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MANAGEMENT OF THEIR OPERATIONS TO BALANCE POWER AND

PERFORMANCE GOALS. SUCH DYNAMIC ADJUSTMENTS RELY HEAVILY ON THE

SYSTEM'S ABILITY TO OBSERVE AND PREDICT WORKLOAD BEHAVIOR AND

SYSTEM RESPONSES. THE AUTHORS CHARACTERIZE THE WORKLOAD

BEHAVIOR OF FULL BENCHMARKS RUNNING ON SERVER-CLASS SYSTEMS

USING HARDWARE PERFORMANCE COUNTERS. BASED ON THESE

CHARACTERIZATIONS, THEY DEVELOPED A SET OF LONG-TERM VALUE,

GRADIENT, AND DURATION PREDICTION TECHNIQUES THAT CAN HELP

SYSTEMS TO PROVISION RESOURCES.

e e 0000 Repetitive and recognizable phases
in software characteristics have been observed
by designers and exploited by computer sys-
tems for decades.! Application phase behav-
ior has been the focus of growing interest with
two main goals. In the first category,
researchers seek to identify program phases
from simulation traces,”* runtime power, or
performance behavior’” to select representa-
tive points within a run to study or simulate.
In the second category, the goal is to dynam-
ically recognize phase shifts in running sys-
tems to perform on-the-fly optimizations.®'?
These optimizations include a wide range of
possible actions such as voltage or frequency
scaling, thermal management, dynamic cache
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reorganizations, and dynamic compiler opti-
mizations of particular code regions.

We describe a method for employing pre-
dictive on-the-fly tracking of program phases
in real systems. Readings from hardware per-
formance counters guide our analysis. The
phase analysis we perform consists of two key
parts. The first aspect is value prediction of
some metric of interest. This could be a sim-
ple metric, such as instructions per cycle
(IPC), or it could be a compound metric,
combining several counter values (such as IPC
and L2 cache misses) to describe execution.

The second aspect of our approach is dura-
tion prediction, that is, for how long will the
value prediction remain valid? This duration
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prediction is important because it helps the
system gauge which sorts of adaptations are
feasible. For example, if the phase has a dura-
tion predicted to be quite short, then heavy-
handed adaptations like voltage scaling or load
balancing might not make sense.

In this work, we combine duration and
value prediction in our final long-term pre-
dictors. We use gradient information to pre-
dict the long-term behavior of tracked
metrics, testing the accuracy and efficiency of
these prediction methods on 25 benchmarks
from SPEC2000 on a high-end server-class
processor. These lead to around 80 percent
prediction coverages for stable benchmark
regions and an average of 5 percent prediction
errors for most benchmarks.

Overview

The basic dimensions of our prediction
framework are long-term metric value and
duration prediction. Long-term metric pre-
diction differs from local near-term predic-
tion work."" We also seek to produce
long-term value extrapolations based on gra-
dient trends. For example, where the prior
work might guess that upcoming IPC sam-
ples will be similar to current ones, our gra-
dient prediction method detects upward or
downward trends in a metric and extrapolates
them to predict gradual increases or decreas-
es for longer durations.

The second major dimension of the design
is duration prediction. That is, for a given
value/gradient trend, how long are we willing
to bet on this trend continuing? Duration pre-
diction is useful because it lets us gauge not
just the current system status, but also the
length of time we can expect that status to
continue. Some system adaptations, such as
dynamic voltage/frequency scaling, or OS-
level load balancing have sizable performance
and energy overheads to overcome before they
begin to reap benefits. For such adaptations,
the goal is to apply them only when the
observed trend is likely to last long enough to
overcome any transition costs.

Duration prediction for a stable phase also
provides confidence in the persistence of the
current behavior into the future. Thus, it
reduces the need for an adaptive system to
continuously perform checks on the system
status at every cycle or polling period to detect

any change of behavior. This is very useful in
cases where polling itself has a performance
penalty.

Our predictor implementations perform
predictions only for application regions iden-
tified as stable. Stability is based on a stability
criterion and stability threshold. Once with-
in a stable region, we decide how long the cur-
rent phase continues with a specified variation
tolerance of the tracked metric.

Stability threshold helps us decide whether
subsequent samples of the workload are sta-
ble in behavior. If the comparison between
any two samples exceeds this threshold, our
method considers the sample unstable. In our
case, stability threshold requires samples to be
within a 0.1 IPC absolute difference.

