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Abstract

It has recently become clear that power management is
of critical importance in modern enterprise computing envi-
ronments. The traditional drive for higher performance has
influenced trends towards consolidation and higher densi-
ties, artifacts enabled by virtualization and new small form
factor server blades. The resulting effect has been increased
power and cooling requirements in data centers which ele-
vate ownership costs and put more pressure on rack and en-
closure densities. To address these issues, in this paper, we
enable power-efficient management of enterprise workloads
by exploiting a fundamental characteristic of data centers:
“platform heterogeneity”. This heterogeneity stems from
the architectural and management-capability variations of
the underlying platforms. We define an intelligent workload
allocation method that leverages heterogeneity characteris-
tics and efficiently maps workloads to the best fitting plat-
forms, significantly improving the power efficiency of the
whole data center. We perform this allocation by employing
a novel analytical prediction layer that accurately predicts
workload power/performance across different platform ar-
chitectures and power management capabilities. This pre-
diction infrastructure relies upon platform and workload
descriptors that we define as part of our work. Our allo-
cation scheme achieves on average 20% improvements in
power efficiency for representative heterogeneous data cen-
ter configurations, highlighting the significant potential of
heterogeneity-aware management.

1 Introduction

Power management has become a critical component of
modern computing systems, pervading both mobile and en-
terprise environments. In data centers, power consumption
has become a significant issue, stimulating a variety of re-
search for server systems [2]. Increased performance re-
quirements in data centers have resulted in elevated den-
sities enabled via consolidation and reduced server form
factors. This has in turn created challenges in provision-

ing the necessary power and cooling capacities. For exam-
ple, current data centers allocate nearly 60 Amps per rack,
a limit that is likely to become prohibitive for future high
density rack configurations such as blade servers, even if
the accompanying cooling issues can be solved [19]. In ad-
dition, the financial overheads of utilizing these resources
are another impetus for incorporating management capabil-
ities. A 30,000 square feet data center with a power con-
sumption of 10MW requires a cooling system which costs
$2-$5 million [17]. In such a system, the cost of running
the air conditioning equipment alone can reach $4-$8 mil-
lion a year [19]. Coupled with the elevated electricity costs
from increasingly high performance servers, these effects
can substantially affect the operating costs of a data center.

The trends in power/cooling delivery and cost highlight
the need for support in data centers for power and thermal
management. Some of the previous work on server manage-
ment has focused on managing heat generation during ther-
mal events [17] or utilizing platform power management
support, such as processor frequency scaling, for power
budgeting [8, 19]. In this paper, we address an orthogo-
nal question: Given that thermal and power constraints are
managed, how can we allocate workloads to platforms in-
telligently to improve the power efficiency of a data center?

Typically, data centers statically allocate sets of plat-
forms to applications based upon peak load characteristics
to maintain isolation and to provide performance guaran-
tees. With the continuing growth in capabilities of virtu-
alization solutions such as Xen [1], the necessity of such
offline provisioning is removed. Indeed, by allowing for
flexible and dynamic migration of workloads across phys-
ical resources [6], the use of virtualization in future data
centers enables a new avenue of management and optimiza-
tion. Our approach begins to leverage some of these capa-
bilities to enhance power efficiency by taking advantage of
the ability to assign virtualized applications to varying sets
of underlying hardware platforms.

Throughout their lifetimes, data centers continually up-
grade servers due to failures, capacity increases, and migra-
tions to new form factors [11]. Over time, this leads to data



centers comprised of a range of heterogeneous platforms
with different technologies, power, performance and ther-
mal characteristics, and power management capabilities.
When assigning platforms to application workloads in these
heterogeneous environments, power efficiency can vary sig-
nificantly based on the particular allocation. For example,
by assigning a memory bound workload to a platform that
performs dynamic voltage and frequency scaling (DVFS),
run-time power consumption can be reduced with minimal
impact to performance [16]. To obtain this power-friendly
behavior in data centers, we develop a heterogeneity-aware
workload allocation architecture.

Intelligent mapping of applications to underlying plat-
forms is dependent upon the availability of relevant infor-
mation about workloads and hardware resources. In our
scheme, we extend the use of workload and platform de-
scriptors for this purpose, which are then used by a predic-
tor component that estimates the achievable performance
and power savings across the different platforms in the data
center. These predictions are finally used by an allocation
layer to map workloads to a specific type of platform. This
overall infrastructure is evaluated using data center con-
figurations consisting of variations upon four distinct plat-
forms. The main contributions of our work are: (i) Con-
sidering the use of platform heterogeneity including differ-
ences in power management support for improved power
efficiency, (ii) Design of an allocation infrastructure which
relies upon workload and platform descriptors to perform
informed mappings of hardware to virtualized workloads,
(iii) Evaluation of our system on state-of-the art platforms
including Intel R© CoreTMmicroarchitecture based hardware.
Our results show average improvements of 20% in data cen-
ter power efficiency. These results highlight the efficacy
of our approach, and demonstrate the benefits of exploiting
platform heterogeneity for improved power efficiency.

