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Abstract

As computer systems become ever more complex and
power hungry, research on dynamic on-the-fly system man-
agement and adaptations receives increasing attention.
Such research relies on recognizing and responding to pat-
terns or phases in application execution, which has there-
fore become an important and widely-studied research area.

While application phase analysis has received signifi-
cant attention, much of this attention thus far has focused
on simulation-based studies. In these cycle-level simula-
tions without indeterministic operating system intervention,
applications display behavior that is repeatable from phase
to phase and from run to run. A natural question, there-
fore, concerns how these phases appear in real system runs,
where interrupts and time variability can influence the tim-
ing and behavior of the program.

Our work examines the phase behavior of applications
running on real systems. The key goals of our work are
to reliably discern and recover phase behavior in the face
of application variability stemming from real system effects
and time sampling. We propose a set of new, “transition-
based” phase detection techniques. Our techniques can
detect repeatable workload phase information from time-
varying, real system measurements with less than 5% false
alarm probabilities. In comparison to previous value-based
detection methods, our transition-based techniques achieve
on average 6X higher recurrent phase detection efficiency
under real system variability.

1 Introduction
Phase behavior in application characteristics has long

been observed and exploited [8]. In recent years, applica-
tion phase behavior has seen growing interest with two main
goals. Some seek to identify program phases in order to se-
lect representative points within a run to study or simulate
[2, 14, 21, 24, 26, 27]. Others seek to recognize phase shifts
on-the-fly in order to perform optimizations such as dy-
namic adaptations in cache organization, voltage/frequency
scaling, thermal management, or even dynamic compiler
optimizations of hotcode regions [3, 4, 10, 16, 19, 29].

Most of the recent phase analysis work has focused on
simulation studies; here the largely repeatable and deter-
ministic behavior means that phases can stand out quite
clearly. In order to move towards using on-the-fly phase
analysis broadly in real systems, it is important to under-
stand how these effects manifest themselves in more com-
prehensive measurements. Recent work shows the degree of
time and space variability visible in real-systems that is gen-
erally not captured in simulations [1, 23]. This variability
can stem from changes in system state that can alter cache,

TLB and I/O behavior, system calls or interrupts, resulting
in noticeably different timing and power/performance be-
havior.

In this paper, we characterize application phase behavior
as seen from real-system performance monitoring counter
(PMC) measurements. We start from previously proposed
performance-counter sampling [18] and phase analysis [17]
techniques. We discuss the repeatability of phase extrac-
tion experiments from run to run on a real system, and we
demonstrate the extent and type of alterations an applica-
tion can experience in different experiments. We categorize
these alterations as time shifts, time dilations, and phase mu-
tations, as well as transitional glitches and gradients. We
propose a transition-based phase characterization scheme
and then develop and evaluate effective methods for rec-
ognizing phases under these alterations. Specifically, we
use glitch/gradient filtering to handle sampling effects and
to focus on true phase transitions. We use correlation and
blurring techniques to identify time shifts and dilations in
the measured data. We test these, with a step-by-step phase
recognition system, on several SPEC2000 benchmarks and
common desktop applications.

There are four primary contributions of this work. First,
our work presents a taxonomy of real system effects on
phase behavior based on our application measurements.
Second, we propose a transition-based phase characteri-
zation that proves to be more effective in phase detection
under variability. Third, we present a complete flow of
methods to recognize phases under variability and sampling
effects. Fourth, we provide a quantitative evaluation of
these techniques on a variety of benchmarks and demon-
strate their effectiveness in phase recognition. In particular,
our transition-based approach can detect recurrent workload
phase behavior with less than 5% false alarms under real-
system variability.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a detailed discussion of real system variabil-
ity. Section 3 describes our phase analysis methodology and
the impact of variability on phase behavior. Section 4 intro-
duces our transition based phase representation and com-
pares this to original phase sequences. Section 5 demon-
strates our techniques to handle different variability effects.
Section 6 evaluates the success of our methods in detecting
recurrent work. Section 7 describes related work. We en-
vision various applications to our detection methods under
workload directed dynamic management. We discuss these
and future research directions in Section 8. Finally, Section
9 offers our conclusions.

2 Real-System Behavior Variability
In order for a phase technique to be applicable on a real

system, the phase characterizations of applications should



lead to similar classifications across different runs. That is,
a fundamental check of a phase analysis technique on real
systems is whether repeated runs of the same application
give similar metric behavior and phase distributions. Dif-
ferences upon repetition can arise from time-alignment of
sampling with the execution, as well as with system calls
and memory/IO effects. Nonetheless, in most cases, we ex-
pect that the phase analysis of two runs of the same applica-
tion should be much more similar than that of two different
applications.

In this section we present data on the extent of system-
induced variability in real, measured application behavior
and in Section 3 we show how this variability is reflected in
the corresponding phase sequences. Here, we emphasize a
clear distinction between two cases: (i) where an applica-
tion uses the same dataset (or sequence of datasets) and (ii)
where an application uses two different datasets. In the lat-
ter case, even though the application is mostly executing the
same code, different datasets can lead to drastically differ-
ent metric behavior. This necessitates different phase repre-
sentations that might lead to different dynamic optimization
actions.