Stability criterion helps identify regions of
stability. In our experiments, we require a suc-
cession of eight consecutive samples each
within the stability thresholds of the others to
consider the current execution region as sta-
ble. Only after the region meets this condi-
tion do our predictors make predictions. We
choose this stability criterion based on the
observed phase duration distributions of our
experiment’s benchmarks, evaluated for the
stability threshold. Overall, 70 percent of all
observed phases show durations less than eight
samples, while constituting less than 5 per-
cent of the actual benchmark execution. With
our stability requirement, we avoid unneces-
sary predictions in these short, bursty regions
and focus on the actual, large-scale phase
behavior for duration prediction.

Variation tolerance determines whether the
current stable phase of the application con-
tinues or a phase transition occurs. At each
new prediction point, we compare the current
metric value to the prior reading. If they are
within the specified variation tolerance, then
the current stable phase continues. When a
new sample exceeds this tolerance, the dura-
tion of the current phase ends, and a phase
transition occurs. In value and duration pre-
diction, we experiment with various variation
tolerances from 1 to 50 percent.

Experimental setup

We conducted all our experiments on an
IBM POWER4 server platform with the
AIX5L for Power, version 5.1 operating sys-
tem. The machine includes a dual-core



POWERA4 processor. The presented results are
per-thread behaviors running in multiuser
mode on a lightly loaded machine. The val-
ues collected for these results include both PC
samples as well as values read from the
POWER4’s hardware performance counters,
with a sampling tool that works on top of the
AIX  Performance  Monitoring  API
(PMAPI)." The sampler binds counter behav-
ior to a particular thread, including all library
calls and system calls performed by that
thread. Sampling period is on the order of OS
switching interval, approximately 10 ms. This
choice of sampling period is based on the sam-
pling granularity provided by the POWER4
performance monitoring tool.

All the experiments use the SPEC
CPU2000 suite with 25 benchmarks (all
except eon) and reference data sets. We com-
piled all the benchmarks with XLC and
XLF90 compilers with the base compiler flags.

Short-term metric value prediction

Although our goal is to provide long-term
value predictions, here we present a general
approach to predict the value of a tracked par-
ticular metric (IPC in this case) for the next
sample interval. We call this #ransition-guided
metric prediction and use the results of this
approach as our baseline reference. Later, we
build on this for long-term predictions and
use the observations here to emphasize the dif-
ferences between short- and long-term pre-
dictions.

Prior work on short-term prediction has
explored a range of prediction schemes for dis-
tilling past behavior and using it to create a
near-future prediction.! These methods have
spanned from simple statistical methods such
as last-value prediction and exponentially
weighted moving averages (EWMA), to more
elaborate history-based and cross-metric pre-
diction methods. We focus here on single-
metric predictions for stable application
regions.

Our transition-guided predictor imple-
mentation makes predictions only at stable
application regions identified using the
described stability criterion. It makes the pre-
dictions based on a windowed history, guid-
ed by the allowed variation tolerance in the
window and maximum window size. The pre-
dictor starts with an initial window size of 1

sample. If the current reading is within the
variation tolerance, the predictor increases the
window size by one element, otherwise the
window shrinks back to 1. A history window
can expand up to a maximum of 128 samples;
afterward it operates like a FIFO queue. That
is, when a new sample arrives in the window,
the oldest sample drops out. Larger window
sizes offered no advantage in our experiments.

The prediction we make is a simple average
of the window contents with uniform weight-
ing. This general predictor encompasses sev-
eral other more common statistical predictor
schemes. For example, if the variation toler-
ance is set to 0, then the window size is never
larger than 1, and we have a last-value pre-
dictor. If we set the variation tolerance very
high and apply exponential weighting coeffi-
cients, the approach becomes an EWMA
prediction.

We apply our metric value prediction
approach to SPEC workloads for several vari-
ation tolerances. A fixed-size history window
(with 100 percent variation tolerance) shows
the worst behavior with 10 percent mean
absolute error. A 10 percent variation toler-
ance results in 2 percent error, with an average
history window size of 48 samples. The last-
value predictor (with 0 tolerance) leads to the
best results with 1 percent error. Thus, under
our stability requirement, a simpler last-value
approach performs better than the history-
based statistical predictors. Moreover, flat
benchmarks, which show no significant met-
ric variations in their stable phases (such as art
and crafty), show similar prediction accura-
cies across predictors with different tolerances.
On the other hand, benchmarks with observ-
able gradients in their stable phases (such as
ammp and vortex) consistently do better with
last-value prediction.