The rest of the paper is organized as follows: Section 2
reviews related work and how our work fits into the larger
landscape of research. We next discuss the opportunities
with heterogeneity-aware workload allocation in Section 3,
followed by an overview of our allocation architecture and
descriptor design in Section 4. After describing our hard-
ware and application assumptions in Section 5, we delve
into the details of the prediction and allocation policies in
Sections 6 and 7 respectively. Section 8 presents our eval-
uation results, followed by concluding remarks and discus-
sions of future work in Section 9.

2 Related Work

A variety of mechanisms have been developed which
provide power and thermal management support within a
single platform. Brooks and Martonosi proposed mecha-
nisms for the enforcement of thermal thresholds on the pro-
cessor [3]. Processor frequency and voltage scaling based

upon memory access behavior has been shown to success-
fully provide power savings with minimal impact to appli-
cations. Resulting solutions include hardware based ap-
proaches [16] and OS-level techniques, which set proces-
sor modes based on predicted application behavior [13].
Power budgeting of SMP systems with a performance loss
minimization objective has also been implemented via CPU
throttling [14]. Though these types of approaches allow for
local management of nodes, they don’t address the issues
which arise when considering multiple systems.

At the data center level, incorporating temperature-
awareness into workload placement has been proposed by
Moore et al. [17], along with emulation environments for
studies of thermal implications of power management [10].
Chase et al. discuss how to reduce power consumption
in data centers by turning servers on and off based on de-
mand [4]. Utilizing this type of cluster reconfiguration in
conjunction with DVFS [7] and the use of spare servers [18]
has been investigated as well. Enforcing power budgets
within data centers by allocating power in a non-uniform
manner across nodes has been shown to be an effective
management technique [8]. Techniques for enforcing power
budgets at blade enclosure granularities have also been dis-
cussed [19]. The approach presented in our work can be
used in conjunction with these methods to improve power
efficiency in data centers.

Heterogeneity has been considered to some degree in
prior work, including the evaluation of heterogeneous
multi-core architectures [15]. In cluster environments, a
scheduling approach for power control has also been pro-
posed for processors with varying fixed frequencies and
voltages [9]. A power efficient web server with intelligent
request distribution in heterogeneous clusters is another ex-
ample which considers leveraging heterogeneity in enter-
prise systems [11]. Our vision goes beyond these various
methods by considering not just differences amongst per-
formance capabilities of platforms, but also in the power
management capabilities they may support.

3 Exploiting Heterogeneity for Increased
Power Efficiency

Data center deployments are inherently heterogeneous.
Upgrade cycles and replacement of failed components and
systems contribute to this heterogeneity. In addition, new
processor and memory architectures appear every few years
and reliability requirements are becoming ever more strin-
gent. These trends have driven update cycles in large data
centers to less than two years. A recent survey of data cen-
ter managers shows that 90% of the facilities are expected
to upgrade their compute and storage infrastructure in the
next two years. Figure 1 shows a distribution of different
systems in a representative enterprise data center. As the
figure shows, the data center contains nine different gen-



erations of systems that have either (1) different processor
architectures, cores and frequencies, (2) varying memory
capacity and interconnect speeds, or (3) different I/O capa-
bilities. While all systems support the same software stack
they have very different and often asymmetric performance
and power characteristics.

0%

5%

10%

15%

20%

25%

30%

35%

1G 2G 3G 4G 5G 6G 7G 8G 9G

Server Generation

S
er

ve
r 

D
is

tr
ib

u
ti

o
n

Figure 1. Data center heterogeneity.

Traditionally, the non-uniformity of systems in a data
center has been characterized by different levels of perfor-
mance and power consumption. However, recently, another
dimension has been added to this heterogeneity. Current
server platforms are beginning to support various thermal
and power management capabilities. Processors support
DVFS and aggressive sleep states to conserve CPU power.
New memory power management implementations allow
different DRAM devices to go to lower power states when
inactive, and enable bandwidth throttling for thermal pro-
tection. Finally, server power supplies exhibit different con-
version efficiencies under different loads directly impacting
the overall power efficiency of the system. Since power ef-
ficiency has become one of the main thrusts in enterprise
systems, we expect component and platform vendors to
continue introducing new power and thermal management
capabilities into their products, including I/O and system
buses, chipsets, and network and disk interfaces, making
future platforms even more heterogeneous.

Previous work has proposed different approaches for
energy-efficient workload allocation in clusters in data cen-
ters, but none have accounted for system level power man-
agement and thermal characteristics. Therefore, the work-
load allocations proposed by previous approaches will yield
less than ideal results since they are completely unaware
of power and thermal management effects on system per-
formance and power consumption. To illustrate this phe-
nomenon, we experimentally compare two dual processor
systems, A and B, running two different workloads as shown
in Table 1. The differences between the two systems are
in the power supply unit (PSU) and processor power man-
agement capabilities. System A has a less efficient power
supply at light load and has processors with limited power
management support. System B, on the other hand, has a
high efficiency power supply across all loads and processors
that support a rich set of power management capabilities.