2.1 Variability Analysis Methodology

In our variability analysis experiments, we collect real
power and timing behavior information with a non-intrusive
runtime processor power measurement setup. In these ex-
periments, we use a current probe clamp over the Pentium
4 processor power lines, which is connected to an Agilent
34401 digital multimeter. The multimeter sends the in-
stantaneous current information to a logging machine over
RS232. The logger machine then converts this to runtime
power dissipation information for the currently running ap-
plications on the tested system.

Here, we present metric variability in terms of “actual
measured power”. Therefore, this reported variability is
purely a characteristic property of applications running on
real systems, regardless of sampling effects or any applied
phase analysis technique. While we cannot present data due
to space constraints, our other experiments show this metric
variability similarly reflected in metrics other than power,
such as IPC and miss rates.

2.2 Variability Across Different Runs

Applications exhibit two types of variability on a real-
system, across multiple runs. First, they show slightly dif-
ferent instantaneous behaviors in their characteristic met-
rics, such as IPC, miss rates and power dissipation. There-
fore, at any specific time instance, these values show some
deviation in each run. Second, and following from this, the
applications show different timing behavior. This results in
deviations in both total runtime and in the duration of each
phase.

To quantify these two forms of variability, we collect
data related to characteristic metrics and timing behavior of
several applications for five different runs on the same sys-
tem. In order to minimize cold start effects, we run each ap-
plication six times and discard the results of the initial run.
In all the experiments, the benchmarks are run to comple-
tion with reference datasets. After data collection, we align

the traces of five runs such that all have the same first tran-
sition from idle to active phase. The first form of variability
is then observed with the variation in individual measured
metrics at each time sample. To show the second form of
variability—different timing behavior—we specify 3 exe-
cution checkpoints for each application. We measure how
long each run required to reach these points, starting from
the idle-to-active transition common reference.

In Figure 1 we demonstrate the observed variability
for Spec benchmarks gcc (1st row), gzip (2nd row), vpr
(3rd row) and equake (4th row). For each benchmark,
the leftmost graph shows the representative power time-
line from a single run. The middle graphs show the mea-
sured metric variability. At each time sample, they plot
the ∓1 Standard deviation error bars around the average
measured power from all five runs. The rightmost graphs
show each application’s time variability at the three check-
points. At each checkpoint, they show the average time,
∓1 Standard deviation error bars and maximum and mini-
mum time elapsed until checkpoint over the five runs. We
also show the average power behavior at these regions for
reference.

All benchmarks exhibit some level of both metric and
time variability. Gcc and gzip, two of the most highly-
variant benchmarks of SPEC2000, have significantly higher
metric variability, part due to the timing mismatches—
jitter—at the power jumps. All experimented benchmarks
exhibit time variability on the order of a few seconds, with
the exception of gzip, which shows variations on the or-
der of ten seconds. This variability is a fundamental aspect
of real-system behavior, and is neither a side-effect of our
phase analysis methodology, nor can be diminished with
finer data sampling. In general, all applications result in vi-
sually similar power and performance behavior across dif-
ferent runs. However, some variability always exists in both
characteristic metrics and run-time.

2.3 Variability Across Different Datasets

An orthogonal source of variability in application behav-
ior results from the input datasets. In some cases, the behav-
ior of an application is completely different under different
datasets. In Figure 2 we show the gcc benchmark with very
distinct behavior for different datasets. In gcc, both met-
ric behavior and execution time are highly dependent on the
compiled code.

In general, although the application in part executes the
same functions on different datasets, this should not neces-
sarily imply the same phase sequence. In Figure 2, the ap-
plication exhibits different metric and timing behavior for
different datasets. Consequently, the two separate dataset
runs have distinct phase distributions. In such cases, it is
a desirable feature—rather than a deficiency—for different
inputs to result in phase behavior variability. These differ-
ent phases can then be used to choose different dynamic
optimizations based on their power and performance char-
acteristics. For this reason, the rest of this work focuses on
optimizing phase detection and repeatability to handle vari-
ability across different runs with the same datasets. Any
mention of variability refers specifically to this form in the
remainder of this paper.
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(a) Single instance of benchmark
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Figure 1. Measured time and metric variability in gcc, gzip, vpr and equake.
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Figure 2. Measured power behavior of Spec
gcc with different datasets, 166 (left) and 200
(right).

3 Impact of Real-System Variability on
Phase Behavior

3.1 Phase Analysis Methodology

All phase analysis stems from tracking the similarities
and trends in a time-varying set of metrics. In this work, we
use the hardware PMCs on a 1.4 GHz Pentium 4 processor
[30] to collect sets of data points representing time-varying
power behavior of applications running on the same system
at runtime. Our methodology is based on previous work
[17], which uses PMCs to estimate the power behavior for

22 different on-chip hardware units. These 22-dimensional
estimates, referred to as “power vectors”, then sum up to an
estimate of instantaneous total processor power consump-
tion.

In this work, we start from these power vectors as de-
tailed fingerprints of current microarchitectural activity. Al-
though these 22 dimensions give a comprehensive view of
processor activity, their high detail actually impedes dis-
cerning phase patterns. Therefore, we use Factor Analy-
sis [11] to unify highly-correlated dimensions, while pre-
serving the same predictive capacity. These reduced vectors
have 12 dimensions.

