
Automated system change
discovery and management
in the cloud

H. Chen
A. Turk

S. S. Duri
C. Isci

A. K. Coskun

Emerging cloud service platforms are hosting hundreds of
thousands of virtual machine instances, each of which evolves
differently from the time they are provisioned. As a result, cloud
service operators are facing great challenges in continuously
managing, monitoring, and maintaining a large number of
diversely evolving systems, and discovering potential resilience
and vulnerability issues in a timely manner. In this paper, we
introduce an automated cloud analytics solution that is based
on using machine learning for system change discovery and
management. The learning-based approaches we introduce
are widely used in multimedia and web content analysis, but
application of these to the cloud management context is a
novel aspect of our work. We first propose multiple feature
extraction methods to generate condensed “fingerprints”
from the comprehensive system metadata recorded during the
system changes. We then build an adaptive knowledge base using
all known fingerprint samples. We evaluate different machine
learning algorithms as part of the proposed discovery and
identification framework. Experimental results that are gathered
from several real-life systems demonstrate that our approach is
fast and accurate for system change discovery and management
in emerging cloud services.

Introduction
Cloud computing promises the delivery of on-demand
computing resources as a utility that can be used as
needed. This promise has led to a revolution in IT
technologies causing a rapid transfer of services to the
cloud [1]. Regardless of whether a cloud operator uses
“bare-metal” computers, virtual machines, or containers to
create computing facilities, basic questions remain the
same: Are these facilities free of vulnerabilities and
configured correctly, and can they avoid drifting from
acceptable configuration states? New service automation
and DevOps workflows have attempted to address the
system drift problems by proposing the use of immutable
architectures and tightly structuring software lifecycle into
development, build, deployment, and operations phases.
However, current agile iteration principles that promote
continuous development and improvement, and the fast

pace of changes in underlying systems and software,
counteract some of these benefits. Variability across
systems in cloud environments remains a persistent
problem. Therefore, discovering potential misconfiguration
and vulnerability issues in a timely manner is elusive.
An effective solution to determine system vulnerabilities

and drifts involves monitoring, checking, and analyzing
each change made to a system since it was booted.
To understand what the system changes involve, one can
obtain information from historical user or system logs.
However, log data is usually too large to be mined
fast and accurately. It is also very inefficient to always
keep a huge chunk of logs in storage. On the other hand,
to determine if a system change includes software with
known vulnerabilities, one can consult the package
repository in the system and cross-check that information
against, for example, the National Vulnerability Database
(NVD) [2]. However, a vendor could issue a fix pack
that fixes a known vulnerability without changing packageDigital Object Identifier: 10.1147/JRD.2015.2511811

H. CHEN ET AL. 2 : 1IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

ÓCopyright 2016 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/16 B 2016 IBM

version. Sometimes, vendors could back-port fixes into
packages that have reached the end of their lifecycles. In
both cases, a single package name links to several different
versions of packages—some of them are vulnerable, while
others are not. Further, users could install software from
sources without using package managers. Simply using
logs, package managers, and repositories fails to discover
vulnerabilities in all of these scenarios.
Manually written rules that check for the existence of

certain indicative features, such as the existence of certain
files and configuration parameters, are used in addition
to consulting package repositories in the system [3–5].
While these rules are sufficient to detect the presence
of software for license purposes, they are not capable
of discriminating between a vulnerable package and
one that includes a fix for the vulnerability. Furthermore,
approaches based on such rules are fragile and require
constant maintenance, indicating a substantial amount
of manual effort. A great amount of today’s software is
released multiple times a week, and many systems change
every day. Rule-based approaches have difficulties in
keeping up with the pace of software and system changes.
Alternative methodologies that build inverted indexes

of file tree structures to enable keyword-based searching
for software discovery are mostly useful in scenarios
where users have a deep understanding of the underlying
file/process structures associated with the software they
are searching for and can produce specific keywords
to query [6]. However, as file names can be repetitive,
uninformative, and misleading, the results of such
indexing-based systems are useful in narrowing the search
space but are not conclusive or comprehensive.
In this paper, we introduce an automated cloud analytics

solution that generates fingerprints of changes in system
state, and utilizes these fingerprints in a machine learning
platform to perform system change discovery and
management. We first propose multiple novel feature
extraction methods to generate condensed fingerprints from
the comprehensive metadata associated with the system

