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Abstract

Computer systems increasingly rely on adaptive dynamic
management of their operations in order to balance power
and performance goals. Such dynamic adjustments rely
heavily on the system’s ability to observe and predict work-
load behavior and system responses. In this paper, we char-
acterize the workload behavior of full benchmarks running
on server-class systems using hardware performance coun-
ters. Based on these characterizations, we develop a set
of long-term value, gradient, and duration prediction tech-
niques that can help systems provision resources. Our best
duration prediction scheme is able to predict the duration of
program phases ranging from 80ms to over 1 second with
greater than 90% accuracy across the SPEC benchmarks.

Applying our long-term predictions in a dynamic volt-
age and frequency scaling (DVFS) framework, we can iden-
tify 92% of the low-energy opportunities found by an oracle
with simple predictors. Our most aggressive predictors re-
duce the number of predictions required by 90%, allowing
more system autonomy and requiring less application mon-
itoring and interference.

1 Introduction
Repetitive and recognizable phases in software charac-

teristics have been observed by designers and exploited by
computer systems for decades [7]. In recent years, appli-
cation phase behavior has seen growing interest with two
main goals. In the first category, researchers seek to iden-
tify program phases from simulation traces [5, 14, 15] or
runtime power or performance behavior [6, 12, 16] in order
to select representative points within a run to study or sim-
ulate. In the second category, the goal is to recognize phase
shifts dynamically in running systems in order to perform
on-the-fly optimizations [1, 2, 3, 8, 10, 13]. These opti-
mizations include a wide range of possible actions such as
voltage/frequency scaling, thermal management, dynamic
cache reorganizations, and dynamic compiler optimizations
of particular code regions.

In this work, we describe a method for employing pre-
dictive on-the-fly program phase tracking in real-systems.
We use readings from hardware performance counters to
guide our analysis. The phase analysis we perform con-
sists of two key parts. The first aspect isvalue prediction
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of some metric of interest. This could be a simple met-
ric, such as instructions per cycle (IPC), or it could be a
compound metric, composing together several counter val-
ues to describe execution (e.g. IPC and L2 Cache Misses).
The second aspect of our approach isduration prediction.
That is, for how long do we expect the value prediction to
be valid? This duration prediction is important because it
helps the system gauge which sorts of adaptations are fea-
sible. For example, if the duration of a phase is predicted to
be quite short, then heavy-handed adaptations like voltage
scaling or load balancing may not make sense. In this work,
we combine duration and value prediction in our final long-
term predictors. We make use of gradient information to
predict the long-term behavior of tracked metrics. We test
the accuracy and efficiency of these prediction methods on
25 benchmarks from SPEC2000 on a high-end server class
processor. These lead to around 80% prediction coverages
for stable benchmark regions with on average 5% prediction
errors for most benchmarks.

2 Overview
The basic dimensions of our prediction framework are

long-term metric value and duration prediction. Long-term
metric prediction differs from local near-term prediction
work such as [9]. We also seek to produce long-term value
extrapolations based on the gradient trends we see. For ex-
ample, where the prior work might guess that upcoming IPC
samples will be similar to current ones, our gradient predic-
tion allows us to detect upward or downward trends in a
metric, and extrapolate them to predict gradual increases or
decreases for longer durations.

The second major dimension of the design is duration
prediction. That is, for a given value/gradient trend: how
long are we willing to bet on this trend continuing? Dura-
tion prediction is useful because it allows one to gauge not
just the current system status, but also the length of time
one can expect that status to continue. Some system adap-
tations, such as dynamic voltage/frequency scaling, or OS-
level load balancing have sizable performance and energy
overheads to overcome before they begin to reap benefits.
For such adaptations, one wishes to apply them only when
the observed trend is likely to last long enough to overcome
any transition costs.

Duration prediction for a stable phase also provides con-
fidence in the persistence of the current behavior into the
future. Thus, it reduces the need for an adaptive system to
continuously perform checks on the system status at every
cycle or polling period to detect any change of behavior.



This is very useful in cases where polling itself has a per-
formance penalty.

Our predictor implementations perform predictions only
for application regions identified asstable. Stability is de-
cided based on astability criterionandstability threshold.
Once within a stable region, we decide how long the cur-
rent phase continues with the specifiedvariation tolerance
of the tracked metric.