The experimental implementation consists of a Linux
Loadable Kernel Module (LKM) on a 2.4.7-10 kernel and
a user application that samples counters every 100ms. This
user application then transfers the PMC samples to a differ-
ent platform over ethernet, for runtime phase analysis with
minimal intrusion.

Phase analysis is inherently about gauging similarity and
dissimilarity of sampled data over time. To gauge the sim-
ilarity of two vector datapoints gathered by runtime PMC
sampling, we use the composite similarity metric given in
Equation 1.
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Figure 3. Joint histograms of phase distributions for two separate runs of 4 benchmarks. (a) shows
an example histogram in the case of no variability (i.e. repeatable simulations). (b-e) show the actual
variability in phase behavior observed in real system runs. The letters at the top and left-hand side
of the matrix plots are the phase labels.

S(i, j) = min

(
AM(i, j)

maxi, j (AM(i, j))
+

NM(i, j)
maxi, j (NM(i, j))

,1

)
(1)

In this equation, S(i, j) varies from 0 to 1 and quanti-
fies the similarity (or lack thereof) between two vectors i
and j. A higher similarity between two vectors translates
to a lower value in S(i, j). AM(i, j) represents the absolute
L1 (manhattan) distance between the ith and jth vectors and
NM(i, j) represents the distance between the same vectors
normalized, such that L1-norm of each vector is 1.

Our starting point in this work is a value-based phase
clustering method. In this, we apply a set of thresholds to
this similarity metric to cluster sampled data into phases.
Applying a phase assignment technique similar to [17], we
label encountered phases alphanumerically, starting from
‘A’ in each case. We call this phase representation Value-
Based Phases (V BPs), where different observed phases are
given different labels (phase IDs).

3.2 Value-Based Phase Behavior under Variability

Although the qualitative visual behavior of a benchmark
is often preserved across multiple real-system runs, differ-
ences in phase assignments occur due to inter-run variabil-
ity. Even small variations can lead to the spurious interpre-
tation of a phase change, thus changing the phase assign-
ments and sequence information that follow. In addition,
the durations of an application’s observable phases are not
identical, which also impedes exact runtime-based phase
tracking techniques.

Figure 3 gives examples of how variability affects
phases. Here, we use joint histograms to illustrate these
effects. We again use the same set of applications, and we
use the value-based method to split them into V BPs. We
then time-align them with respect to first phase transition.
The joint histogram h of two phase sequences is a matrix,
where entry h(X ,Y ) shows how many times run1 was as-
signed to phase X when run2 was assigned to phase Y for
the same data sample. The plots show the intensity of this
matrix, where brighter regions correspond to higher num-
ber of matches and darker regions show poor matches. The
x and y axes on the plots show the phase labels of the two
runs. Figure 3.a shows the ideal matching in the case of per-
fect repeatability i.e., a simulation environment. In this case
h is only a diagonal matrix, where the diagonal values differ
depending on how often each phase is encountered during

application runtime. In this case, if run1 is in phase ‘C’ at
time t, then run2 is also in phase ‘C’ at t.

In Figure 3.b-3.e, we show the joint histograms result-
ing from real-system runs. In these cases, the phase assign-
ments are far from ideal. Especially in gcc and gzip, phase
assignments show a large spread, indicating significant mis-
matches. More well-behaved benchmarks vpr and equake
show some level of regularity as they have few phases gov-
erning most of their phase behavior. Nonetheless, in both
cases, several phases in one run collapse into a single phase
in another, leaving little consistent phase behavior.

In summary, the observable cross-run variability seen in
application power and time behavior also exists in the value-
based phase characterizations of applications. This variabil-
ity causes different runs of the same applications to be char-
acterized by different phase sequences; this conceals the ac-
tual recurrent phase behavior.

3.3 Taxonomy of Phase Transformations

Figure 3 highlights the fact that direct, brute force com-
parisons of phase traces are ineffective in conveying repet-
itive behavior similarity. Before discussing our proposed
methods, we first present a taxonomy of the effects of vari-
ability on phases. In Figure 4 we illustrate these effects
and resulting phase transformations. The figure shows their
cumulative effect on an ideal hypothetical phase distribu-
tion, shown as the phase sequence “A,B,C,B” where the
length of each labeled block indicates the duration of the
corresponding phase. The first effect—time shifts in phase
sequences—will always occur, as the processor power trace
can be considered as a stream of data with no specific begin-
ning and end. The startpoint merely depends on where we
start logging the sampled power information. The second
effect, time dilations, inevitably results from indeterminis-
tic system effects. The length of a specific task depends
on the state of the machine, the available locality, number
of page faults and load of the system. Glitches occur when
brief snippets of isolated behavior occur in some, but not all,
runs. Finally, mutations are cases where a different phase
name is seen in a run; this can be either due simply to la-
beling issues or it can be due to variable behavior in the
application on different runs.

In the following sections, we tackle each alteration pre-
sented in this taxonomy and propose a series of techniques
for recovering the phase behavior to the point where re-
peated runs of an application are recognized as similar.
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Figure 4. Effects of real system behavior vari-
ability on application phase distribution.