change events. Our fingerprinting methodologies mostly
focus on the file system features, and tend to represent
changes in system state in a compact form. They can learn
the hidden context behind filenames, and represent them
with vectors utilizing the file tree structure and/or file
co-location information to capture the semantic
relationships of files. Using these fingerprints, we build
an adaptive knowledge base that enables fast comparison
of system state changes with previously labeled changes.
More specifically, we learn the discovery model from
the knowledge base with learning algorithms and then
predict the new-coming system changes by the model. In
this paper, we then conduct experiments mainly based
on system changes caused by software installation. Typical
system changes include software installations, updates,
system reconfigurations, and process executions. Among
them, software installation is one of the most significant
factors causing system changes [7]. However, note that
our approach is applicable for discovery of system changes
caused by any of the above listed factors, as the procedure
of the discovery remains essentially the same and is
independent of the reasons for the changes. We evaluate
several machine learning algorithms as part of the proposed
discovery and identification framework on our knowledge
base. We show that our mechanism can be utilized for
fast (in a few milliseconds or seconds) and accurate
(up to 98.75%) software and system change discovery.

Overview of system change
discovery framework
Our system change discovery framework is composed
of three phases: change set creation, training, and
discovery. A change set, which contains all changes
that happened to the system during a system event (e.g.,
a software installation), is crawled and recorded in the
change set creation phase. Figure 1 shows the change set
creation flowchart. The training phase is composed of two
stages: the fingerprint extraction and the model-learning.
A fingerprint, a compact representation of each change

Figure 1

Flowchart of change set creation Snapshots of the system are captured before and after the system change event Then, a diff operation is calcu-
lated on these two snapshots, and the change set is generated

2 : 2 H. CHEN ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

set, is created in the fingerprint extraction stage. In the
model-learning stage, a knowledge base is first built up
by change sets with known labels, and their corresponding
fingerprints. The “label” here represents the name of
the event that leads to the system changes. It can be a
software package installation, for example, “Apache
Tomcat** installation,” package update (e.g., “Tomcat
update”), or system configuration (e.g., “Tomcat
configuration”), etc. All fingerprints along with their labels
in the knowledge base are then supplied to the learning
algorithms to generate a machine learning model. Finally in
the discovery phase, the learned model is utilized in the
task of label prediction for new unidentified changes. Newly
labeled change sets and their corresponding fingerprints are
then stored in the knowledge base for future learning, which
makes the knowledge base iteratively updated. In this way,
the entire discovery system is automated and requires little
or no human intervention in the long-term. Manually labeled
training samples are only required at the beginning of the
initialization of the knowledge base. After the initialization,
human operators only need to verify or clarify samples
that are labeled with low confidence, which only constitute
a small set of whole samples. Figure 2 provides an overall
view of the training and discovery phases.
In the following sections, we first discuss the change set

creation phase, in which we define what a change set is and
how it is created. We then study the training phase. We
discuss multiple fingerprinting methodologies to capture
the extensive information stored in change sets in a
compact form, followed by presenting various learning
algorithms that we utilize for training the model. We then

briefly discuss the system change discovery phase. Finally,
we introduce the experimental methodology, followed by
an analysis of the performance of our discovery framework
and discussions.

Phase I. Change set creation
As mentioned, a change set is the record of all changes
that happened to the system during a system event, such as
a software installation. It contains all entities that are
created, modified, or deleted during the event, e.g., files,
packages, processes, and configurations [8].
The change set creation process and an example change

set is shown in Figure 1 and Listing 1, respectively. We
create the change set by utilizing IBM’s Origami service
[9, 10]. As an example of change set creation, consider
the installation of an application such as Apache Tomcat,
an open source Java** Servlet software. A “snapshot”
S1 of the system is taken at T1, followed by the installation
of the subject software, in this scenario Tomcat, followed
by a second “snapshot” S2 of the system at T2. The
difference of two snapshots, i.e., D ¼ S2 � S1, is a change
set, and we label it with the “Tomcat Installation” label
to mark that this change set represents the system state
changes observed due to an Apache Tomcat installation.
Technically, a “snapshot” is taken as a text file consisting
of metadata of the system, and the difference D is the
output of a “text diff” applied on two snapshots.

Phase II. Training
Training has two stages, namely fingerprint creation and
learning stages. In training, fingerprints are extracted from

Figure 2

Training and discovery phases of the system change discovery framework Labels and extracted fingerprints from change sets are input to learn-
ing algorithms to train the model in the training phase The learned model is then used to discover and label the new-coming unidentified
changes during discovery

H. CHEN ET AL. 2 : 3IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

raw change set data, and stored in a knowledge base,
and a discovery model is then learned from data in
knowledge base. As mentioned, the training process and
its relationship with the discovery process is shown in the
upper part of Figure 2.