We measure power consumption on these platforms us-
ing two different synthetic workloads: one with full utiliza-
tion (W1) and one with a very low level of utilization (W2)

System A System B
W1 W2 W1 W2

CPU Power 90W 40W 90W 20W
System Power 160W 120W 160W 120W
PSU Efficiency 86% 70% 87% 80%
Total Power 291W 229W 287W 175W

Table 1. Power consumption of System A and
System B with workloads W1 and W2.

on both systems. W1 consumes about the same amount
of power on both platforms. However, allocating the low-
utilization W2 to system A leads to very power inefficient
execution. Since A does not support power management
and has low PSU efficiency at light load, its total system
power is more than 50W higher than system B. While both
systems meet the performance demand of both workloads,
power-aware resource allocation can decrease total power
by more than 10%. For a large data center, 10% overall
power reduction translates into millions of dollars in sav-
ings in utility costs. As this example shows, a full knowl-
edge of system power and supported power management
features is required to efficiently allocate workloads across
such heterogeneous systems. As we describe in the follow-
ing sections, our allocation architecture is designed to ad-
dress these needs.

4 Scalable Enterprise and Data Center Man-
agement

Our previous discussions have motivated the need to
augment the behavior of data centers to improve power effi-
ciency by leveraging the heterogeneity of platform capabili-
ties. We extend this support by developing a heterogeneity-
aware workload allocation infrastructure which utilizes the
flexibility of rapidly developing virtualization technologies.
Virtualization provides capabilities and abstractions that
significantly impact the landscape of enterprise manage-
ment. For example, by providing performance isolation, it
is possible to run multiple virtual machines (VMs) within
a given physical platform without interference among ap-
plications. Moreover, by encapsulating application state
within well defined virtual machines, migration of work-
loads among resources can be performed easily and effi-
ciently. A more powerful contribution of virtualization,
though, is the ability to combine resources across physical
boundaries to create virtual platforms for applications, pro-
viding a scalable enterprise environment. We assume the
existence of this flexible and powerful virtualization sup-
port in designing our management system.

In the future, data centers will be service-oriented where
applications and workloads may be submitted dynamically
by subscribers/clients. The types of applications in this sce-
nario require management actions to be performed at coarse
time granularities, where allocation management may be



performed as rarely as on a daily basis. One can imagine
how such a data center might be managed with the typically
used assignment approaches. Each day the pool of appli-
cations and service level agreements (SLAs) which specify
their required performance, in metrics such as throughput or
response time, are compiled. Applications are then assigned
to platforms using a simple load balancing scheme based
upon utilization or queue lengths, possibly even account-
ing for differences in the performance of the systems [20],
so that SLAs are met. This approach clearly leaves room
for improvement since it does not consider power in any
way, but instead focuses on obtaining resources to meet ap-
plication performance needs. Our approach addresses this
weakness by performing heterogeneity aware allocations.

Figure 2. Heterogeneity-aware workload allo-
cator architecture.

The architecture of our heterogeneity-aware allocation
system can be organized into three major components: (1)
platform/workload descriptors, (2) a power/performance
predictor, and (3) an allocator, as shown in Figure 2. We use
platform and workload descriptors to provide our workload
allocator with the differences amongst workloads and plat-
forms. These descriptor inputs are utilized by the predictor
to determine: (i) the relative performance of workloads on
different types of platforms (ii) the power savings achiev-
able from platform power management mechanisms. Cou-
pled with coarse platform power consumption information
(obtained via online power monitoring), our third compo-
nent, the allocator, performs the assignments of workloads
to the available resources.

The purpose of platform descriptors is to convey infor-
mation regarding the hardware and power management ca-
pabilities of a machine. A platform descriptor is made up
of individual modules, representing system components, as
shown in Figure 3(a). Each module specifies the type of
component the module refers to, such as processor, memory
subsystem, or power supply. Within each of these modules,
then, various component parameters are defined. For ex-
ample, a module describing the processor component may
have attributes such as microarchitecture family, frequency,
and available management support.

Workload descriptors are also structured in modules,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Component: Processor 
Architecture:    Netburst 
No_Cores:        4 
Frequency:       3.2 GHz 
p-state_support: Yes 
 

Component: Memory 
Cache_size:  2MB 
Memory_type: DDR2 
Memory_size: 8GB 

. 

. 

. 
 

(a) Platform Descriptor

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Attribute: MPI 
val1: <Memory.Cache_size=2MB> 
val2: <Memory.Cache_size=4MB> 
 

Attribute: CPICORE 
val1: <Processor.Architecture= 
       NetBurst> 
 

val1: <Processor.Architecture= 
       Core Microarchitecture> 
 

. 

. 

. 
 

(b) Workload Descriptor

Figure 3. Descriptor examples.

headed with attribute declarations. Within each module, a
list of values for that attribute is provided. As workload
attributes often vary with the platform on which they ex-
ecute, our descriptor design allows multiple attribute defi-
nitions, where each definition is predicated with component
parameter values that correlate back to platform descriptors.
Figure 3(b) illustrates the structure of the resulting work-
load descriptor. We explain the meaning of the MPI and
CPICORE attributes in subsequent sections.