4 Using Phase Transitions as Application Sig-
natures

In this Section, we propose a representation for applica-
tion phase behavior that is an alternative to the prior value-
based (V BP) approach. The goal of this representation is
to be more resilient to real-system variations. We sug-
gest tracking phase transitions, instead of tracking phases
themselves, and show that transitions are more effective in
detecting recurrent workload behavior. We identify phase
transitions at runtime by comparing the current and the
previous sample vector, and by evaluating their similarity
based on Equation 1. This transition-based representation
of phase behavior, in comparison to the original V BP repre-
sentation, is much more successful in identifying a program
from its phase signature and in rejecting other application
signatures based on the tested features.

One way to evaluate our claim—that tracking phase tran-
sitions instead of phases is more successful in detecting
recurrent behavior—is by computing correlations. If two
phase traces vary together, they have a high correlation co-
efficient. Therefore one would expect high correlations be-
tween two runs of the same application, and much lower
correlations among different applications.

To perform this comparison, we enumerate V BP se-
quences with positive integers, where phase numbers are as-
signed to encountered different phases in increasing order.
This corresponds to the original value-based representation.
For the same stream, we can also represent the transition
information as a binary stream, assigning 1 to phase tran-
sitions and 0 to stable regions. This is our initial proposed
transition-based phase (T BP) representation. We call these
binary sequences Initial Transitions (T BPinit).

In Figure 5, we present the resulting correlation coeffi-
cients for two different cases. In both plots, the lighter lines
plot the correlation coefficients for the original V BP traces.
The darker lines show the results for the transition (T BPinit)
traces. Figure 5.a shows the “matching” case for two sep-
arate runs of gcc. Here, since we are correlating phase se-
quences for two runs of the same program, a good phase
assignment will show a high correlation spike when the two
runs are properly time-aligned. Figure 5.b shows the “mis-
match” case with gcc and equake. Here, we are correlating
two unrelated phase sequences, so we do not expect a high
spike.

In the correlation plots, we show the results for a range

of time shifts to consider the probable lag between two runs.
For instance, if two traces are identical, one would expect
a peak (1) in sample shi f t = 0. If there is only a lag of x
samples between traces, the peak will move to +x or −x.

Figure 5 reveals that correlating value-based phase se-
quences does not produce good discrimination among
benchmark signatures. In comparison, transitions provide
much more useful results. Notably, we can distinctly see a
peak in the T BPinit gcc vs. gcc case with a time-shift of 6
samples, while there is no observable peak from V BP corre-
lations. Furthermore, correlating the transition traces of gcc
and equake gives very low correlations as expected. The
V BP correlations are also lower than their gcc-gcc counter-
part, but transitions perform observably better, with roughly
0 correlation.

This distinguishable peak in the correlation trace for the
transition-based T BPinit representation proves to be very
useful in identifying benchmarks from their signatures.
Starting with the next section, we look into these initial
transitions in more detail, demonstrating how we can fur-
ther improve and use this information to match application
signatures under real workload variability.

5 Working with Transitions

5.1 Removing Sampling Effects on Transitions with
Glitch and Gradient Filtering

Our starting point for defining phase transitions was to
say that they are sample points where the next interval’s
phase is different from the current phase. These transitions
can be identified on-the-fly by evaluating the similarity met-
ric in Equation 1 for the current and previous power vector
and comparing against a similarity threshold. While Figure
5 illustrates that this T BPinit approach is already useful for
phase detection, we improve on it here. In particular, we
note that sampling and stability effects impede the effec-
tiveness of transitions for representing phase behavior; we
address that here.

We characterize these effects as glitches and gradients
(Figure 6). Following the stability definitions of Dhodap-
kar and Smith [9], we define a glitch as one or more con-
secutive unstable sampling intervals, where the before and
after of the glitch belong to the same stable phase. Because
glitches are short and unstable, their single sample phase in-
formation is not likely to be suitable to exploit with dynamic
management techniques.

A gradient is one or more consecutive unstable samples,
where the before and after of the gradient belong to differ-
ent stable phases. These regions correspond to an actual
phase transition. However some phase transitions do not
happen instantaneously in a single sampling interval, but
instead can actually have multiple samples along the transi-
tion gradients.

In the context of our work, glitches are false transitions
and gradients are duplicated transitions. To remove these
spurious effects, we propose a more intelligent transition
analysis that works to filter the transitions deemed to be
glitches and gradients. In Glitch/Gradient Filtering extra-
neous transitions corresponding to glitches are discarded.
Single or multi-cycle gradients en route to a new phase are
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Figure 5. Correlation coefficients for a range of shifts between two different gcc runs (a) and separate
gcc and equake runs (b) (y axis shows the computed correlation coefficient values).
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Figure 6. Initial transitions, T BPinit , with differ-
ent types of glitches and gradients, and re-
fined transitions, T BPgg, after glitch/gradient
filtering.

converted into a single stable phase change.
In Figure 6, we show the generic scenarios for the

glitches and gradients. The upper rows depict the ini-
tial T BPinit traces. (Recall from Section 4 that ’1’ de-
notes a transition and ’0’ denotes stability.) The lower
rows denote the refined transition traces after we apply our
glitch/gradient filtering. We refer to these transitions with
glitch/gradient removal as refined transitions or T BPgg.

Our filter implementation identifies each initial transi-
tion by monitoring the phase stream, and forms the ini-
tial binary representation T BPinit . From the T BPinit stream,
we construct T BPgg in the following manner. Each burst
of transitions is replaced by either no transitions—if they
are glitches—or a single transition—if they form a gradi-
ent. We do not allow multiple consecutive transitions in the
refined T BPgg signature and all gradients have a prior tran-
sition adjacent to them.