Fingerprint creation
Condensed key information is required to be extracted,
either explicitly or implicitly, from change sets before they
can be used to train the prediction models. The process
of key information extraction is called “fingerprinting,”
and the extracted key information is defined as the
“fingerprint,” for each change set. In this section, we
introduce multiple fingerprinting methodologies.
All fingerprinting techniques introduced here use file

features in the change set, such as filenames and file paths.
An example of file features can be seen in Listing 1. File
features constitute the most significant part of change sets,

and in most cases using only file features is sufficient
for discovery and identifying system changes caused
by software installation. It is also sufficient for other causes
of system changes such as software updates and system
configurations unless these operations do not cause a
significant change in file features.
The most intuitive, straightforward, but storage

inefficient fingerprint is the filename fingerprint. A
filename fingerprint is a list of filenames of all recorded
files (added, modified, or deleted during the system
change event) in a change set. Filename fingerprints are
distinguishable because the combination of filenames
of all changed files is mostly unique to a system change.
A filename fingerprint can be quite inefficient especially

when a change set contains thousands of file features.
Hence, we propose a condensed numerical representation
of these filenames, the histogram fingerprint [8]. The
process of creating a histogram fingerprint from a filename

Listing 1 A sample change set. It contains all entities that are created, modified, or deleted during the system
change event, e.g., OS, files, packages, processes, and configurations.

2 : 4 H. CHEN ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

fingerprint is as follows. First, transform each filename
in the filename fingerprint into a numerical value using
some hash function, e.g., calculating the American
Standard Code for Information Interchange (ASCII) sum
of all characters that the filename contains. Second,
calculate histogram by grouping all the numerical values
into a few bins, i.e., Nbins, and count the number of values
in each bin as Ci; i ¼ 1; 2; 3 . . .Nbins. Third, normalize the
histogram by Cnorm

i ¼ Ci=ð
PNbins

i¼1 CiÞ, i ¼ 1; 2; 3 . . .Nbins,
such that

PNbins
i¼1 Cnorm

i ¼ 1. The histogram fingerprint
is normalized so as to be independent of the total number
of filenames in the change set. The length of histogram
fingerprint is fixed at Nbins.
Both filename and histogram fingerprints utilize the file

features as is, without trying to understand the “meaning”
of the names of these files. However, it is now possible
to capture the syntactic and semantic similarities and
relationships between words in natural languages with no
human supervision by providing significant amount of
textual content to neural networks [11, 12]. Word2vec
(w2v) is one such open source machine learning (neural
network) toolkit developed at Google for this specific
purpose [11]. It has been shown to successfully capture
the similarities among concepts in natural languages.
We propose that w2v can also be used for gleaning the

meaning behind filenames. Just as concepts that tend to
appear in the same sentence in a specific order have a
special relationship, we argue that filenames that appear

in the same file tree branch or in the same folder (hence
neighbors in locality) have a special relationship, and
we propose two fingerprinting methodologies that utilize
these two separate sources of information. We feed the
file features and their “neighbors” (i.e., the set of files that
reside in the same folder) as sentences to w2v and create
a vector representation for each filename that we call
“neighbor vector” of a filename. For each change set, we
sum the “neighbor vectors” of the changed files in the
change set by performing a simple vector addition. Then
we normalize the summation vector to a unit vector to
obtain a neighbor fingerprint.
Similarly, by feeding the filename of a changed file

in the change set together with the folder names that are
in the same file tree branch as a sentence to w2v, we
create another vector representation for each filename,
called as the “file-tree vector” of a filename. For each
change set, by adding the file-tree vector representations
of the changed files and then normalizing the summation
vector to a unit vector, we obtain a file-tree fingerprint.
When provided with sufficient amount of folder and file

tree information, we observe that w2v can easily identify
the semantic relationship between files. In Figure 3 we
display two-dimensional vectors created by w2v for a set
of filenames when file tree information is supplied to it.
As shown via dashed circles in the figure, even when the
vector dimensions are as low as two, w2v manages to
retain a sense of the semantic relationship among the

Figure 3

Two-dimensional (2D) vectors created by w2v for a set of filenames when file tree information is supplied to it Created vectors retain the se-
mantic relationship among the software objects they represent Vector dimensions are indicated by x and y

H. CHEN ET AL. 2 : 5IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

software objects represented by filenames, and it is even
possible to roughly group the filename vectors based on
these semantic relationships. As an example, it is possible
to observe from the figure that the 2D vectors for Emacs**
(the popular Linux** editor) and Lisp (the programming
language used for implementing most of the editing
functionality built into Emacs) are very close. Please recall
that these vectors are not fingerprints themselves but they
are informative inputs to the fingerprinting algorithm.
However, using w2v supplied vectors of changed filenames
for fingerprinting enables the fingerprinting algorithm to
retain a semantic sense of the installed program. When
vector dimensions are increased to 200 or more, w2v starts
to display much more accurate results. We should also note
that w2v supplied vectors also retain a sense of relative
relationship between files. As an example, when using
neighbor vectors, we observed in our data that the
relationship between “apache-commons-dbutils.jar” and
“apache-commons-dbutils.xml” is akin to the relationship
between “ivy.jar” and “ivy.xml”.