These observations offer a foundation for
building our long-term metric value predic-
tions. First, because we only make predictions
in stable regions, we avoid the large fluctua-
tions of bursty regions. In the stable regions,
the intersample variation is relatively slow;
thus most samples are quite similar to their
predecessor. Second, over a long period of sta-
bility, the benchmarks can show a trend of
increasing or decreasing IPC. In such cases,
looking too far back into the history actually
worsens the prediction accuracy. For these rea-
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sons, our long-term IPC predictions use the
last value together with the observed inter-
sample gradient to predict long durations of

IPC behavior.

Duration prediction

As with the short-term value predictions
previously discussed, duration prediction boils
down to, first, a decision of whetherto predict
and, second, a decision of what to predict.

Since our goal is to identify truly long-term
program phases suitable for Advanced Con-
figuration and Power Interface (ACPI) man-
agement, OS load-balancing, and the like, we
focus on long-duration predictions (tens of
milliseconds or more). Thus, regarding the
decision of whether to predict, our choice is to
avoid duration predictions in periods of insta-
bility. We use the same stability criterion to
identify stable regions. Of 25 SPEC bench-
marks, 17 spend more than 70 percent of their
runtime in phases that last 200 ms to 2 sec-
onds—significantly longer than our stability
criterion. Only equake, mgrid, and bzip2 tend
to operate mainly at phase granularities small-
er than our stability definition.

The second question for duration predic-
tion is what to predict. Here, we discuss sev-
eral trade-offs, before narrowing in on the
possibilities we consider. Duration prediction
is distinct from branch outcome prediction or
even the value prediction in the previous sec-
tion, because it has an inequality at the heart
of it. That is, the predictor is betting on
whether stability will last az Jeast N counter
samples. For such a prediction, betting N=1
sample is a fairly safe bet, while betting that
N=100,000 will almost never be correct. The
downside to repeatedly betting N = 1, how-
ever, is that such a short duration may not be
long enough to perform a major adaptation.

For the results presented here, we consider
three simple nonadaptive duration predictors.
The first one simply predicts a constant dura-
tion. It uses the current and recent counter
readings to determine when to predict eight
more samples similar to the current system
behavior. We choose eight as the constant pre-
diction duration, so that we predict the stable
phase continues at least another stability cri-
terion interval. Thus, the first eight-sample
timeout required by our stability criterion trig-
gers the prediction of the next eight samples

as the continuing phase duration. This pro-
vides a balance between correct predictions
and mispredictions that overshoot the whole
duration of the current phase. For a stable
phase, where we can make at least one correct
prediction, the eight-sample predictor covers
more than 50 percent of the phase duration,
while the final overshoot is less than 50 per-
cent of the total duration. In subsequent
results, we refer to this predictor as constant8;
f(x) = 8.This predictor is somewhat conserv-
ative, in the sense that some program phases
last for seconds (that is, hundreds of counter
samples). For these cases, predicting long
phases using eight samples at a time is not as
desirable as predicting a long phase with a sin-
gle aggressive prediction.

In response to the conservatism of this sim-
ple constant predictor, we look at two more
dynamically growing predictors. The first of
these we refer to as FXX; f{x) = x. This pre-
dictor counts the number of stable samples it
has seen thus far, x, and predicts that the cur-
rent behavior will continue for at least x more
samples into the future. This predictor thus
behaves as a doubling function. The nice
attribute of this approach is that it is relative-
ly cautious for small stable regions, but then
grows quickly toward aggressive predictions
once the region has demonstrated longer sta-
bility. The downside to this predictor is that
it is prone to significant overshoot when a
phase ends.

To lessen the overshoot problem, we also
look at a third duration prediction function,
which we call FXby8; f{x) = x/8. This func-
tion does not grow as quickly as the FXX
function, but lessens the problems with over-
shoot, as we show with the following results.
We choose FXby8 as our third duration pre-
dictor example, because for this set of dynam-
ically growing predictors, FXby8 provides the
most timid behavior. Based on our stability
criterion of eight samples, FXby8 initially sees
eight stable samples and predicts one more
sample of stability. Thus, it starts predictions
very cautiously and grows to predict further
into the future for long stable phases.