In Figure 7, we show the application of glitch/gradient
filtering to gcc benchmark. In the figure, we show the re-
fined transitions, as well as the regions identified as glitches
and gradients, for a zoomed-in execution region. For gcc,
the initial 212 transitions reduce to 82 once glitch/gradient
filtering is applied.

5.2 Discerning Phase Behavior with Time Shifts

Initially we have quantitatively shown the quality of
matching with transitions using computed correlation co-
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Figure 7. Transitions, glitches and gradients
for gcc after glitch/gradient filtering.

efficients for a range of shifts. However, this method is
computationally expensive and not suitable for runtime ap-
plicability. As the generated transition features now contain
simple binary information, a simpler metric to use is cross-
correlation. Correlators can be easily implemented in hard-
ware and can be applied continuously to the incoming data
stream online.

In Figures 8 and 9 we again demonstrate the “matching”
and “mismatch” cases. In the first case, we show how well a
new gcc run can be matched to a previous gcc signature. In
the second case, we run equake and examine the severity of
a false alarm. We show the results for refined (T BPgg) and
initial (T BPinit) transitions in both cases.

For the two gcc runs, refined transitions show a signif-
icant peak, proving a good match between the two signa-
tures for a shift of 13 samples. For gcc and equake, the
cross correlation of transitions produces no significant peak,
which suggests the signatures do not match. Thus, we can
see the spike behavior in case of signature match is retained
with refined transitions and with application of cross corre-
lations.

5.3 Handling Time Dilations with Near-Neighbor
Blurring

In addition to glitches and gradients, time dilation be-
tween runs is a common problem. Recognizing the sim-
ilarity of an original phase trace with a time-dilated one
is a problem with similarities to many other research do-
mains. Examples include matching a warped image in im-
age recognition or pitch tracking in humming recognition
[31]. These high-level methods can afford high complexity
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(b) Cross-corr. of refined trans-ns.

Figure 8. Matching of transition signatures for
two gcc runs.
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(a) Cross-corr. of initial transitions.
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(b) Cross-corr. of refined trans-ns.

Figure 9. Matching of equake transition signa-
tures to gcc.

and they can store vast libraries of training data. In contrast,
our goal is to implement an approach with simple correla-
tors and table lookup on a small set of recent signatures.

In Table 1, we demonstrate the potential problems that
time dilations pose on the transition guided phase detec-
tion scheme. In Table 1.a, we show the high matching of
processed transition information (lower trace) to a previous
baseline signature (upper trace) in the absence of time di-
lations. In Table 1.b the lower transition trace is dilated,
which shows the negative effect of time dilations on detect-
ing recurrent behavior.

a. No Dilation b. With Dilation
0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0√

(match) × (mismatch)

Table 1. Effect of time dilations in detecting
recurrent behavior.

This matching problem results from considering transi-
tion information to be sharply associated with a particular
deterministic sample point, while the actual transition times
in each run are instead probabilistic with a modest distribu-
tion around an average. (See Figure 1.c for examples.) To
remedy this problem, we propose a near-neighbor blurring
solution, which is fundamentally similar to blurring image
edges for image matching. With near-neighbor blurring, we
consider transitions as distributions along the time axis cen-
tered at their encountered locations. With this probabilistic
approach, subtle time dilations are not penalized altogether,
but instead are scaled according to their proximity to the
exact location.

Tolerance: We use this metric to define the “spread” of
the distribution we assume around an encountered transi-
tion time point. We define this in terms of samples. For
example, a tolerance of x samples means that a transition
at time sample t is considered to have a distribution in the
sample range of [t − x, t + x].

In our implementation, we choose a relatively primitive
model, where we scale the near neighbors of transitions
linearly from 1 to 0, based on the chosen sample toler-
ance. Further research could investigate other suitable dis-
tributions to characterize phase transitions. To apply near-
neighbor blurring, the baseline refined signature (T BPgg) is
altered from its raw form to generate the distributions. The
second live T BPgg stream, on the other hand, is not altered
to avoid the runtime cost. We show in Table 2 how the ex-
ample of Table 1 is altered for a tolerance of 4 samples.
With near-neighbor blurring, previous mismatch due to time
dilations is now detected as a strong match.

Applying near-neighbor blurring to T BPgg results in sim-
ilar cross correlations as in Figures 8 and 9. For the remain-
der of this paper, we refer to T BPgg augmented with near-
neighbor blurring as T BPggN . In Section 5.4 which follows,
we quantify these results for our overall algorithm, using a
quality metric we refer to as the matching score.

5.4 Quantifying Signature Matching with Matching
Score

Matching Score: In order to quantify the success of a match-
ing, we define the matching score metric, m, which provides
a measure for the strength of matching between two signa-
tures. Our goodness measure is the strength of the cross-
correlation peak at the best alignment. Therefore, we define
m as the ratio of best match value to the average of its clos-
est 10 best matchings. As this value will always be greater
than 1, we subtract 1 from the final value to remove this
offset.