• Stability threshold helps us decide whether subse-
quent samples of the workload are stable in behavior
or not. If the comparison between any two samples
exceeds this threshold, they are considered unstable.
In our case, stability threshold requires samples to be
within 0.1 absolute IPC difference.

• Stability criterion helps identify regions of stability.
In our experiments we require a succession of eight
consecutive samples each within the stability thresh-
old of each other to consider stability. Only after this
condition is met, our predictors make predictions.

• Variation tolerance determines whether the current
stable phase of the application continues or a phase
transition occurs. At each new prediction point, we
compare the current metric value to the prior reading.
If they are within the specified variation tolerance, then
the current stable phase continues. When a new sam-
ple exceeds this tolerance, the duration of the current
phase ends and a phase transition occurs. In value and
duration prediction, we experiment with various varia-
tion tolerances from 1% to 50%.

3 Experimental Setup
All the experiments described were performed on an

IBM POWER4TM server platform with the AIX5L for
POWER V5.1 operating system. The machine includes
a dual-core POWER4 processor. The presented results
are per-thread behaviors running in multi-user mode on
a lightly-loaded machine. The values collected for these
results include both PC samples as well as values read
from the POWER4’s hardware performance counters, with
a sampling tool that works on top of the AIX Performance
Monitoring API (PMAPI) [11]. The sampler binds counter
behavior to a particular thread, including all library calls
and system calls performed by that thread. Sampling fre-
quency is the order of OS switching interval, approximately
10ms.

All the experiments are carried out with the SPECCPU
2000 suite with 25 benchmarks (all excepteon) and refer-
ence datasets. All benchmarks are compiled with XLC and
XLF90 compilers with the base compiler flags.

4 Near-Term Metric Value Prediction
Although our goal is to provide long term value pre-

dictions, here we present a general approach to predict the
value of a tracked particular metric (IPC in this case) for the

next sample interval. We call this,transition-guided metric
prediction, and use the results of this approach as our base-
line reference. Later, we develop upon this for long-term
predictions and also use the observations here to emphasize
the differences between short and long term predictions.

Prior work on short-term prediction has explored a range
of prediction schemes for distilling past behavior and us-
ing it to create a near-future prediction [9]. These methods
have spanned from simple statistical methods such as last-
value prediction, and exponentially-weighted moving aver-
ages (EWMA) to more elaborate history based and cross
metric prediction methods. We focus here on single metric
predictions for stable application regions.

Our transition guided predictor implementation performs
predictions only at stable application regions based on the
described stability criterion. The predictions at these stable
regions are performed based on a windowed history, guided
by the allowed variation tolerance in the window and maxi-
mum window size. The predictor starts with an initial win-
dow of size 1. If the current reading is within the variation
tolerance, the window size is increased by one element, oth-
erwise window shrinks back to 1. History window can ex-
pand up to a maximum of 128 entries, afterward it operates
like a FIFO queue. That is, when a new sample arrives into
the window, the oldest sample is dropped. Larger window
sizes above this offer no advantage in our experiments.

The prediction we make is a simple average of the win-
dow contents with uniform weighting. This general pre-
dictor encompasses several other more common statistical
predictor schemes. For example, if the variation tolerance
is set to 0, then the window size is never larger than 1, and
we have a last-value predictor. If the variation tolerance is
set very large and exponential weighting coefficients are ap-
plied, the approach becomes EWMA.

We apply our metric value prediction approach to SPEC
workloads for several variation tolerances. A fixed size
history window (with 100% variation tolerance) shows the
worst behavior with 10% mean absolute error. A 10% vari-
ation tolerance results in 2% error, with an average his-
tory window size of 48 samples. The last-value predic-
tor (with 0 tolerance) leads to best results with 1% error.
Thus, under our stability requirement, a simpler last-value
approach performs better than the history based statistical
predictors. Moreover,flat benchmarks, which show no sig-
nificant metric variations in their stable phases (such asart
andcrafty), show similar prediction accuracies across pre-
dictors with different tolerances. On the other hand, bench-
marks with observablegradientsin their stable phases (such
asammp andvortex) consistently do better with last-value
prediction.

