for the following period. Then,
at the end of this period we observe the achieved power sav-
ings and the associated performance degradation based on the
actual execution behavior in this past interval.

We evaluate all three predictors for all applications. We
accumulate the overall power savings and performance degra-
dation throughout the execution of the applications and de-
termine the average power savings and the experienced per-
formance degradation for each application. Figures 13(a) and
13(b) depict these results. While we have included all applica-
tions in our experiments, in the figures we only show a subset
of these. This is because, all the excluded benchmarks ex-
hibit either very low variability or they are highly CPU-bound
and therefore do not benefit from our employed DVFS-based
power management. All predictors perform similarly for these
applications.

In Figures 13(a) and 13(b), we depict the normalized power
savings and performance degradations relative to the last-value
predictor. Thus, the figures show the relative effectiveness
of the different predictors. Overall, among the three predic-
tors, the last-value predictor achieves somewhat higher power
savings, followed by the table-based predictor. However, as
Figure 13(b) shows, these power savings are achieved at the
expense of different levels of performance degradation. Here
the distinction among the three predictors is much more sig-
nificant, where the table-based predictor performs better than
the last-value predictor and the SMM predictor significantly
outperforms both predictors. This outlines the benefit of the
SMM predictor’s higher prediction accuracy. While the SMM
predictor achieves slightly lower power savings, with less than
10% difference compared to last-value and less than 5% com-
pared to the table-based predictor, it significantly reduces the
performance impact. The SMM predictor reduces overall per-
formance degradation by 34% compared to the last-value pre-
dictor and by 19% compared to the table-based predictor.

These results highlight the potential benefit of employing
our SMM predictor for dynamic management of computing
systems. While the use case shown here pertains to a spe-
cific architectural management technique, the SMM predic-
tor in general can be employed in other systems manage-
ment techniques that benefit from the accurate prediction of
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Figure 13. Power savings and performance
degradation achieved by the three prediction
methods.

dynamically-varying application characteristics for proactive
dynamic adaptations.

7 Conclusions

We describe a new method called Statistical Metric Model
(SMM) for predicting dynamically-varying program behavior.
SMM is a probabilistic model that learns application charac-
teristics at runtime and captures long term, dominant applica-
tion behavior. There are four main strengths of SMM com-
pared to existing predictors. First, it models long term global
patterns in application behavior. Second, the predictor can re-
spond to variable-length patterns. Third, it is resilient to small
fluctuations in the observed patterns. Last, the SMM predic-
tor has the ability to adapt itself; as it learns more it predicts
better. We present a series of experiments that demonstrates
these strengths of the SMM predictor, as well as its superior
accuracy. These studies show that the SMM predictor reduces
prediction errors by up to 10X and 3X compared to the last
value and table based predictors respectively, with an average
improvement of more than 60% and 40% for highly varying
benchmarks. We also show the application of the SMM pre-
dictor to dynamic power management, where the better predic-
tion accuracy of the SMM predictor achieves superior power-
performance trade-offs compared to the other predictors.
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