For our previous experiments with two gcc runs—
the matching case,—the matching scores for initial transi-
tions T BPinit , refined transitions T BPgg and near-neighbors
T BPggN are 0.22, 0.55 and 0.32. Corresponding values for
the gcc vs. equake comparison—the mismatch case—are
0.054, 0.16 and 0.036. Therefore, T BPgg performs best
for signature matching as it produces the highest match-
ing score between the two runs of gcc. On the other hand,
T BPggN performs significantly superior for signature rejec-
tion, as it has a much lower matching score for the signa-
tures of gcc and equake.

5.5 Summary of Methods

Before presenting the general quantitative results of our
transition-guided recurrent phase detection method, here we
provide a brief summary of our applied techniques, as de-
picted in Figure 10. First, we sample PMCs during applica-
tion runtime and represent benchmark execution as a stream
of vectors (Section 3.1). Then, evaluating the similarity be-
tween each current and previous vector sample, we identify
initial transitions (Section 4). This process converts the ap-
plication execution into the binary stream T BPinit . Next, we
apply glitch/gradient filtering to T BPinit streams and con-
vert them into refined transitions, T BPgg (Section 5.1). In



baseline (refined): 0 0 1 0 0 1 0 1 0 0 0 0 1 0
baseline (near-neighbor): 0.6 0.8 1 0.8 0.8 1 0.8 1 0.8 0.6 0.6 0.8 1 0.8
new run with time dilation: 0 1 0 1 0 0 0 0 0 0 0 0 1 0√

(match)

Table 2. Detection with near-neighbor blurring under time dilation.

addition, for the first run, we apply near-neighbor blurring
to T BPgg and generate the baseline signature T BPggN (Sec-
tion 5.3). After this point, any newly observed T BPgg trace
is cross-correlated with this baseline T BPggN to detect a sig-
nature match (Section 5.2). A match is determined based on
the strength of an observed peak in the cross-correlation se-
quence, which we quantify with our matching score metric
(Section 5.4).

Benchmark run #1

Sample PMCs to form 12D vectors

Benchmark run #2

Vector stream #1

Identify Transitions

Vector stream #2

TBPinit #1

Apply glitch/gradient filtering

TBPinit #2

TBPgg #1 TBPgg #2

Apply near-neighbor blurring

TBPggN #1

Match � Peak at best alignment
Mismatch � No observable peak

Apply cross correlation

Figure 10. Flow of our methods.

6 General Recurrent Phase Matching Re-
sults and Evaluation of Methods

In Section 5, we have described our complete transition-
guided phase detection and evaluation methodology, which
tackles all described repeatability problems. In this section
we present the general results for our technique.

6.1 Phase Detection Results

We present our phase detection results for a spectrum of
benchmarks that include SPEC and other mainstream ap-
plications. We choose a subset of SPEC benchmarks that
exhibit distinct phases in terms of power and performance
metric behavior. Most of these benchmarks have high met-
ric variability, with varying transitions across different runs.
Additional non-SPEC applications share interesting phase
characteristics. Convert is a general file conversion pro-
gram that converts a large postscript file into pdf. Convert
shows significant phases depending on the contents of the
input file. We use the lame MP3 encoder to encode a wave
file under varying quality settings. The power levels in-
crease with finer recurrent phases at higher quality settings.

In our experiments, we run each application twice on our

measurement setup. During the first run, we collect the
phase transition information and apply glitch/gradient re-
moval as they are identified. In our analysis, we consider
a range of near-neighbor tolerances as well as the refined
transition signatures—i.e. the outputs of glitch/gradient fil-
tering, without near-neighbor blurring. In the second run,
we only generate refined transitions without any blurring.

Table 3 presents the matching scores for the experi-
mented application pairs. The diagonal entries show the
matching scores for the two runs of the same application—
the matching cases. The non-diagonal entries show the
matching scores between two different applications—the
mismatch cases. The baseline signatures correspond to the
columns of Table 3. The transitions for the second runs are
represented in the rows of the table. Therefore, the match-
ing scores read along a column show how well a baseline
signature can characterize a repeatable application phase
behavior. In Table 3, we present the matching scores cor-
responding to the tolerances that maximize the matching
score ratio to the highest mismatch score.

As an example, for gzip, the baseline signature has near-
neighbor blurring with a tolerance of 1 samples as indi-
cated by the value in parentheses. Reading the gzip col-
umn shows, a second run of gzip produces a matching
score of 1.0784 to the baseline gzip signature. However,
the same baseline signature produces much lower matching
scores for the runs of other benchmarks, with an average of
0.13. Among these other benchmarks, equake has the high-
est matching score to gzip baseline signature with 0.2587.
This is significantly lower than gzip’s matching score of
1.0784. Thus, our transition-based scheme successfully de-
tects the 2nd run of gzip from its transition signature, while
strongly rejecting signatures of the other benchmarks. In
general, for all the benchmarks, we see the same trends. In
all cases, the highest matching scores correspond to the sec-
ond runs of the same application (diagonal entries), while
the matching scores for different applications (non-diagonal
entries) are significantly lower.

Most benchmarks have their best matching under a few
levels of tolerance (1-3 samples) due to their small dilation
magnitudes. The only exception is convertwith an optimal
tolerance of 7. As convert has only 17 transitions in its
signature, each extra hit in the the spread has greater relative
impact, thus favoring higher tolerances. Note that, the 0
tolerance case is equivalent to the T BPgg signatures, without
any blurring. Only for mcf, is the best matching condition
achieved by T BPgg.