These observations offer a foundation for building our
long term metric value predictions discussed in Section 6.
First, as we only make predictions in stable regions, we
avoid the large fluctuations of bursty regions. In the stable
regions, the inter-sample variation is relatively slow; thus
most samples are quite similar to their predecessor. Sec-
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Figure 1. Duration prediction for ammp with FXby8 predictio n.

ond, over a long period of stability, the benchmarks can
show a trend of increasing or decreasing IPC. In such cases,
looking too long back into the history actually worsens the
prediction accuracy. For these reasons, our long-term IPC
predictions in Section 6 use the last-value, together with the
observed inter-sample gradient to predict long durations of
IPC behavior.

5 Duration Prediction
As with the near-term value predictions previously dis-

cussed, duration prediction boils down to first a decision of
whetherto predict, and second a decision ofwhatto predict.

Since our goal is to identify truly long-term program
phases suitable for ACPI management, OS load-balancing,
and the like, we focus on long-duration predictions (tens
of milliseconds or more). Thus, regarding the decision of
whether to predict, our choice is to avoid duration pre-
dictions in periods of instability. We use the same de-
scribed stability criterion to identify stable regions. Of
the measured 25 SPEC benchmarks, 17 spend more than
70% of their runtime in phases that last 200ms to 2
seconds—significantly longer than our stability criterion.
Only equake, mgrid andbzip2 tend to operate mainly at
phase granularities smaller than our stability definition.

The second question for duration prediction iswhat to
predict. Here, we discuss several trade-offs, before narrow-
ing in on the possibilities we consider. Duration predic-
tion is distinct from branch outcome prediction or even the
value prediction in the previous section, because it has an
inequality at the heart of it. That is, the predictor is betting
on whether stability will lastat leastN counter samples.
For such a prediction, bettingN = 1 sample is a fairly safe
bet, while bettingN = 100,000 will almost never be correct.
The downside to repeatedly bettingN = 1, however, is that
such a short duration may not be long enough to do a major
adaptation.

For the results presented here, we consider three sim-
ple non-adaptive duration predictors. The first one simply
predicts a constant duration. It uses the current and recent
counter readings to determine when to predict 8 more sam-
ples similar to the current system behavior. In subsequent
results, we refer to this predictor asf (x) = 8 or constant8.
This predictor is somewhat conservative, in the sense that

some program phases last for seconds (i.e., hundreds of
counter samples). For these cases, predicting long phases
8 samples at a time is not as desirable as predicting a long
phase with a single aggressive prediction.

In response to the conservatism of this simple constant
predictor, we look at two more aggressive predictors. The
first of these we refer to asf (x) = x or FXX. This predic-
tor counts the number of stable samples it has seen thus
far (x), and predicts that the current behavior will continue
for at least x more samples into the future. This predictor,
thus, behaves as a doubling function. The nice attribute of
this approach is that it is relatively cautious for small stable
regions, but then grows quickly towards aggressive predic-
tions once longer stability has been shown. The downside
to this predictor is that it is prone to significant overshoot
when a phase ends.

To try to lessen the overshoot problem, we also look at
a third duration prediction function:f (x) = x/8, orFXby8.
This function does not grow as quickly as the x function,
but lessens the problems with overshoot, as we show with
the following results.

In Figure 1, we show an example of how duration predic-
tion works with the FXby8 dynamic approach on theammp
benchmark. In the upper plot, we show the original mea-
sured IPC. Superimposed is an IPC value prediction based
on last-value prediction that is predicted to be stable for the
current duration being predicted. The lower plot shows how
the predicted duration grows while FXby8 makes repetitive
successful predictions about the current phase. The shaded
regions in the lower plot show where the prediction actually
performs an overshoot by estimating that the phase will last
longer.

While last value prediction is very successful for near-
term metric predictions, the flat IPC predictions of Figure 1
show that it is insufficient for long-term prediction. In Sec-
tion 6, we describe and evaluate a more effective gradient-
based method for long-term IPC prediction, where we ex-
trapolate on IPC trends.