In our infrastructure, the descriptor information is pro-
vided in a variety of ways. Platform descriptor informa-
tion can be made readily available using platform support
such as ACPI [12], and possibly also with some adminis-
trative input. To provide the required workload descriptors,
we profile workloads on a minimal set of orthogonal plat-
forms, with mutually exclusive component types. We then
use an analytical prediction approach to project workload
characteristics on all available platforms. As we discuss in
detail in Section 6, this approach provides accurate predic-
tions that scale with increased amounts of heterogeneity.

5 Methodology

5.1 Platform Hardware

Our hardware setup consists of four types of rack
mounted server platforms summarized in Table 2, where
LLC denotes last-level cache size. All four types of plat-
forms contain standard components and typical configu-
rations that entered production cycles in the last eigh-
teen months. The platform names are based on their
processor code name in this paper. All four platforms
are dual-processor systems. Woodcrest, Sossaman, and
Dempsey are CMP dual-core processors and Irwindale is
a 2-way SMT processor supporting Hyper-Threading Tech-
nology. All platforms have 8GB of memory. Woodcrest and
Dempsey support Fully Buffered DIMM (FBD) memory
with a 533MHz DDR2 bus while Sossaman and Irwindale
support unregistered DDR2 400MHz memory. Woodcrest
and Dempsey have independent FSB architectures with two
branches to memory and two channels per branch.

All four types of systems are heterogeneous in a sense
that each has a unique combination of processor ar-
chitecture and memory subsystem. If we assume that
Intel Core microarchitecture/Pentium R© M and NetBurst
constitute two types of processors and LLC-4MB/FSB-



 Woodcrest Sossaman Dempsey Irwindale 

Processor 3GHz/4MB LLC 
Core architecture 

2GHz/2MB LLC 
Pentium® M 

3.7GHz/4MB LLC 
NetBurst/P4 

3.8GHz/2MB LLC 
NetBurst/P4 

FSB 1067 MHz Dual FSB 800 MHz 1067 MHz Dual FSB 800 MHz 

Chipset Blackford Lindenhurst Blackford Lindenhurst 

Memory DDR2-533 FBD DDR2-400 DDR2-533 FBD DDR2-400 

Table 2. Platform characteristics.
1066/FBD-533 and LLC-2MB/FSB-800/DDR2-400 consti-
tute two types of memory, all four platforms can be mapped
as having unique processor/memory architecture combina-
tions. This results in a four quadrant heterogeneity space
as shown in Figure 4. Note that all four platforms also
have vastly different power and performance characteris-
tics. For example Intel Core microarchitecture is superior
to NetBurst both in terms of performance and power effi-
ciency. FBD based memory, on the other hand, provides
higher throughput in our systems at the expense of elevated
power consumption due to increased DDR2 bus speed and
the power requirements of the Advanced Memory Buffer
(AMB) on the buffered DIMMs.
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Figure 4. Heterogeneity quadrants.

The four platforms described occupy four quadrants of
a heterogeneity space with dimensions of microarchitecture
heterogeneity and memory subsystem heterogeneity. We re-
fer to this initial level of heterogeneity as “across-platform
heterogeneity”. However, in addition to this, all these server
platforms also support chip-level DVFS. This leads to a sec-
ond degree of heterogeneity, where one type of platform,
can have instances in a data center that are configured to
operate at different frequencies. We refer to this as “within-
platform heterogeneity”. As process variations increasingly
result in the binning of produced chips into different oper-
ating points, this within-platform heterogeneity becomes an
inherent property of the general data center landscape. Fi-
nally, many of these platforms may incorporate some pro-
cessor dynamic power management (DPM) techniques that
adaptively alter platform behavior at runtime. This creates
a third source of heterogeneity, “DPM-capability hetero-
geneity”, where platforms with built-in DPM hooks exhibit
different power/performance characteristics from the ones
with no DPM capabilities. In Table 3, we show how these
three levels of heterogeneity quickly escalate the number of
distinct platform configurations in a data center scenario.

Our power measurements have been performed using the
Extech 380801 power analyzer. The power was measured at
the wall and represents total AC power consumption of the
entire system. The power numbers presented in this paper
are obtained by averaging the instantaneous system power
consumption over the entire run of each workload. Our as-
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Table 3. Levels of heterogeneity in our exper-
imental platforms.

sumption is that infrastructure support for monitoring power
consumption will be utilized to obtain this type of workload
specific power characteristics online, instead of parameter-
ized models. For example, all power supplies, which ad-
here to the latest power supply monitoring interface (PSMI)
specification support out-of-band current/voltage sampling
allowing for per platform A/C power monitoring reflected
by our actual power measurements.