Learning using fingerprints
Having defined our proposed fingerprinting methodologies
to represent the change sets observed after system change
events in a compact form, we now describe how we use
these fingerprints in various learning frameworks to train
models that can perform system change discovery. The set
of machine learning algorithms we consider for system
change discovery include nearest neighbor, logistic
regression, support vector machines (SVM), decision trees,
and random forests. Below we briefly introduce these
widely used machine learning algorithms.
Nearest Neighbor (NN) [13, 14] is a classification

technique that labels a given sample using the closest
(or most similar) samples within a given previously labeled
dataset. Closeness is defined by a similarity or distance
function, e.g., Euclidean distance, Manhattan distance,
cosine similarity, etc. A generalization of this is the
k-nearest-neighbor (kNN) algorithm, which utilizes
the “k” closest samples. In this paper, we consider the
one-nearest-neighbor algorithm with the Euclidean
distance. For a pair of fingerprints ðfi; fjÞ introduced before
(they are both vectors, no matter what type), the Euclidean
distance is calculated as kfi � fjk, i.e., the L2-norm. The
smaller the distance is, the more similar two fingerprints are.
Unlike other learning algorithms that must have a training

phase to provide a learning model of coefficients, support
vectors, or decision rules, the NN algorithm requires no
training. It simply keeps the set of all training samples, and
operates on these samples during the discovery phase to
find the nearest neighbor (or k nearest neighbors) of the
new-coming samples based on the given distance or
similarity function, and reports the corresponding label(s)
and their distances as the discovery result.

Logistic Regression (LR) [15] is a classification
algorithm that typically deals with binary outputs. The
basic idea of the logistic regression is to train a coefficient
vector of the feature from a training data set by minimizing
a defined cost function using programming methods. It
is a generalization from linear regression by applying
a logistic function. The logistic regression method can be
further generalized to predict the probabilities of more
than two possible outputs, i.e., the multi-class logistic
regression, with applying the one-vs-all algorithm. In this
work, we apply multi-class logistic regression with the
L2-regularization in our problem to avoid over-fitting.
The weights on the cost of regression error and the
regularization are trained through cross-validation on
the training dataset.
SVM [16] attempts to find an optimal set of hyper-planes

in high-dimensional space that divides the samples into
classes with largest margins. An SVM model is learned from
training samples, which maps the samples as points in space,
and divides classes by clear gaps (hyper-planes). Samples
are then predicted to be in classes based on the side of the
gap that they fall on. Samples on the margins are called
support vectors. We apply one-vs.-one algorithm to extend
a binary SVM to a multi-class SVM; i.e., NðN � 1Þ=2
classifiers are constructed if we have N classes.
SVM applies kernel functions to map the original space

to a higher-dimensional space. The most widely used
kernel functions are the linear kernel and the radial basis
function (RBF) kernel [17], which are both tested in our
experiment. In SVM, a soft margin is typically applied,
which chooses a hyper-plane that splits examples as
cleanly as possible, though makes a more complex decision
hype-plane. The trade-off parameter and other parameters
related to different kernels are learned by cross-validation
on the training dataset in our experiment.
Decision Tree (DT) [13] is a tree-like graph in which

each (non-leaf) node and each branch represents a test on
an attribute and the outcome of the test, respectively. Leaf
nodes represent classes, into which samples are finally
classified after passing through tests on all attributes. A
decision tree is most commonly learned in a top-down
induction method, i.e., repeatedly splitting training sets
into subsets in a recursive manner based on tests of
attributes until splitting no longer improves the prediction
performance. Comparing with other learning algorithms,
an additional benefit of a decision tree is that the decision
rules that are learned from a training data set can be
usually visualized in a human-readable manner.
Random Forests (RF) [18] is an ensemble learning

method based on decision tree. It constructs multiple
decision trees in training and uses the mean or mode of
the prediction of individual trees as the final output.
Random forest is mainly used to solve the “over-fitting”
issue of decision tree.

2 : 6 H. CHEN ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

Phase III. Discovery
In the discovery phase, the models trained on the
knowledge base that contains application labels and
corresponding fingerprints are utilized for performing
prediction over new fingerprints extracted from unobserved
change sets. More specifically, the fingerprint of a new
coming unobserved change set is generated and input to the
model, and the identification (i.e., the label) of the change
set is returned. The discovery process and its relationship
with training are displayed in the lower part of Figure 2.