5.1 Duration Prediction Evaluation

To evaluate the success of any duration prediction
method, we first have to determine metrics for gauging
them.
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BENCHMARK DATASET % STABLE 
DURATIONS

MEAN STABLE
DURATION

f(x)=8 f(x)=x f(x)=x/8 f(x)=8 f(x)=x f(x)=x/8 f(x)=8  f(x)=x f(x)=x/8 f(x)=8 f(x)=x f(x)=x/8 
ammp in 82.07 136.73 0.94 0.78 0.96 8.00 34.67 5.43 0.89 0.48 0.85 2.26 24.85 5.74
applu in 79.99 17.69 0.35 0.32 0.88 8.00 8.10 1.11 0.22 0.16 0.45 20.25 29.07 5.84
apsi ref 93.84 28.25 0.68 0.58 0.92 8.00 12.34 1.73 0.53 0.34 0.60 14.31 33.09 5.32
art ref1 91.34 18.71 0.46 0.38 0.88 8.00 10.11 1.37 0.29 0.21 0.49 18.45 29.65 6.84
bzip2 graphic 26.23 9.57 0.07 0.03 0.52 8.00 12.00 1.19 0.02 0.02 0.08 7.08 8.22 1.56
crafty in 98.98 235.57 0.97 0.74 0.96 8.00 105.74 9.37 0.94 0.49 0.86 1.88 34.39 2.78
equake in 5.32 44.33 0.78 0.67 0.92 8.00 30.00 2.75 0.63 0.45 0.67 0.50 2.00 0.18
facerec ref 26.95 67.35 0.87 0.72 0.95 8.00 17.96 2.83 0.77 0.65 0.79 1.54 15.03 1.76
fma3d ref 88.32 36.48 0.78 0.67 0.92 8.00 18.30 2.65 0.64 0.42 0.67 10.46 32.53 4.86
galgel in 93.06 33.22 0.73 0.52 0.93 8.00 11.68 1.86 0.57 0.32 0.64 11.62 27.43 5.58
gap ref 95.58 67.28 0.89 0.70 0.93 8.00 26.77 4.77 0.81 0.45 0.78 6.24 14.55 5.00
gcc integrate 87.17 39.5 0.78 0.60 0.91 8.00 17.07 2.55 0.62 0.41 0.68 0.90 4.06 0.94
gzip random 98.4 175.64 0.95 0.73 0.96 8.00 42.25 6.76 0.92 0.49 0.86 2.60 25.73 4.48
lucas in 96.44 38.25 0.77 0.62 0.93 8.00 15.93 2.04 0.63 0.39 0.70 10.72 38.07 5.70
mcf inp 99.92 1664.67 1.00 0.90 0.98 8.00 152.94 36.53 0.99 0.52 0.91 0.12 31.33 0.64
mesa in 97.86 32.18 0.68 0.53 0.92 8.00 11.44 1.71 0.53 0.32 0.64 13.41 32.47 6.42
mgrid in 0.38 9.5 0.00 0.00 0.60 0.00 0.00 1.00 0.00 0.00 0.16 0.12 0.12 0.04
parser ref 87.13 23.8 0.64 0.48 0.90 8.00 12.19 1.79 0.45 0.30 0.56 13.12 30.83 5.52
perlbmk makerand 96.67 145 1.00 1.00 1.00 8.00 30.00 4.44 0.88 0.83 0.83 0.00 0.00 0.00
sixtrack inp 99.5 226.05 0.97 0.82 0.97 8.00 63.20 8.85 0.94 0.51 0.88 2.00 31.85 5.52
swim in 93.98 16.37 0.46 0.36 0.85 8.00 8.09 1.26 0.26 0.16 0.41 18.99 22.85 7.30
twolf ref 99.7 830.5 0.99 0.85 0.98 8.00 97.14 20.42 0.98 0.55 0.89 0.56 12.08 2.14
vortex bendian3 95.7 106.29 0.93 0.75 0.95 8.00 47.84 5.51 0.87 0.50 0.83 3.94 37.17 4.98
vpr place 99.94 1665 1.00 0.88 0.98 8.00 203.73 44.69 0.99 0.61 0.94 0.16 12.00 0.60
vpr route 93.02 26.41 0.66 0.48 0.91 8.00 13.36 1.83 0.49 0.30 0.61 15.05 30.53 5.70
wupwise ref 93.36 76.49 0.89 0.69 0.95 8.00 17.79 3.42 0.81 0.44 0.79 4.96 14.47 3.46

% RUNTIME IN 
OVERSHOOT

PREDICTED STABILITY
/ TOTAL STABILITY

ACCURACY
MEAN SAFE 

PREDN DURATION

Table 1. Accuracy, efficiency and overshoot measures for the three duration prediction schemes.