5.2 Application Model

When managing power efficiency in computing environ-
ments, improvements can be attained with a variety of ap-
proaches. In this work, we concentrate on improving power
consumption, while the baseline application performance is
maintained. In other words, we maximize the performance
per watt, while holding performance constant. We consider
application performance in terms of throughput, or the rate
at which transaction operations are performed. Therefore
it is not the execution time of each transaction that defines
performance, but the rate at which multiple transactions can
be sustained. This type of model is representative of appli-
cations such as web servers or payroll systems.

The goal of our allocator is to evaluate the power-
efficiency tradeoffs of assigning a workload to a variety of
platforms. Since the performance capabilities of each plat-
form are different, the execution time to perform a single
operable unit, or atomic transaction, varies across them. As
previously mentioned, virtualization technologies will al-
low us to extend the physical resources dedicated to applica-
tions when necessary to maintain performance by increas-
ing the number of platforms used to execute transactions.
In particular, transactions can be distributed amongst nodes
until the desired throughput is reached.

For our analysis, we consider applications which mimic
the high performance computational applications common
to data center environments. There are two aspects of these
workloads that are captured in our experimental analysis.
First, these workloads are inherently transactional, such as



the previous financial payroll example or the processing of
risk analysis models across different inputs common to in-
vestment banking. Second, with the ability to incorporate
large amounts of memory into platforms at relatively low
costs, these applications often execute mostly from mem-
ory, with little to no I/O. To obtain both of these charac-
teristics, while also providing deterministic and repeatable
behavior for our experimentation, we utilize benchmarks
from the SPEC CPU2000 suite as representative examples
of transaction instances. SPEC benchmarks allow for the
isolation of processor and memory components, while also
generating different memory loads. Indeed, many SPEC
benchmarks exhibit significant measured memory band-
width of 5-8 GB/sec on our systems. In order to provide an
unbiased workload set, we include all SPEC benchmarks in
our experiments. For each application, we specify an SLA
in terms of required transaction processing rate, equal to the
throughput achievable on the Woodcrest platform.

6 Workload Behavior Estimation
The power/performance predictor component of our

heterogeneity-aware workload allocation framework can be
implemented in different fashions. For example, one can
profile a set of microbenchmarks on all platform configura-
tions and develop statistical mapping functions across these
configurations. However, as the platform types and hetero-
geneity increase, the overhead of such approaches can be
prohibitive. Instead, we develop a predictor that relies on
the architectural platform properties and adjusts its predic-
tions based on the heterogeneity specifications. We refer to
this model as the “Blocking Factor (BF) Model”.

6.1 Blocking Factor Model

The BF model simply decomposes execution cycles into
CPU cycles and memory cycles. CPU cycles represent the
execution with a perfect last-level cache (LLC), while mem-
ory cycles capture the finite cache effects. This model is
similar to the “overlap model” described by Chou et al. [5].
With the BF model, the CPI of a workload can be rep-
resented as in Equation 1. Here CPICORE represents the
CPI with a perfect LLC. This term is independent from the
underlying memory subsystem. CPIMEM accounts for the
additional cycles spent for memory accesses with a finite-
sized cache.

CPI = CPICORE +CPIMEM (1)

The CPIMEM term can be expanded into the architecture
and workload specific characteristics. Based on this, the
CPI of a platform at a specific frequency f1 can be expressed
as in Equation 2. Here MPI is the memory accesses per in-
struction. This is dependent on the workload and the LLC
size. L is the average memory latency, which depends on
the memory subsystem specifications and BF is the block-
ing factor that accounts for the overlapping concurrent exe-

cution during memory accesses, which is a characteristic of
the workload.

CPI( f1) = CPICORE( f1)+MPI ·L( f1) ·BF( f1) (2)

To estimate how the CPI of an application changes with
frequency, we need to consider how the independent param-
eters vary. CPICORE is independent of frequency, as cycles
spent with perfect LLC do not change with frequency. MPI
is a feature of the workload and does not change signifi-
cantly with frequency. The actual memory latency is con-
stant in time and does not scale with CPU frequency. There-
fore, the cycle memory latency should scale with frequency.
Finally, for the BF parameter we experimentally compared
prediction accuracies using both a constant BF and one that
varies with frequency. Both approaches perform compara-
bly in terms of CPI prediction accuracy (with 1.2% aver-
age prediction errors). Therefore, to simplify our workload
descriptors we assume BF is constant across frequencies.
Based on these observations, the CPI of a platform at a dif-
ferent frequency f2 can be expressed as in Equation 3.