In general, the outcomes of our detection method are
very useful. We can detect specific recurrent phase se-
quences under different kinds of variability, with a moder-
ately simple technique that can be implemented at runtime
with negligible overhead. In most cases, considering tran-



bzip2 (1) equake (2) gap (1) gcc (3) gzip (1) mcf (0) vortex (1) convert (7) lame (2)
bzip2 0.4419 0.0506 0.0744 0.0517 0.1494 0.1765 0.0791 0.0901 0.1481
equake 0.145 0.391 0.2766 0.0594 0.2587 0.25 0.0929 0.0405 0.0757
gap 0.2 0.2195 0.7857 0.072 0.0959 0.3333 0.0417 0.0519 0.1152
gcc 0.0526 0.0364 0.0547 0.188 0.0299 0.0526 0.1565 0.0373 0.117
gzip 0.0995 0.0959 0.1875 0.0549 1.0784 0.1594 0.1014 0.0338 0.0687
mcf 0.1834 0.1828 0.2319 0.0434 0.1558 6.1429 0.1706 0.0783 0.0802
vortex 0.2333 0.1047 0.1165 0.0132 0.1144 0.0784 1.9297 0.0303 0.048
convert 0.2057 0.1719 0.2632 0.06 0.1404 0.25 0.0884 0.2165 0.1284
lame 0.1211 0.1111 0.117 0.0382 0.1261 0.2 0.0645 0.0194 0.214

Table 3. Matching scores for different applications. Benchmarks in each column represent the base
signatures that we apply near-neighbor blurring. The matching scores represent how well the refined
phase transition signatures of the row benchmarks match to these base signatures. The values in
parentheses next to benchmarks show the optimum tolerance.

sitions as distributions via near-neighbor blurring improves
our results further, with the choice of small tolerance levels.

6.2 Receiver Operating Characteristics

As with any detection scheme, our matching scores are
also prone to misses and false alarms for a particular detec-
tion threshold. That is, for all applications, a matching score
above this single detection threshold is considered as a de-
tected ‘hit’. For instance, for the runtime detection scheme
of Table 3, if we use a threshold of 0.188, we would be able
to identify all the hits. However, out of the 72 possible mis-
matches we would also have detected 11 of them as hits.
Thus, for this scenario, we would have a hit detection prob-
ability of 1. However, this would also incur a false alarm
probability of 11/72 ≈ 15.3%. If we increase the detection
threshold, the probability of false alarms reduce, while this,
in turn will incur some hits being missed. It is common
practice in pattern classification to demonstrate this effect
in terms of Receiver Operator Characteristic (ROC) curves.
The detection function is drawn for its hit probability with
respect to the probability of false alarms [11]. We show
the ROC curves for our detection technique in Figure 11.
To present the probabilities, the axes are shown from 0 to
1. However, for absolute measures, 1 on the hit axis rep-
resents 9 detected hits for the 9 benchmarks; and 1 in the
false alarm axis represents 72 falsely detected hits for the
72 possible different benchmark combinations. The inter-
mediate values are linearly scaled for both axes. Each ROC
curve in the figure corresponds to a T BPggN with a specific
tolerance; and for each curve we first compute the matching
score matrix , similar to Table 3, across the (9x9) bench-
marks for the current tolerance value, and then compute the
hit and false alarm probabilities for several detection thresh-
olds with step sizes of 0.05 for the whole matching score
range 0-6.15.

In the ROC curves, we see our detection scheme achieves
high hit probabilities with small rate of false alarms.
Among the applied tolerance levels, T BPggN with 1 sam-
ple tolerance perform best, which is followed by tolerances
of 2 and 3. The zero tolerance case, which corresponds to
T BPgg, with no distribution, performs distinctly worse for
signal rejection. This proves the effectiveness of our near-
neighbor blurring technique. Our best detection method
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Figure 11. Receiver Operating Characteristic
(ROC) curves for T BPggN with 0-10 range of
tolerances.

achieves 100% hit detection with less than 5% false alarms.

6.3 Improvement in Signature Detection with
Transition-Guided Approach

In Figure 12, we provide a final comparison of detection
success between the original value-based phase represen-
tation (V BPs), refined transitions (T BPgg); and final near-
neighbor blurred transitions (T BPggN). For this compari-
son, we show the ratio of the matching score between two
runs of the same application (matching case) to the highest
matching score among all the different applications (worst
mismatch case) for the same application—i.e. vortex for
bzip2. Consequently, this quantifies how well each rep-
resentation detects a matching signature, while rejecting
other unmatching signatures. We show the individual re-
sults and average for the experimented benchmarks. The
"break-even" line at ratio = 1 shows, below this point, a
technique finds another application signature as a "better
match" for the current benchmark, while ratios significantly
higher than 1 represent an accurate detection of a signature.



In all cases, transition based methods perform much better
than V BPs. In all cases except mcf, T BPggN shows signif-
icant improvement over T BPgg. For mcf, both transition
techniques perform equally well, as the best tolerance for
mcf is 0. On average, our transition based, near-neighbor
blurring technique provides a 6-fold improvement in recur-
rent behavior detection under variability, over the original
value-based phases.
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Figure 12. Improvement in phase detection ef-
ficiency with transition-based approach.