In Figure 1, we show an example of how
duration prediction works with the FXby8
dynamic approach on the ammp benchmark.
For all plotted traces, the xaxis shows the exe-
cution timeline in seconds. In the Figure 1a,
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Figure 1. Duration prediction for ammp with FXby8: original and predicted IPC (a) and target window size (b).

we show the original measured IPC and super-
impose an IPC value prediction based on last-
value predictions for each stable phase. Figure
1b shows how the predicted duration grows
while FXby8 makes repetitive successful pre-
dictions about the current phase. The shaded
regions in the lower plot show where the pre-
diction actually performs an overshoot by esti-
mating that the phase will last longer.
Although last-value prediction is very suc-
cessful for short-term metric predictions, the
flac IPC predictions of Figure 1 show that it is
insufficient for long-term prediction. Later,
we describe and evaluate a more effective gra-
dient-based method for long-term IPC pre-
diction, where we extrapolate on IPC trends.

Duration prediction evaluation

To evaluate the success of any duration pre-
diction method, we first have to define the fol-
lowing metrics for gauging them:

* Accuracy defines a method’s rate of cor-
rect predictions given that it has chosen
to make a prediction.'® We present accu-
racy as the ratio of safe predictions to the
total number of predictions made. We
define safe predictions as the number of
duration predictions in which the stable
phase lasted at least as long as predicted.

o Mean safe prediction duration tells how
far into the future, on average, a predic-

tor makes predictions correctly. Although
a very cautious predictor will have very
high accuracy by predicting very small
distances into the future, it is equally
important to be able to predict further
into the future for applicability of the
method as well as to reduce the moni-
toring overhead that accompanies each
prediction.

 Quershoot runtime measures the magni-
tude of incorrect duration predictions;
longer predictions have a higher potential
to significantly overshoot the actual end
of the phase behavior. We present this
with the percentage of program runtime
spent in overshot predictions.

Tables 1 to 3 present these accuracy, mean
safe prediction duration, and overshoot results
for the three duration predictors discussed.
The first two columns in the tables show the
benchmarks and their input data sets. In Table
1, the next two columns show each bench-
mark’s true stable-phase behavior. One indi-
cates the percentage of application runtime
spent in a stable duration. The next gives the
mean length (in 10 ms samples) of stable
durations.

Opverall, FXX shows the worst prediction
accuracy, since it often tends to overshoot
phases. These overshoots count as unsafe pre-
dictions. FXby8 shows the best prediction
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Table 1. Accuracy for the three duration prediction schemes.
Mean stable
Stable duration
Data durations (no. of Accuracy

Benchmark set (percentage) 10-ms samples) Constant8 FXX FXby8
ammp in 82.07 136.73 0.94 0.78 0.96
applu in VOr99 17.69 0.35 0.32 0.88
apsi ref 93.84 28.25 0.68 0.58 0.92
art ref1 91.34 18.71 0.46 0.38 0.88
bzip2 graphic 26.23 9.57 0.07 0.03 0.52
crafty in 98.98 235.57 0.E)7 0.74 0.96
equake in 5,82 44.33 0.78 0.67 0.92
facerec ref 26.95 67.35 0.87 0.72 0.95
fma3d ref 88.32 36.48 0.78 0.67 0.92
galgel in 93.06 33.22 0.73 0.62 0.93
gap ref 95.568 67.28 0.89 0.70 0.93
gcce integrate 87.17 39.5 0.78 0.60 0.91
gzip random 98.4 175.64 0.95 0.73 0.96
lucas in 96.44 38.25 0.77 0.62 0.93
mcf inp 9892, 1664.67 1.00 0.90 0.98
mesa in 97.86 32.18 0.68 0.53 0.92
mgrid in 0.38 9.5 0.00 0.00 0.60
parser ref 87.13 23.8 0.64 0.48 0.90
perlbmk makerand 96.67 145 1.00 1.00 1.00
sixtrack inp SOtb) 226.05 017 0.82 0.97
swim in 93.98 16.37 0.46 0.36 0.85
twolf ref SO 830.5 0. 0.85 0.98
vortex bendian3 95.7 106.29 0.93 0.75 0.95
vpr place 99.94 1665 1.00 0.88 0.98
vpr route 93.02 26.41 0.66 0.48 0.91
wupwise ref 93.36 76.49 0.89 0.69 0.95

accuracy with an average of 90.6 percent intervals more quickly with its aggressive pre-

because it grows slowly at first and captures  dictions, although this might result in the pre-

short stable regions. dictor bypassing some shorter phases via

Prediction accuracy is important, but itis  overshoots as in the case of crafty which can

only one piece of the puzzle. A second aspect  impair the effective stable coverage.