CPI( f2) = CPICORE( f1)+MPI ·L( f1) · ( f2/ f1) ·BF( f1) (3)

With this interpretation of the BF model, by simply
knowing the CPICORE , MPI and BF of a workload at a
specific frequency, we can predict its behavior on all other
instances of within-platform heterogeneity for a platform.
However, the more interesting application of the BF model
is for the across-platform heterogeneity. Here the natural
decoupling of the microarchitectural and memory subsys-
tem differences in the BF model enables us to estimate ap-
plication performance on a platform lying on a different
corner of the memory and microarchitecture heterogene-
ity space. Among our four experimental platforms, two
of these can be chosen as “orthogonal platforms”, which
span the two opposite corners of the across-platform hetero-
geneity. For our experiments, Sossaman and Dempsey plat-
forms satisfy this condition, as they have mutually exclu-
sive microarchitectural and memory properties. Then, the
characteristics of the remaining two platforms can be com-
posed from the subcomponents of the two orthogonal plat-
forms. For example a Woodcrest platform can be approxi-
mated as the composition of the microarchitectural features
of the Sossaman platform and the memory subsystem of the
Dempsey platform. Conversely, the Irwindale platform can
be considered as a composition of Sossaman-like memory
and Dempsey-like microarchitecture properties. Note that
although LLC features are architectural features, these are
considered as part of the memory subsystem as their effect
pertains to the memory CPI. With this division of platforms
into “orthogonal” and “derived” platforms, we can simply
gather workload characteristics on single instances of the
orthogonal platforms, and project application behavior on
all other platform configurations in the data center.

Considering across- and within-platform heterogeneity,



by determining the CPICORE , MPI and BF for a work-
load on two specific frequency settings of Sossaman and
Dempsey platforms, we can predict the workload behavior
on all—total of 13—configurations of all the platforms. To
determine the workload behavior on another instance of the
orthogonal platforms, we simply use the within-platform
prediction method described above. To predict the behavior
on a derived platform, we use the corresponding CPICORE

and CPIMEM components from the orthogonal platforms
with the memory latency L of the derived platform. For
example, Equation 4 shows how the CPI for a Woodcrest
platform at frequency f1 can be predicted from Sossaman
and Dempsey descriptors.

CPI(W@ f1) = CPICORE(S)+MPI(D) ·L(W@ f1) ·BF(D) (4)

Here, CPI(W@ f1) is the CPI of Woodcrest at fre-
quency f1, CPICORE(S) is the perfect LLC CPI of Sos-
saman, MPI(D) is the memory accesses per instruction for
Dempsey, L(W@ f1) is the memory latency of Woodcrest
at frequency f1, and BF(D) is the blocking factor observed
from Dempsey. With this approach, we can provide reason-
ably accurate predictions of workload behavior on different
platforms, without actually accessing the derived platforms.

The final heterogeneity type that our predictor must sup-
port is the DPM-capability heterogeneity. For this, we
consider a platform which enables DVFS during memory
bound execution regions of an application. We implement
this functionality as part of OS power management based on
prior work [13]. We modify the operating system so that it
utilizes performance counters to detect and predict memory
bound phases. Phases are further distinguished based upon
degree of memory boundedness and are associated with a
processor frequency to execute at. We tune the DPM en-
abled system so that there is negligible impact on applica-
tion performance.

To incorporate DPM awareness, we extend the predictor
component to estimate the potential power savings that can
be attained when executing a workload on a DPM enabled
platform. Our experiments show that there is a strong cor-
relation between the MPI of a workload and its power sav-
ing potential. Therefore, we utilize the MPI attribute in the
workload descriptors to predict the power saving potentials
of workloads on DPM enabled platforms.

As we have previously described, the fundamental vi-
sion of our energy-efficient allocation framework is to de-
cide upon workload-platform assignments by utilizing well-
defined workload and platform descriptors. The BF model
fits very well in this vision. The independent parameters
that we require on the orthogonal platforms for each work-
load, CPICORE , MPI and BF constitute the workload de-
scriptors. On the other hand, specific characteristics of each
platform, memory latency (L), memory subsystem speci-
fications including LLC, microarchitectural features, fre-
quency states and DPM capabilities constitute the platform

descriptors. During each new encounter of a workload, the
predictor uses these descriptors to extract the relevant CPI
components and predicts the workload and DPM power sav-
ing behavior on all the underlying platforms.

6.2 Prediction Results

Here we present the achieved prediction accuracies with
our experimental platforms. In our evaluations, we first
compare the predicted workload performance to the actual
workload performance acquired by performance counters.
Figure 5 shows the actual and predicted execution times
across four different experimental platforms. Here, the top
two plots show the results for the orthogonal platforms,
Sossaman and Dempsey respectively. The lower two plots
show the derived platforms, Woodcrest and Irwindale re-
spectively. Although we have performed our evaluations at
all available frequency settings for each platform, in this
figure we only show one set of results per platform for
brevity. The observed prediction accuracies are consistent
in all other operating frequencies.
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Figure 5. Predicted and measured execution
times for the experimented platforms (nor-
malized to maximum measured execution
time on the platform). The plots show Sos-
saman, Dempsey, Woodcrest and Irwindale
platforms from top to bottom.