7 Related Work
Prior phase detection work operates at various domains

and granularities using a variety of characteristic metrics to
track phases. Dhodapkar and Smith [10], Sherwood et al.
[27, 28], Lau et al. [21], Iyer and Marculescu [19], and
Huang et al. [15] track the executed code characteristics
such as basic blocks and subroutine IDs to detect phases.
All these works are based on cycle-level simulations and,
although useful for guiding representative simulation and
architectural studies, they do not reflect the available real-
system variability.

Some recent research also looks at executed code charac-
teristics under real-system experiments. Patil et al. [24] and
Lau et al. [20] use dynamic instrumentation to identify ba-
sic block based phases. Hu et al. [14] discuss compile time
instrumentation to find basic block phases at runtime for
power studies. Annavaram et al. [2] apply program counter
sampling to find similar execution paths and investigate per-
formance behavior similarity in these regions. These ap-
proaches also account for real-system variability. However,
they do not consider detection of recurrent phase sequence
signatures.

Another line of research explores performance behavior
for phase tracking, using metrics such as IPC and memory
references. Cook et al. [7] identify execution phases based
on deterministic simulations. Todi [32] and Weissel and
Bellosa [33] use runtime performance counter information
on different platforms for workload characterization and re-
active dynamic optimizations. Duesterwald et al. [12] also
use performance counters to predict metrics such as IPC and
L1 misses. Their work uses previous short-term sample his-
tory to predict behavior in the next sampling period. These
run-time techniques also analyze application behavior un-
der variability, but they do not aim to detect large-scale re-
current phase sequences. Shen et al. [25] also look at detect-
ing recurrent phases, by observing reuse distance patterns.
They use detailed program profiling and instrumentation to
detect phases, while our work tries to identify phase transi-

tions from runtime power vectors.
Finally, there is prior work both by ourselves and others

that directly looks at program power behavior. In [17], we
use runtime power measurement and estimation to identify
phases, and Chang et al. [6] use a power profiling method
triggered by consumed energy quanta to attribute software
energy to processes. In comparison, this work uses detailed
performance counter information to identify phase transi-
tions, which are in turn used for detecting large-scale, re-
current behavior.

8 Discussion and Future Research
The motivation of our presented research is to demon-

strate the problems of recurrent behavior detection par-
ticular to experiments on real-systems and to provide
the detailed description of our transition-based solution.
Nonetheless, there remain additional aspects of this re-
search, which constitute our ongoing and future research
directions.

Applications of Detected Recurrent Signatures: Signature
detection can be applied to various workload dependent dy-
namic management strategies. Specifically for the large
timescale program phases that we analyze, observed signa-
tures can be used for thermally aware scheduling [4], work-
load balancing to meet power budgets and activity migra-
tion [13]. For these applications, observed signatures have
to be coupled with their corresponding power and tempera-
ture properties. There have been several prior research ef-
forts to estimate workload power and thermal behavior at
runtime with performance monitoring [5, 18, 22]. There-
fore, our work can vastly benefit from these methods to
project the long-term power and thermal behavior for an
observed signature. There are several additional interest-
ing challenges to employing our method in the context of
these applications; such as choice of signature sizes, time
scales of valid power/temperature projections and baseline
signature logging and replacement policies.

Comparison to Program Counter Based Techniques: An-
other interesting point of consideration is how this PMC
sampling methodology compares to program counter (PC)
based phase characterizations such as basic block vectors
(BBVs) [27]. Although a direct comparison between full-
blown BBVs and runtime PMC samples is not meaningful
due to excessive sampling overhead, coarser PC sampling
can be considered as a representation of execution paths
[2]. Lau et al. [20] show that a strong correlation between
sampled PC signatures and application behavior can be es-
tablished by mapping PC samples to control flow blocks,
such as loops and procedures. These PC based techniques
are attractive for simulation and characterization oriented
research. However, there is still research needed for an effi-
cient runtime representation for a direct comparison of tech-
niques on a real-system.

9 Conclusion
This paper presents a novel approach to phase behav-

ior detection under real-system variability. Based on real-
system measurements, we categorize the variability effects
and provide methods to address these distortions of phase



behavior. We propose a transition-based phase representa-
tion and demonstrate its robustness against phase mutations
and shifts with correlations. We develop glitch/gradient fil-
tering to refine phase transitions from sampling effects and
use near-neighbor blurring to handle observed moderate
time dilations. By carefully discriminating these variabil-
ity effects and application specific phase information, we
are able to detect recurrent phase sequences prone to sev-
eral real world transformations.

Overall, our results show that this fully-automatable flow
of techniques can detect recurrent application phase signa-
tures with good accuracy for SPEC and other benchmarks.
Our best detection scheme, near-neighbor blurring with a
tolerance of 1 sample, was able to detect all signatures with
a false alarm probability less than 5%. In comparison to
original value-based phase representation, transitions with
near-neighbor blurring performed on average 6X better in
detecting recurrent application signatures, while rejecting
unmatching signatures.

This research has importance both in characterizing real-
system variability effects and in addressing phase detection
under this variability. While further work remains to be
done, we believe the presented results represent a useful first
step in program phase detection under system variability.
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