Experimental methodology
The datasets used in experimentation are generated as
follows: We randomly select 160 software packages
from the Linux yum repository and install these packages
on two different operating systems in two different cloud
environments, namely the Fedora-19 on Amazon Web
Service (AWS) EC2** (Elastic Compute Cloud)
micro-instances, and the Fedora-21 on Massachusetts
Open Cloud (MOC) [19] medium instances. Note that
the approach also applies to other software systems, such
as APT (Advanced Package Tool)-like repositories, manual
installation from binaries, etc. We have briefly tested them
and observed similar results. In addition, the approach is
independent to the location of installation, as we either
only use the relative path or not use the path information
at all in fingerprint design. In that way, we make sure that
the same software installed in different folders can still
be discovered. We record the system change set for each
installation. We select software package installations as the
system change trigger events because software installations
are one of the most significant events that can lead to notable
system changes. However, the proposed discovery technique
is not limited to application installations and can be applied
to a variety of system change events, such as security
patches, system configurations, process execution, etc.
A change set not only includes records of changes

caused by the software installation, but also contains
other “background noise,” such as temporary files created
automatically by the system and changes made by other
user operations or unrelated running activities in parallel,
etc. Therefore, change sets consist of variations and
vary from installation to installation. Even installing the
same software on the same instance multiple times leads
to different change sets. Moreover, dependency packages
are resolved and installed during software installation.
Some popular dependencies are shared by multiple
software packages, and as a result, during the batch
installation of 160 packages, dependencies of some later
installed software packages may have already been
installed during installations of prior software. Hence,
different orders of installations in the batch installation
among these 160 software packages lead to differences in
change sets. Thus, in order to capture variations in change

sets, we batch install 160 software packages multiple times
in random order. We install each software package 3 times
on different AWS instances and 4 times on different MOC
instances to create a training knowledge base. Overall, the
training dataset consists of 160 software installation classes
with each class containing 7 change set samples. This
dataset is also used to generate the w2v dictionaries for
neighbor and file-tree fingerprints.
Our testing dataset is generated as follows. We randomly

select 80 software packages out of the 160 classes, and
install each of them once on a separate AWS instance with
Fedora-19. Then, we randomly select another 80 software
packages and install each of them once on a separate
MOC instance with Fedora-21. The change set samples
obtained from these installations are used as our discovery
test cases. Therefore, our test dataset contains 160 tests
in total, with 80 from the AWS Fedora-19 installation and
80 from MOC Fedora-21 installations. The test data set
is generated in this way so as to capture the experimental
varieties of different OSs and platforms. The accuracy
of discovery is defined as the number of cases that are
correctly identified among these 160 test cases, divided by
160. We test discovery accuracy of all combinations of
different fingerprints methodologies and learning
algorithms discussed previously.

Experimental results
Figure 4 shows the discovery accuracy of various
combinations of the fingerprinting methodologies and
the learning algorithms. We test the performance of the
one nearest neighbor (NN), logistic regression with
regularization (LR), SVM with linear and RBF kernel
(SVM-linear and SVM-RBF), decision tree (DT), and the
random forest (RF) machine learning algorithms. In LR,
SVM-linear and SVM-RBF, parameters are tuned with
cross-validation on the training data set. Either one-vs-one
or one-vs-all method is used in each learning algorithm
for multiclass discovery, as discussed previously. Since
there exist some variations in model generation in DT and
RF, the discovery results vary corresponding to different
models. We calculate average performance of DT and RF
across 20 test runs.
The fingerprints in our experiment include: the

histogram fingerprint with different number of bins
(Nbins ¼ 20 and Nbins ¼ 200), the neighbor fingerprint,
and the file-tree fingerprint. The lengths of both the
neighbor and the file-tree fingerprints are 200. We also
test the accuracy of utilizing combinations of histogram
ðNbins ¼ 200Þ, neighbor and file-tree fingerprints as feature
sets. As an example, the histogramþ neighbor fingerprint
has 400 dimensions, with first 200 dimensions coming
from the histogram fingerprint and the last 200 dimensions
coming from the neighbor fingerprint. Similarly, the length
of the histogramþ file-tree fingerprint is 400, and the