• Accuracy or Safety define a method’s rate of correct
predictionsgiven that it has chosen to make a predic-
tion [4].

• Safe Prediction Duration Length tells how far into
the future, on average, a predictor predicts correctly.
Although a verycautiouspredictor will have very high
accuracy by predicting very small distances into the
future, it is equally important to be able to predict long
into the future for applicability of the method as well
as to reduce the monitoring overhead that accompanies
each prediction.

• Degree of Overshoot provides a measure of the mag-
nitude of the incorrect duration predictions, as longer
predictions have a higher potential to significantly
overshoot the actual end of the phase behavior. We
present this with the percentage of program runtime
spent in overshot predictions.

Table 1 presents these accuracy, efficiency and overshoot
results for the three duration predictors discussed. The first
two columns show the used benchmarks and their input
datasets. Then, the next two columns show each bench-
mark’s true stable-phase behavior. One indicates the per-
centage of application runtime spent in a stable duration.
The next gives the mean length (in 10ms samples) of stable
durations.

We presentaccuracyas the ratio of safe predictions to
the total number of predictions made.Safe predictions, is
the count of the number of duration predictions in which
the stable phase lasted at least as long as predicted.

Overall, FXX shows the worst prediction accuracy, since
it tends to overshoot phases often. These overshoots count
as “unsafe” predictions. FXby8 shows the best prediction
accuracy with an average of 90.6%, because it grows slowly
at first and captures short stable regions.

Prediction accuracy is important, but it is only one piece
of the puzzle. A second aspect of a predictor is the typical
duration it is able to successfully predict. We show this with
the mean safe prediction durationin Table 1. Predictions
that overshot are not included in this average. Next set of
columns show what fraction of a benchmark’s true stability
the predictors were able to successfully capture, i.e.stable
coverageof a predictor.

By design, the constant8 predictor always has a safe
prediction size of 8. FXby8, often makes fairly short
predictions, except for applications likevpr andmcf that
have a few very long phases, which allow FXby8 to grow
into longer predictions. FXX reaches long intervals more
quickly with its aggressive predictions, although this might
result in the predictor bypassing some shorter phases via
overshoots as in the case ofcrafty, which can impair the
effective stable coverage.

In terms of stable coverage, FXby8 predictor is the best
for 15 of the 26 benchmarks, offering good predictions for
typically 60-94% of a program’s stable runtime. For 11 of
the benchmarks, however, the constant8 predictor has better
coverage than FXby8. These are the cases with longer mean
stable phase durations. In these cases, stable coverage of
FXby8 drops as we discard the overshot predictions at the
end of each phase.

The last figure of merit in designing duration predictors
is the degree of overshoot they exhibit. This is given as
thepercentage of time spent in overshootin Table 1. FXX
displays poor performance, with very long overshoots. Be-
tween FXby8 and constant8, the distinction is once again
more subtle. FXby8 tends to have lower overshoots for the
benchmarks that have shorter phases, but it has larger av-
erage overshoots for benchmarks with very long mean sta-
ble durations—150 samples or more—such asammp, mcf,
sixtrack, twolf, andvpr. In these cases, the dynamic
prediction builds up and overshoots significantly.
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Figure 2. Ammp duration and gradient based metric value pred iction for f(x)=x/8.

Overall, duration prediction is a new aspect to phase pre-
diction research with interesting trade-offs. A predictorcan
be conservative by either guessing infrequently, lowering
its stable coverage, or by predicting short intervals, reduc-
ing mean predicted safe duration. The FXby8 predictor is
better in terms of accuracy, and has low hardware complex-
ity. On the other hand, FXX is dominant in terms of safe
prediction durations. In terms of overshoot, constant8 and
FXby8 perform better. If a particular application requires
very long predictions for its resource planning, then FXX
or even FXby8 might be preferable, depending on the trade-
off between reaching high predictions quickly and penalty
of overshoot. In addition, if the actual cost of monitoring
the behavior at each new prediction is significant compared
to the penalty of overshoot, then, the more aggressive ap-
proach, FXX, can turn out to be appealing with its few pre-
diction checkpoints.