of a predictor is the typical duration it is able In terms of stable coverage, the FXby8 pre-

to successfully predict. We show this with the  dictor is the best for 15 of the 26 benchmarks,

mean safe prediction duration in Table 2. This  offering good predictions for typically 60 to

mean does not include predictions that over- 94 percent of a program’s stable runtime. For

shot. The next set of columns show what frac- 11 of the benchmarks, however, the constant8

tion of a benchmark’s true stability the predictor has better coverage than FXby8.

predictors successfully captured, representing  These are the cases with longer mean stable

the stable coverage of the three predictors. phase durations. In these cases, stable cover-

By design, the constant8 predictor always — age of FXby8 drops as we discard the overshot

has a safe prediction size of 8. FXby8 often  predictions at the end of each phase.

makes fairly short predictions, except for The last figure of merit in designing dura-

applications like vpr and mcf that have a few  tion predictors is the degree of overshoot they

very long phases, which allow FXby8 to grow  exhibit; we show this metric in Table 3. FXX

into longer predictions. FXX reaches long  displays poor performance, with very long

EEE MICRO



Table 2. Safe prediction durations and stability for the three duration prediction schemes.
Mean safe
Data prediction duration Predicted stability/total stability
Benchmark set FXX FXby8 Constant8 FXX FXby8
ammp in 34.67 5.43 0.89 0.48 0.85
applu in 8.10 1.11 0.22 0.16 0.45
apsi ref 12.34 153 0.53 0.34 0.60
art ref1 10.11 1537 0.29 0.21 0.49
bzip2 graphic 12.00 1.19 0.02 0.02 0.08
crafty in 105.74 9.37 0.94 0.49 0.86
equake in 30.00 2.75 0.63 0.45 0.67
facerec ref 17.96 2.83 0.77 0.65 0.79
fma3d ref 18.30 2.65 0.64 0.42 0.67
galgel in 11.68 1.86 0.57 0.32 0.64
gap ref 26.77 4.77 0.81 0.45 0.78
gcce integrate 17.07 2.55 0.62 0.41 0.68
gzip random 42.25 6.76 0.92 0.49 0.86
lucas in 15.93 2.04 0.63 0.39 0.70
mcf inp 152.94 36.53 0.99 0.562 0.91
mesa in 11.44 1.71 0.53 0.32 0.64
mgrid in 0.00 1.00 0.00 0.00 0.16
parser ref 12.19 1.79 0.45 0.30 0.56
perlbmk makerand 30.00 4.44 0.88 0.83 0.83
sixtrack inp 63.20 8.85 0.94 0.51 0.88
swim in 8.09 1.26 0.26 0.16 0.41
twolf ref 97.14 20.42 0.98 0.55 0.89
vortex bendian3 47.84 5.51 0.87 0.50 0.83
vpr place 203.73 44.69 0.99 0.61 0.94
vpr route 13.36 1.83 0.49 0.30 0.61
wupwise ref 17.79 3.42 0.81 0.44 0.79
* Except for mgrid, constant8 has a mean safe prediction duration of 8 samples.

overshoots. Between FXby8 and constant8,
the distinction is once again more subtle.
FXby8 tends to have lower overshoots for the
benchmarks that have shorter phases, but it
has larger average overshoots for benchmarks
with very long mean stable durations—150
samples or more—such as ammp, mcf, six-
track, twolf, and vpr. In these cases, the
dynamic prediction builds up and overshoots
significantly.

Overall, duration prediction is a new aspect
of phase prediction research that has interest-
ing trade-offs. A predictor can be conserva-
tive by either guessing infrequently, lowering
its stable coverage, or by predicting short
intervals, reducing the mean safe prediction
durations. The FXby8 predictor is more accu-
rate and has low hardware complexity. On the
other hand, FXX is dominant in terms of safe

prediction durations. In terms of overshoot,
constant8 and FXby8 perform better.

The trade-offs that guide the choice of pre-
dictors are clear, when comparing FXX and
the other two predictors. If a particular appli-
cation requires very long predictions for its
resource planning, then FXX (or even FXby8)
might be preferable, depending on the trade-
off between reaching high predictions quick-
ly and the overshoot penalty. In addition, if
the actual cost of monitoring the behavior at
each new prediction is significant—such as
reading external power measurement logs or
thermal sensors—compared to the overshoot
penalty, the more aggressive approach, FXX,
turns out to be appealing with its few predic-
tion checkpoints. On the other hand, for
lightweight applications with minimal mon-
itoring overhead, more timid predictors con-
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Table 3. Overshoot for the three duration prediction schemes.