H. CHEN ET AL. 2 : 7IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

length of the histogramþ file-treeþ neighbor fingerprint
is 600.
As seen in Figure 4, the highest discovery accuracy

is as high as 98.75%, and is achieved by using logistic
regression on the combination of histogram, neighbor, and
file-tree fingerprints. All learning algorithms—with the
exception of the decision tree algorithm, which may
suffer from over-fitting—achieve the best performance
when some combinations of fingerprints are used. The
histogram fingerprint with 200 bins has consistently better
performance than with 20 bins for all algorithms. In our
experimental tests, we also observed that further increasing
the number of bins of the histogram to 1000 or larger
counts in fact decreases accuracy, as it leads to highly
sparse fingerprints.
We observe from Figure 4 that utilizing the file

neighbor and file-tree information in fingerprint creation
process causes notable improvements in performance.
In some algorithms (i.e., NN and DT), simply using the
neighbor information leads to the highest accuracy.
Involving other information such as histogram or file-tree
may blur the model and predication boundary. Considering
that the file-tree fingerprint depends on the paths of
installation that are sometimes modified by users, neighbor
information can be more reliable and general in broader use
cases.
In addition to the discovery accuracy, the time for

model training and testing are other significant aspects that
should be taken into account, especially in some real-time
monitoring scenarios, in which discovery results must be
returned as soon as possible. From our results, all the
combinations of learning algorithms and fingerprint
methodologies can finish all 160 tests in less than
0.1 second. Notice that this number is almost independent

with size of knowledge base in all studied algorithms
except for NN. We should note that the test time of NN
could increase with increasing labeled sample sizes.
For training on a knowledge base containing 160 classes

with 7 samples each, logistic regression has the longest
training time, which is around 10-20 seconds depending on
the types of fingerprints used. Decision tree with combined
fingerprints has training time around 5 seconds. All the
other combinations finish training in less than 1 second.
Notice that there is no training time issue for the nearest
neighbor algorithm, as there is no model to be trained.
In practice, a discovery system can be designed as a
combination of an online training phase and an offline
training phase. Algorithms that are able to train and update
the model fast, though with slightly lower accuracy can be
applied in the online training phase to update the prediction
model frequently, while algorithms with longer training
time but higher accuracy can be applied as an offline
training method, to update the model less frequently with
some fixed periods, e.g., once a week.

Related work
Standard system management and system change discovery
mechanisms employed industrially today are mainly
rule-based solutions that utilize large sets of manually
written rules to check the existence of certain indicative
properties, such as the existence of certain files. Open
Indicators of Compromise (OpenIOC) [5] is one such
open framework that uses rules to examine registry, file
content, and metadata information to determine security
vulnerabilities. BigFix* [3] is a commercial offering that
uses rules to scan systems and applies fixes automatically
based on scan results. Rule-based approaches, however, are
labor intensive as each new system and software require a

Figure 4

Discovery accuracy for multiple fingerprinting methodologies and learning algorithms Results are grouped by learning algorithms

2 : 8 H. CHEN ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

new set of rules, require frequent edits and updates due to
updates on systems and/or software packages, and require
domain expertise over a variety of systems and applications
to prepare the rules, which is difficult to find.
As a complementary solution to manually written rules,

a few studies investigate automated learning methods in
system performance diagnosis [20, 21]. These studies
mainly rely on system performance metrics to detect the
performance drift on either hardware or firmware layer,
and mostly do not deal with problems in software and
system layer. EnCore [22] is a tool that learns configuration
rules from a given set of sample configurations, and
automatically detects software misconfigurations. Although
it effectively solves types of misconfiguration problems, it
does not target to general software and system changes.
Recently, some work has studied the opportunities and

challenges to interactively search across VM images at
a high semantic level, and researchers have sketched the
outline of an implementation by a discard-based search
[23, 24]. Alternative system change and software
discovery methodologies based on indexing methodologies
and information retrieval techniques are proposed.
Minersoft [6] indexes file system information to build a
keyword-based query processing system that enables
searching for software existence on indexed systems.
Similarly, Mirage [25] is an image library that stores cloud
images such that their file system structure is indexed in
a way that enables scanning, searching, and comparison of
VM instances. However, indexing-based approaches
require maintenance of large indexes per target VM that
are constantly updated as the VM evolves. Additionally,
indexed file names and processes can have repetitive string
representations, which can be uninformative and
misleading thus results in inconclusive or incomprehensive
result sets.
In contrast, our approach (1) is fully automated

requiring little to no human intervention, (2) can adapt to
changes and updates by learning from the new examples
and updating models, (3) significantly reduces the amount
of maintenance required due to changes on instances by
creating compact representations of changes occurring in
system states, and (4) can provide highly accurate and
comprehensive results to system change discovery queries.
Furthermore, we note that due to fast development

cycles observed in state-of-the-art system implementation
practices, many system change discovery use cases require
the capability of querying with examples, such as “listing
the set of VMs that have made a given type of an
installation/configuration,” perhaps to identify systems
that pertain a certain type of misconfiguration or bug
observed in one VM. We should note that, unlike
rule-based or indexing-based approaches, our proposed
framework also performs well in these kinds of “query by
example” scenarios.