6 Long-term Metric Behavior Prediction

As we have discussed in the previous sections, a sim-
ple last-value IPC prediction is good for short-term predic-
tion, but less effective when used in conjunction with dura-
tion prediction for longer-term predictions. Here we sug-
gest a simple method to better extrapolate the IPC trend
between duration prediction checkpoints. To do this, the
value prediction incorporates agradient (slope) by com-
puting the∆IPC per sampling interval between two pre-
diction checkpoints. With this, it can provide a first-order
IPC estimate based on the base IPC and constant gradi-
ent, where for each new interval, next predicted IPC equals
current prediction+ ∆IPC. This method relies on the gra-
dients being consistent within predicted durations, whichis
a reasonable assumption under our stability criterion.

In Figure 2, we show a timeline of duration prediction
paired with this value and gradient prediction. We plot the
original IPC, the predicted IPC and the difference between
them. During stable regions, the results match well. The
only points of significant error are where the duration pre-
dictor overshoots, leading to higher IPC prediction errorsas
a phase ends.

We evaluate the accuracy of long-term metric prediction
(combined duration and gradient prediction) for the SPEC
suite, with the same three prediction functions. Except for

the bursty benchmarksbzip2, equake and mgrid, long-
term IPC prediction performs quite well. On average the
FXby8 achieves an absolute error of 4%. Constant8 and
FXX predictors have average errors of 5% and 10% respec-
tively.

7 Applications of Duration Prediction

This section gives an example of a concrete application
of duration prediction for energy savings. In particular,
we explore its applicability to a dynamic voltage/frequency
scaling (DVFS) scenario. For DVFS, the goal is to identify
program periods with “slack”, in which slowing down the
processor core will save energy with little impact on perfor-
mance. These periods are typically memory-bound periods
in the code [17]. During these periods, we can operate the
processor at a lower voltage and frequency, in order to save
energy, with little performance impact.

To demonstrate the application of value/duration pre-
diction to DVFS, we focus on a simplified view of the
DVFS problem. We consider two modes:high-energymode
operates the processor at full performance with full volt-
age/frequency, andlow-energymode operates at low volt-
age/frequency. Our goal in this work is to correctly pre-
dict when to switch to low-energy mode, and gauge how
long to remain there before reconsidering a switch back to
high-energy mode. We evaluate our success at this goal by
considering two conceptual metrics: (i) percentage of time
spent in low-energy mode, and its comparison to an ora-
cle, and (ii) number of DVFS switches required, since volt-
age/frequency adjustments cost both time and energy.

7.1 DVFS Policy

The low-energy setting (slow clock and low voltage) is
used for memory-bound portions of the code. The high-
energy setting is used at all other times. Our policy is to
switch to the low-energy state when we are in a stable phase
in which IPC is 25% or less than the maximum IPC value
and L3 references are greater than 10% of the maximum
value. We have looked at several possible metrics to iden-
tify slack, such as DTLB and ITLB misses, L3 misses and
data table walks. Of them, the rate of L3 references pro-
vides the highest confidence (81%) when used with IPC to
characterize memory-boundness.
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Figure 3. Evaluation of duration and gradient prediction un der DVFS.

During stable phases, we can make good predictions
about program behavior and apply DVFS accordingly. Du-
ration and gradient prediction is performed as described in
the previous section. Layered on top of the long-term metric
prediction is the DVFS policy decision. That is, the predic-
tor decides whether to switch to low or high-energy settings
for the next predicted duration, based on the long-term IPC
and L3 references value predictions.

What remains is to handle unstable regions. At the end
of a stable phase, that is when a transition is detected at the
new prediction checkpoint, one can either keep the DVFS
state as-is, or one can return the DVFS state back to high-
energy. Although the former is more efficient in terms of
avoiding redundant DVFS costs, it can result in significant
performance penalty in quickly-varying benchmarks. For
example,mgrid has two short stable periods at the bench-
mark initialization with mean duration of 9.5 samples as we
describe in Table 1. The predictor catches one of them and
pushes the DVFS state to low at the start of the benchmark.
After this point, however, there is only instability for the
remainder 99% of the benchmark, and the DVFS state is
never returned. As a result, mgrid was incorrectly kept in
the low energy state 87% of its runtime. Therefore, we in-
stead use the policy in which unstable regions all revert to
the high-energy DVFS state.