For the orthogonal platforms, the BF model uses the
within-platform estimations to derive the execution times
at all frequencies. In these platforms, the BF model can
very accurately predict performance with an average pre-
diction error of 2%. Interestingly, the predictions track
actual execution times very well also in the derived plat-
forms, even though the BF model does not rely on any ac-
tual measured application behavior on these platforms. By
only using the independent parameters observed on Sos-
saman and Dempsey, the BF model can produce accurate
projections of application behavior on Woodcrest and Ir-
windale, simply by leveraging the architectural and mem-
ory system similarities between the derived and orthogonal
platforms. For these derived platforms, the average predic-



tion error is 20%. These results show that our prediction
method with the BF model can produce reasonable approx-
imations to workload behavior under within- and across-
platform heterogeneity. Although the across-platform pre-
diction errors are relatively higher, the figures show that
they successfully preserve the performance relations across
benchmarks, and more importantly across platforms. In the
following sections, we show that this prediction methodol-
ogy provides sufficient accuracy to represent workload be-
havior and leads us to achieve close to optimal allocations
with our heterogeneity-aware allocator.

In terms of estimating possible DPM savings, Figure 6
shows that our MPI based prediction approach effectively
captures the power saving potentials of different workloads
and successfully differentiates applications that can benefit
significantly from being allocated to a DPM enabled ma-
chine. As we describe in Section 7, we use this predictor in
our allocation decisions to choose workloads that should be
assigned to the DPM enabled platforms.
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Figure 6. Measured and predicted power sav-
ings on a DPM-enabled platform.

7 Allocation Policies

After processing the workload and platform descriptors,
and utilizing our BF model for performance prediction, the
final step is to perform allocation of resources to a set of
applications in a data center. We develop a greedy policy
towards allocating workloads in our evaluation. In partic-
ular, for each application i, we associate a cost metric for
executing on each platform type k. Workloads are then or-
dered based on their maximum cost metric across all plat-
form types into a scheduling queue. The allocator then per-
forms application assignment based on this queue, where
applications with higher worst-case costs have priority. The
platform type chosen for an application is a function of this
cost metric across the available platforms as well as the es-
timated DPM benefits.

There are two workload specific values that may be rel-
evant to allocation policy decisions. First, there is the num-
ber of platforms of type k required to execute a workload
i, Ni,k. This value is clearly a function of the performance
capabilities of the platform as well as the SLA requirement
of the workload. In addition, there is the actual power cost
of executing the workload on the platform type, Pi,k. This
value depends upon both the number of required platforms,
the power characteristics of the platform, as well as the
DPM savings achievable when running the workload on the

platform type.
Both Ni,k and Pi,k can be analytically defined provided

the transaction based application model utilized in our
work. For each application i, the service level agreement
(SLA) specifies that Xi transactions should be performed ev-
ery Yi time units. If ti,k is the execution time of a transaction
of application i on platform k, the resulting number of plat-
forms required to achieve the SLA can be expressed with
Equation 5.

Ni,k = � Xi

� Yi
ti,k

� � (5)

The ti,k values are provided from the performance pre-
dictor. It should be noted that there is a discretization in Ni,k

which is due to the fact that individual atomic transactions
cannot be parallelized across multiple platforms.

Given Ni,k and the platform power characteristics, the
power cost of executing a workload can also be estimated.
Here, we initially ignore any power savings from DPM
mechanisms which may be employed on the underlying
platforms. We can then estimate Pi,k using the approximate
active and idle power characteristics of a platform, PAk and
PIk respectively, as in Equation 6.

Pi,k =
1
Yi

(Xi · ti,k · (PAk −PIk )+PIk ·Ni,k ·Yi) (6)

Both Pi,k and Ni,k are plausible candidates for a cost met-
ric in our allocation policy. Pi,k, though, can be sensitive to
errors in the prediction layer since variations in ti,k directly
affect it. On the other hand, Ni,k is better able to handle
errors due to the inherent discretization performed. There-
fore, we choose Ni,k as the cost metric in our policy layer.

Given the use of Ni,k as our cost metric, our allocation
approach first determines the platform types of which (i)
there are enough available systems to allocate the work-
load and (ii) the cost metric is minimized. We then use
DPM savings to determine whether a more power efficient
platform alternative should be used between those with the
same cost value. In other words, if there are multiple plat-
form types for which an application has the same Ni,k value,
we utilize a DPM specific threshold to decide whether or
not it should be scheduled to a DPM enabled platform type.
As we demonstrate in the following section, this threshold
based approach can be effective in identifying workloads
that can take advantage of DPM capabilities.

8 Evaluation
In order to evaluate our heterogeneity-aware allocation

approach, we performed power and performance measure-
ments of our SPEC based representative transactional work-
loads across each type of platform. To scale these results to
the number of platforms present in data centers, this mea-
sured data was extrapolated analytically using a data center
allocation simulator which combines real power and per-
formance data, prediction output, and allocation policy def-



initions to calculate power efficiency in various data cen-
ter configurations. In the simulator, we provide the output
of the predictor as input to the allocation policy. We al-
ways assume that the platforms which are profiled are the
2GHz Sossaman platform and the 3.7GHz Dempsey sys-
tems. Since we assume the workload attributes are profiled
accurately on these systems, for fairness we also assume
that for these two platforms performance data is obtained
via profiling as well and is therefore known perfectly. We
then consider three different scenarios: (1) all other plat-
form performance information is known perfectly (oracle)
(2) our BF model is used to predict performance for the re-
mainder of platforms as described in Section 6 (BF model)
(3) incorporating a simple statistical regression approach
(Stat. Est.). For this regression method we profile a sub-
set of applications across all platforms to obtain linear per-
formance prediction models parameterized by variables that
can be obtained by profiling a workload on the 2GHz Sos-
saman and 3.7GHz Dempsey systems (CPI, MPI, etc.). The
regression models can then be used to predict performance
of any application. The baseline allocation scheme we com-
pare against is a random one, since it closely estimates the
common round-robin or utilization based approach.