Overshoot runtime (percentage)

Benchmark Data set Constant8 FXX FXby8

ammp in 2.26 24.85 5.74

applu in 20.25 29.07 5.84

apsi ref 14.31 33.09 5,512

art ref1 18.45 29.65 6.84

bzip2 graphic 7.08 8.22 1.56

crafty in 1.88 34.39 2.78

equake in 0.50 2.00 0.18

facerec ref 1.54 15.03 1.76

fma3d ref 10.46 3258 4.86

galgel in 11.62 27.43 5.68

gap ref 6.24 14.55 5.00

gcce integrate 0.90 4.06 0.94

gzip random 2.60 25%/8) 4.48

lucas in 10.72 38.07 5.70

mcf inp 0.12 &l &5 0.64

mesa in 13.41 32.47 6.42

mgrid in 0.12 0.12 0.04

parser ref 13.12 30.83 5.52

perlbmk makerand 0.00 0.00 0.00

sixtrack inp 2.00 &85 5.52

swim in 18.99 22.85 7.30

twolf ref 0.56 12.08 2.14

vortex bendian3 3.94 37.17 4.98

vpr place 0.16 12.00 0.60

vpr route 15.05 30.53 5.70

wupwise ref 4.96 14.47 3.46
stant8 and FXby8 significantly improve sta-
ble coverage. Additionally, in cases where large
overshoots lead to undesired penalties or affect
system reliability—such as by causing ther-
mal emergencies under thermal manage-
ment—FXX (or even FXby8) can deteriorate
system performance. In these cases, the con-
stant predictor can be preferable for safe oper-
ation under dynamic management.

The trade-offs between FXby8 and con-
stant8 are more subtle and their relations are
workload dependent. For the benchmarks we
investigated, the ones with mean stable dura-
tions of less than 400 ms (40 samples) have
better stable coverage and fewer overshoots
with FXby8. On the other hand, constant8
predicts approximately 4X longer durations.
For mean stable durations between 400 ms to
800 ms, both benchmarks behave similarly in
terms of coverage and overshoot. For these
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cases, constant8 performs better in terms of
predicted duration lengths.

For mean stable durations of 800 msto 2 s,
constant8 performs marginally better in terms
of coverage, overshoot, and durations. Above
2 seconds, FXby8 demonstrates its ability to
predict efficiently for long durations, leading
to approximately 4X longer predicted dura-
tions than constant8. However, it leads to rel-
atively larger overshoots and lower coverages
than constant8, although most such metrics
typically have reasonable margins. Thus, in
summary, similar trade-offs between stable
coverage, number of predictions, prediction
lengths, and overshoots, as discussed earlier,
guide the choice of predictors between con-
stant8 and FXby8. However, the same trade-
offs necessitate different predictors under
different workload behavior. Although one set
of trade-offs favor FXby8 for benchmarks
with comparatively shorter—that is, 400 ms
or less—phase durations, the same trade-offs
favor constant8 for applications with longer—
that is, over 2 second—phases. Consequent-
ly, for a dynamic implementation, it is more
beneficial to implement a predictor that per-
forms either FXby8 or constant8 prediction,
where a separate configurable control logic
can choose the right method at runtime based
on observed workload phase granularities.

Long-term metric hehavior prediction

As we have discussed, a simple last-value
IPC prediction is good for short-term predic-
tion, but less effective when used in conjunc-
tion with duration prediction for longer-term
predictions. Here, we suggest a simple method
to better extrapolate the IPC trend between
duration prediction checkpoints. To do this,
the value prediction incorporates a gradient
(slope) by computing the AIPC per sampling
interval between two prediction checkpoints.
With this, a predictor can provide a first-order
IPC estimate based on the base IPC and con-
stant gradient and, for each new interval, next-
predicted IPC equals the current prediction
plus AIPC. This method relies on the gradi-
ents being consistent within predicted dura-
tions, which is a reasonable assumption under
our stability criterion.

In Figure 2, we show a timeline of duration
prediction paired with this value and gradient
prediction. We plot the original and predict-
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Figure 2. Duration prediction (a) and gradient-based metric value (b) for ammp using FXby8.

ed IPCs, and the difference between them.
During stable regions, the results match well.
The only points of significant error are where
the duration predictor overshoots, leading to
higher IPC prediction errors as a phase ends.