7.2 DVFS Results

We show DVFS results for four SPEC benchmarks.
The four chosen benchmarks represent different corners of
workload behavior. Ammp presents a case with repetitive
large-scale phases. In contrast,apsi has numerous smaller
scale phases.Mgrid is a very bursty benchmark with almost
no stable phases; andmcf has a single long stable phase with
a significant gradient.

Figure 3 summarizes the effectiveness of DVFS for the
four benchmarks, for different duration prediction meth-
ods. Again, we show the three predictors: constant8, FXX,
FXby8, and a fourth one:f (x) = 1 orconstant1. This fourth
predictor predicts every stable sample, and thus never over-
shoots for more than one sample. We include the constant1

results to demonstrate that our prediction-based techniques
achieve results nearly identical (within 1%) to those of a
method that monitors counters every sample. The relatively
simple predictors we propose offer equal accuracy and a
greater degree of autonomy for this sort of system adap-
tation.

For each application, we show five bars. The rightmost
bar shows the runtime spent in low-energy mode with ora-
cle knowledge. The other four bars give the breakdown of
DVFS results for different predictors. The lowest portions
of the stacked bars show the correctly-predicted low energy
regions. Next, we show the percentage of time where our
method incorrectly predicts a low-energy region, while in
reality the application is in a high-energy region. These rep-
resent the prediction overshoots. The top portions represent
the opposite: lost opportunity time, where the applicationis
truly in low-energy mode, but our prediction has been for
high-energy.

Figure 3 shows, except formgrid, all the benchmarks
spend around 20% their stable time in low-energy mode;
and our predictors are able to capture most of the avail-
able DVFS opportunities.Mgrid is too unstable to make
DVFS predictions. All of the predictors come within 92%
of the oracle approach.Ammp andapsi with the FXX pre-
dictor have a relatively larger incorrect low-energy mode.
In ammp, this is due to a large overshoot after its huge low-
energy phase. Inapsi, this is due to smaller overshoots ac-
cumulated over the large number of small phases.Apsi also
spends relatively more time in the lost-opportunity mode.
This is because of short low-energy regions that are slightly
larger than our stability criterion.

Figure 4 shows the number of voltage/frequency adjust-
ments. This is an estimate of DVFS overhead cost. It also
gives the number of predictions, as a proxy to the predic-
tion overhead cost. While constant1 makes many predic-
tions and DVFS’s, the other predictors are much more sta-
ble and lead to significantly less overheads.Apsi shows
a counter example with FXX, where it leads to more ad-
justments. Here, predicted gradients in the overshot regions
lead to additional false DVFS regions.Mgrid andmcf show
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Figure 4. Overheads associated with prediction and DVFS.

very low DVFS transition counts for opposite reasons. In
mcf, the behavior is very stable, roughly 90% of the time is
spent in low-energy mode, and our predictors quickly iden-
tify the low-energy opportunity. Inmgrid, behavior is so
unstable that duration prediction does not occur, and thus
the program spends all of its time in high-energy mode.

In summary, in all predictable cases the long term predic-
tors perform within 1% of the constant1 case in recovering
stable low energy regions. Moreover, unlike the constant1
case that performs continuous monitoring of metrics, they
all make substantially less number of predictions, leading
to less monitoring overhead.

8 Conclusion
Duration prediction, in conjunction with long-term value

prediction is an important area, since many phase directed
system level readjustments are only feasible if phases are
long enough. In this work we offer first methods for apply-
ing duration prediction effectively to energy-saving appli-
cations. Our methods achieve prediction accuracies close
to 90% of actual stable durations with less than 10% long-
term IPC prediction errors in most cases; despite the high
variability of phase lengths across the SPEC suite.

With an increasing industry-wide focus on adaptive and
autonomous system management, schemes for predicting
and responding to very-long-term system behavior become
critical for energy efficiency. The work presented here of-
fers practical, low-overhead techniques for such long-range
predictions, as well as evaluations of their possible applica-
tion to important problems in power aware computing.
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