The efficiency improvements achievable in a data center
are also dependent upon the mix of applications that are in
the system. To obtain our results, we randomly pick ap-
plications and allocate using the random approach until no
more workloads can be scheduled. Using the resulting set of
workloads, we then evaluate the power consumption when
using our prediction and allocation policies, and compare
against the random allocation result. This is repeated a hun-
dred times for each of our data points.

We first look at the benefits we achieve with our
heterogeneity-aware allocator in data center configurations
with varying amounts of heterogeneity, and no DPM sup-
port. Considering just the four base platforms Woodcrest,
Sossaman, Dempsey, and Irwindale running at their high-
est frequency settings, we create data center configurations
with equal numbers of each. Trends were consistent across
various data center sizes, so for space we include results
with 1000 platforms of each type. The resulting normal-
ized power consumption for the data center is shown in Fig-
ure 7(a). Since performance is maintained for all applica-
tions involved, reduced power consumption correlates di-
rectly to improved power efficiency. We see from the figure
that with perfect workload information, power consumption
is reduced by 18% when compared to the random alloca-
tion policy. We also see that our prediction-based work-
load allocations, with incomplete workload descriptors are
able to achieve power savings close to the oracular alloca-
tor. The statistical model performs well with this limited
amount of heterogeneity, but more importantly, our analyti-
cal BF model based prediction attains savings of 16%, high-

lighting its efficacy.
Next, we also include within-platform heterogeneity in

our analysis with the frequency variations of our platforms.
The resulting data center has 13 types of platforms, and
power consumptions vary with allocation as shown in Fig-
ure 7(b). The first interesting observation we make is that
increased heterogeneity allows us to achieve improved ben-
efits over a simple random approach. Indeed, we see im-
provements of 22% with perfect knowledge and 21% us-
ing our BF based prediction. We also observe a significant
difference between the statistical and analytical prediction
schemes. The regression approach is unable to scale in
terms of accuracy with increased heterogeneity, whereas the
BF approach again achieves close to optimal power savings.
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(b) Data center with 13 types of
heterogeneous platforms

Figure 7. Data center power improvements.

In order to evaluate how well our allocator can exploit
DPM support, we extend the thirteen platform type config-
uration with an additional Woodcrest 3GHz platform which
provides DPM support. We again find that our BF predic-
tion method can provide improved savings over the statisti-
cal approach as shown in Figure 8. To more closely deter-
mine our ability to exploit DPM mechanisms, we also eval-
uate the power consumption of the thousand DPM-enabled
platforms (all of which are active). We find that our BF
model based allocation is able to improve the power effi-
ciency of these platforms by 3.3%. This illustrates the po-
tential of our heterogeneity-aware allocator to provide ad-
ditional benefits when platforms vary in the power manage-
ment they support.
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Figure 8. DPM-aware power savings.

9 Conclusions and Future Work

Power management in data center environments has be-
come an important area of research. Power delivery and
cooling limitations are quickly becoming a bottleneck in
the provisioning of performance required by increasingly
demanding applications. In this paper we address the prob-
lem of improving power efficiency when executing these
workloads. In particular, we make use of the management
flexibility afforded by virtualization solutions to exploit the



natural heterogeneity of platforms in data centers, including
variances in dynamic power management support that may
be available. We introduce a three phase approach to map-
ping workloads to underlying resources to improve power
efficiency consisting of structured platform and workload
descriptors, a prediction component to estimate the per-
formance and power characteristics of various workload to
platform mappings, and finally an allocator which utilizes
policies and prediction results to perform decisions.

Our results underscore two major conclusions. First, we
show that by intelligently considering the varying power
management capabilities of platforms, the ability for these
systems to obtain power savings using their management
mechanisms can be vastly improved when compared to a
simple round robin assignment model. Using representa-
tive data center configurations consisting of older P4 based
platforms up to cutting edge Intel Core microarchitecture
systems, we also find that our allocation architecture can
improve power efficiency by 20% on average.

In this paper we present the beginning of our investi-
gation into exploiting platform heterogeneity and emerg-
ing virtualization support to improve the power characteris-
tics of enterprise computing environments. As future work,
since modern data centers often have applications such as
tiered web services that are network and I/O bound, we will
extend our approach to address these types of workloads.
Moreover, we also plan to consider how the virtualization
abstraction itself can be used to manage dynamic workloads
whose behavior or performance demands may vary based
upon time or load characteristics. The results presented in
this paper support the potential of this area of research for
power managing heterogeneous computing systems.
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