Conclusion and future work
As cloud computing technologies continue to mature and
gain attraction in many industries, the demand for
intelligent analytics solutions that ease the management
of cloud environments increases. In this study, we
have introduced an automated cloud analytics solution
that caters to one of such demand, namely system change
discovery and management. Our solution achieves
efficient discovery by recording system changes in
change sets, generating compact fingerprints of system
state changes and utilizing these fingerprints in a machine
learning platform. We have shown that with understanding
the hidden context and the semantic relationships among
filenames in change sets, automated, fast (in a few
milliseconds or seconds), and accurate (up to 98.75%)
system change discovery is achievable by our technique.
As an immediate follow-up of this work, we plan to test

the accuracy and efficiency of proposed system on more
additional cloud environments such as the Google** Cloud
Engine and Microsoft Azure** as well as other popular
operating systems such as CentOS**, Ubuntu**, and Red
Hat Enterprise Linux, and prove the scalability of our
solution. Additionally, investigation of configuration
discovery in popular cloud applications such as Hadoop**,
Spark, RabbitMQ, and Cassandra is a natural extension of
the proposed work.
Since most of the machine learning algorithms we

investigate can provide a prediction confidence level
along with their predictions, confidence threshold setting
mechanisms can be investigated in future work to discover
new applications that are not in the current knowledge
base, as well as reduce the error of mislabeling by filtering
out low-confidence predictions. Another related possible
research avenue is the investigation of prediction accuracy
on highly noisy and/or insufficient/partial data. This task
can be achieved by applying the confidence threshold
setting mechanisms to determine when to make a
prediction and when to wait for more input.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both

**Trademark, service mark, or registered trademark of Apache
Software Foundation, Oracle America, UniPress Software, Linus
Torvalds, Amazon, Google, Inc , Microsoft Corporation, Red Hat, or
Canonical Ltd in the United States, other countries, or both

References
1 L Wei, H Zhu, Z Cao, X Dong, W Jia, Y Chen, and

A V Vasilakos, “Security and privacy for storage and
computation in cloud computing,” Inf Sci , vol 258,
pp 371–386, Feb 2014

2 National Vulnerability Database [Online] Available
http //nvd nist gov

3 Endpoint Manager Relevance Language Guide [Online]
Available http //pic dhe ibm com/infocenter/tivihelp/v26r1/topic/
com ibm tem doc_8 2/Relevance Guide PDF pdf

H. CHEN ET AL. 2 : 9IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

4 Open Source Software Discovery [Online] Available http //
ossdiscovery sourceforge net

5 Openioc [Online] Available http //www openioc org
6 M D Dikaiakos, A Katsifodimos, and G Pallis, “Minersoft

Software retrieval in grid and cloud computing infrastructures,”
ACM Trans Internet Technol , vol 12, no 1, Jun 2012, Art ID 2

7 S Bohner, “Impact analysis in the software change process
A year 2000 perspective,” in Proc IEEE Int Conf Softw
Maintenance, 1996, pp 42–51

8 H Chen, S S Duri, V Bala, N T Bila, C Isci, and
A K Coskun, “Detecting and identifying system changes in
the cloud via discovery by example,” in Proc IEEE Int Conf
Big Data, 2014, pp 90–99

9 Origami Systems as Data [Online] Available https //sites
google com/site/origamisystemsasdata

10 D Reimer, A Thomas, G Ammons, T Mummert, B Alpern,
and V Bala, “Opening black boxes Using semantic information
to combat virtual machine image sprawl,” in Proc 4th ACM
SIGPLAN/SIGOPS Int Conf VEE, 2008, pp 111–120

11 T Mikolov, K Chen, G Corrado, and J Dean, “Efficient
estimation of word representations in vector space,” in Proc
Workshop ICLR, Scottsdale, AZ, USA, 2013

12 T Mikolov, I Sutskever, K Chen, G Corrado, and J Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc Adv NIPS, 2013, pp 3111–3119

13 B Clarke, E Fokoue, and H H Zhang, Principles and theory
For Data Mining and Machine Learning New York, NY,
USA Springer-Verlag, 2009

14 T Cover and P Hart, “Nearest neighbor pattern classification,”
IEEE Trans Inf Theory, vol IT-13, no 1, pp 21–27, Jan 1967

15 D Hosmer and S Lemeshow, Applied Logistic Regression
Hoboken, NJ, USA Wiley, 2004

16 C Cortes and V Vapnik, “Support-vector networks,” Mach
Learn , vol 20, no 3, pp 273–297, Sep 1995

17 C -W Hsu, C -C Chang, and C -J Lin, “A practical guide to
support vector classification,” Dept Comput Sci , Nat Taiwan
Univ , Taipei, Taiwan, Tech Rep , 2003 [Online] Available
http //www csie ntu edu tw/~cjlin/papers/guide/guide pdf