We evaluate the accuracy of long-term met-
ric prediction (combined duration and gradi-
ent prediction) for the SPEC suite, with the
same three prediction functions. Except for
the bursty benchmarks bzip2, equake and
mgrid, long-term IPC prediction performs
quite well. On average, FXby8 achieves an
absolute error of 4 percent. Constant8 and
FXX predictors have average errors of 5 and
10 percent.

Applications of duration prediction

Now we give an example of a concrete
application of duration prediction for energy
savings. In particular, we explore its applica-
bility to a dynamic voltage/frequency scaling
(DVES) scenario. For DVES, the goal is to
identify program periods with slack—areas in
which slowing down the processor core will
save energy with little impact on performance.
These periods are typically memory-bound
regions in the code.'” During these periods,
the processor can operate at a lower voltage
and frequency to save energy; these changes
will have little performance impact.

To demonstrate the application of value and
duration prediction to DVES, we focus on a

simplified view of the DVES problem. We
consider two modes: high-energy mode oper-
ates the processor at full performance with full
voltage and frequency. Low-energy mode oper-
ates at low voltage and frequency. Our goal in
this work is to correctly predict when to switch
to low-energy mode and to gauge how long
to remain there before reconsidering a switch
back to high-energy mode. We evaluate our
success at this goal by considering two con-
ceptual metrics: percentage of time spent in
low-energy mode and its comparison to an
oracle; and number of DVFS switches
required, since voltage and frequency adjust-
ments cost both time and energy.

DVFES policy

We use the low-energy setting (slow clock
and low voltage) for memory-bound portions
of the code and the high-energy setting at all
other times. Our policy is to switch to the low-
energy state when we are in a stable phase in
which IPC is 25 percent or less of the maxi-
mum IPC value and 13 references are greater
than 10 percent of the maximum value. We
have looked at several possible metrics to iden-
tify slack, such as data and instruction trans-
lation look-aside buffer misses, L3 misses, and
data table walks. Of them, the rate of L3 ref-
erences provides the highest confidence (81
percent) when used with IPC to characterize
memory-bound phases.

37.96 42.71
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Figure 3. Evaluation of duration and gradient prediction under DVFS.

During stable phases, we can make accu-
rate predictions about program behavior and
apply DVES accordingly. We performed dura-
tion and gradient prediction as described in
the previous section. Layered on top of the
long-term metric prediction is the DVES pol-
icy decision. That is, the predictor decides
whether to switch to low- or high-energy set-
tings for the next predicted duration, based
on the long-term IPC and L3 references value
predictions.

What remains is to handle unstable regions.
At the end of a stable phase—that is when the
predictor detects a transition at the new pre-
diction checkpoint—you can either keep the
DVES state as is or return it to high energy.
Although the former is more efficient in terms
of avoiding redundant DVES costs, it can
result in significant performance penalty in
quickly varying benchmarks. For example,
mgrid has two short stable periods at bench-
mark initialization; with mean stable duration
0f 9.5 samples as we describe in Table 1. The
predictor catches one of them and pushes the
DVES state to low at the start of the bench-
mark. After this point, however, there is only
instability for the remainder 99 percent of the
benchmark, and the DVES state is never
returned. As a result, mgrid was incorrectly
kept in the low-energy state 87 percent of its
runtime. Therefore, we instead use the policy
in which unstable regions all revert to the

high-energy DVES state.

DVFS results

We show DVES results for four SPEC
benchmarks. The four chosen benchmarks
represent different corners of workload behav-
ior. Ammp presents a case with repetitive
large-scale phases. In contrast, apsi has numer-
ous smaller-scale phases. Mgrid is a very
bursty benchmark with almost no stable phas-
es; and mcf has a single, long, stable phase
with a significant gradient.

Figure 3 summarizes the effectiveness of
DVES for three benchmarks, for different
duration prediction methods. Mgrid is
excluded as all five bars are approximately zero
for mgrid. Again, we show the three predic-
tors: constant8, FXX, FXby8, and a fourth
one: constantl, f{x) = 1. This fourth predictor
predicts every stable sample and thus never
overshoots for more than one sample. We
include the constantl results to demonstrate
that our prediction-based techniques achieve
results nearly identical (within 1 percent) to
those of a method that monitors counters
every sample. The relatively simple predictors
we propose offer equal accuracy and a greater
degree of autonomy for this sort of system
adaptation.