18 L Breiman, “Random forests,” Mach Learn , vol 45, no 1,
pp 5–32, Oct 2001

19 A Bestavros and O Krieger, “Toward an open cloud
marketplace Vision and first steps,” IEEE Internet Comput ,
vol 18, no 1, pp 72–77, Jan /Feb 2014

20 P Bodik, M Goldszmidt, A Fox, D B Woodard, and
H Andersen, “Fingerprinting the datacenter Automated
classification of performance crises,” in Proc 5th ACM Eur
Conf Comput Syst , 2010, pp 111–124

21 P Xiong, C Pu, X Zhu, and R Griffith, “vPerfGuard
An automated model-driven framework for application
performance diagnosis in consolidated cloud environments,”
in Proc 4th ACM/SPEC Int Conf Perform Eng , 2013,
pp 271–282

22 J Zhang, L Renganarayana, X Zhang, N Ge, V Bala, T Xu,
and Y Zhou, “EnCore exploiting system environment and
correlation information for misconfiguration detection,” in Proc
19th Int Conf ASPLOS, 2014, pp 687–700

23 M Satyanarayanan, W Richter, G Ammons, J Harkes, and
A Goode, “The case for content search of VM clouds,” in Proc
1st IEEE Int Workshop Emerging CloudApp Comput , 2010,
pp 382–387

24 L Huston, R Sukthankar, R Wickremesinghe,
M Satyanarayanan, G R Ganger, E Riedel, and A Ailamaki,
“Diamond A storage architecture for early discard in interactive
search,” in Proc USENIX Conf FAST, 2004, vol 4, pp 73–86

25 G Ammons, V Bala, T Mummert, D Reimer, and X Zhang,
“Virtual machine images as structured data the mirage image
library,” in Proc 3rd USENIX Conf HotCloud Topics Comput ,
2011, p 22

Received May 17, 2015; accepted for publication
June 9, 2015

Hao Chen Boston University, ECE Department, Boston,
MA 02215 USA (haoc@bu edu) Mr Chen is a Ph D student in the
Electrical Computer Engineering Department of Boston University
(BU) He received a B S degree with distinction in Information
Science and Electronic Engineering from Zhejiang University,
China in 2010 His research interests include data center energy
management and demand response, smart grids, intelligent analytics
in cloud system management, big data, and machine learning

Ata Turk Boston University, ECE Department, Boston,
MA 02215 USA (ataturk@bu edu) Dr Turk is a Postdoctoral
Researcher in the Electrical Computer Engineering department
of Boston University He received his B Sc and Ph D degrees
from the Computer Engineering department of Bilkent University,
Turkey His research interests include information retrieval, data
analytics, and combinatorial optimization for performance, energy,
and cost improvements in cloud computing applications Prior to
joining Boston University, he was a postdoctoral researcher at
Yahoo Labs

Sastry S. Duri IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (sastry@
us ibm com) Dr Duri is a Senior Software Engineer at the IBM
T J Watson Research Center in Yorktown Heights, New York He
earned a Ph D degree in computer science from the University of
Illinois at Chicago His professional interests include distributed and
computing systems, mobile commerce applications, radiofrequency
identification (RFID) based supply chains, and sensor and actuator
applications In his spare time, he coaches teams for FIRST
Robotics competitions In the past, he represented IBM in the
industry standard group EPCglobal Application-Level Events (ALE)
Working Group, a subsidiary of the Uniform Code Council (UCC),
and in the Open Location Services Interface Standard (OpenLS)
workgroup

Canturk Isci IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (canturk@
us ibm com) Dr Isci is a Research Staff Member in the Cloud
Computing division at the IBM T J Watson Research Center,
where he leads the Scalable Data Center Analytics team in Research
and the Operational Analytics Squad within IBM Cloud Services
His research interests are cloud computing, operational and DevOps
analytics, novel monitoring techniques based on virtualization and
containerization, and energy-efficient computing techniques at
various computing abstractions, from microarchitectures to data
centers He received a B S degree in electrical engineering from
Bilkent University, an M Sc degree with distinction in VLSI
System Design from University of Westminster, and a Ph D degree
in computer engineering from Princeton University

Ayse K. Coskun Boston University, ECE Department, Boston,
MA 02215 USA (acoskun@bu edu) Dr Coskun is an associate
professor in the Electrical and Computer Engineering department at
Boston University Her research interests include energy-efficient
computing, new computer architectures, and management of data
centers She has a Ph D degree in computer science and engineering
from the University of California, San Diego She is a member of
the Institute of Electrical and Electronics Engineers (IEEE) and the
Association for Computing Machinery (ACM)

2 : 10 H. CHEN ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 2 MARCH/MAY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