For each application, we show five bars. The
rightmost bar shows the runtime spent in low-
energy mode with oracle knowledge. The
other four bars give the breakdown of DVFS
results for different predictors. The lowest por-
tions of the stacked bars show the correctly pre-
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Figure 4. Overheads associated with prediction and DVFS.

dicted low-energy regions. Next, we show the
percentage of time where our method incor-
rectly predicts a low-energy region, while in
reality the application is in a high-energy
region. These represent the prediction over-
shoots. The top portions represent the oppo-
site: lost opportunity time, where the
application is truly in low-energy mode, but
our prediction has been for high energy.

Figure 3 shows that, except for mgrid, all
the benchmarks spend around 20 percent of
their stable time in low-energy mode; and our
predictors are able to capture most of the avail-
able DVFES opportunities. Mgrid is too unsta-
ble to make DVES predictions. All of the
predictors come within 92 percent of the ora-
cle approach. Ammp and apsi with the FXX
predictor have a relatively larger incorrect low-
energy mode. In ammp, this is because of a
large overshoot after its huge low-energy
phase. In apsi, smaller overshoots accumulat-
ed over the many small phases. Apsi also
spends relatively more time in lost-opportu-
nity mode. This is because of short low-ener-
gy regions that are slightly larger than our
stability criterion.

Figure 4 shows the number of voltage and
frequency adjustments, which gives an esti-
mate of DVES overhead cost. It also gives the
number of predictions, as a proxy to the pre-
diction overhead cost. Although constantl
makes many predictions and frequency and
voltage adjustments, the other predictors are
much more stable and lead to significantly less

overhead. Apsi shows a counter example with
FXX, where it leads to more adjustments.
Here, predicted gradients in the overshot
regions lead to additional false DVFS regions.
Mgrid and mcf show very low DVES transi-
tion counts for opposite reasons. In mcf, the
behavior is very stable, roughly 90 percent of
the time is spent in low-energy mode, and our
predictors quickly identify the low-energy
opportunity. In mgrid, behavior is so unsta-
ble that duration prediction does not occur,
and thus the program spends all of its time in
high-energy mode.

Comparing our three predictors, the dif-
ference between FXX and the other two is
again easily observable. FXX leads to higher
overshoots than the others, resulting in per-
formance penalties from keeping the appli-
cations incorrectly in low-energy mode and
by the spurious voltage and frequency scal-
ings in these overshoot regions. Although
FXX performs substantially fewer predic-
tions, it is not the most suitable method
under this DVES scenario, because the cost of
DVES transitions is, in general, significantly
higher than those for monitoring perfor-
mance behavior. Constant8 and FXby8 per-
form similarly in identifying true low-energy
regions and lost DVES opportunities. Simi-
lar to our previous discussion, the choice of
predictor between FXby8 and constant8 is
workload dependent. For shorter phases, as
in the case of apsi, constant8 performs bet-
ter, having fewer predictions and voltage or
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frequency scalings. For longer phases, FXby8
becomes the better alternative, having either
fewer scalings or fewer predictions. There-
fore, the preferred predictor implementation
for such a DVES scenario requires a dual-
mode implementation, which chooses
between FXby8 and constant8 based on
observed low-energy phase durations.

In summary, in all predictable cases the
long-term predictors perform within 1 percent
of the constantl case in recovering stable low-
energy regions. Moreover, unlike the constant1
case that continuously monitors metrics, our
predictors all make substantially fewer predic-
tions, leading to a lower monitoring overhead.
For the demonstrated case, FXby8 performs
better for longer phase durations, while con-
stant8 is preferable for shorter phases. Conse-
quently, the optimal solution lies in the
combination of the two approaches.

uration prediction, in conjunction with

long-term value prediction is an impor-
tant area, since many phase-directed system-
level readjustments are only feasible if phases
are long enough. In this work, we first offer
methods for effectively applying duration pre-
diction to energy-saving applications. Our
methods achieve prediction accuracies close to
90 percent of the actual stable durations with,
for most cases, less than a 10 percent error in
long-term IPC prediction. Such accuracy is
possible despite the high variability of phase
lengths across the SPEC suite. With an increas-
ing industry-wide focus on adaptive and
autonomous system management, schemes for
predicting and responding to long-term system
behavior become critical for energy efficiency.
The work presented here offers practical, low-
overhead techniques for such long-range pre-
dictions, as well as evaluations of their possible
application to important problems in power-
aware computing. ICRO
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