
Improving server utilization
using fast virtual machine
migration

C. Isci
J. Liu

B. Abali
J. O. Kephart
J. Kouloheris

Live virtual machine (VM) migration is a technique for transferring
an active VM from one physical host to another without disrupting
the VM. In principle, live VM migration enables dynamic resource
requirements to be matched with available physical resources,
leading to better performance and reduced energy consumption.
However, in practice, the resource consumption and latency
of live VM migration reduce these benefits to much less than their
potential. We demonstrate how these overheads can be substantially
reduced, enabling live VM migration to fulfill its promise.
Specifically, we first experimentally study several factors that
contribute to the resource consumption and latency of live VM
migration, including workload characteristics, the hypervisor and
migration configuration, and the available system and network
resources. Then, from the insights gained, we propose an alternative
remote direct memory access-based migration technique that
significantly reduces VM migration overheads. Finally, via
simulation and experiments with real system prototypes, we
demonstrate that the reduced VM migration overhead results in
significant improvements in resource and energy efficiencies, relative
to existing migration techniques.

Introduction
An often-reported advantage of server virtualization is that it
enables system administrators to consolidate a set of
workloads onto a smaller number of physical servers. This
significantly improves system utilization from the low
percentages that have been commonly observed in many
nonvirtualized data centers [1]. Virtualization and server
consolidation are expected to reduce the monetary cost of
computation by reducing the amount of hardware and labor
required to maintain the hardware, the floor space, and the
energy consumption. Most customers who have made the
transition to virtualized computing environments have
experienced the benefits, although they may have reached a
density plateau that reflects the limits of static provisioning.
Density plateau refers to the new steady state with respect to
server densities that is achieved by statically provisioning
virtual machines (VMs) on these virtualized servers.
Server consolidation is often treated as a static provisioning

operation in which workload peaks are analyzed [2, 3], and

then, VMs are placed on the individual physical hosts to
minimize the number of servers under maximal load
conditions. Here, we define a workload as the operating
system and software applications running in a VM. To respond
to large-scale workload changes, the VM placements may be
periodically revisited, perhaps on a timescale of months or
weeks, but these placement frequencies are typically much
slower than the natural workload dynamics. We define
Bplacement[as the placement of a VM on a physical server
within a management domain. Statistics on production
workloads that we [3, 4] and others have collected from
nonvirtualized customer systems reveal that the resource-use
intensity can be highly dynamic, typically with pronounced
daily and weekly cycles and sometimes with higher frequency
variations on a scale of minutes. In practice, unused reserve
central processing unit (CPU) capacity, called headroom,
is used to guard against increases in workload intensity.
For example, IBM recommends processor headroom of
63%, 40%, 32%, and 25% on 2-, 8-, 16-, and 32-core x86
systems, respectively. The decrease in relative headroom as the
number of cores grows is due to the relatively smaller statistical
workload fluctuations as the system scales up.

�Copyright 2011 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

Digital Object Identifier: 10.1147/JRD.2011.2167775

C. ISCI ET AL. 4 : 1IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

0018-8646/11/$5.00 B 2011 IBM

A potential technology for improving resource utilization
in virtualized systems is live VM migration, which transfers
an active VM from one physical host to another without
perceivable interruptions. Bobroff et al. [4] showed, via
simulation, that low-latency migration could reduce resource
requirements by as much as 50% and service-level agreement
violations by up to 20%, and they demonstrated the
correlation between resource efficiency and migration
latency. Low-latency VM migration and colocation of VMs
with complementary demand characteristics effectively
creates a single giant server with a small headroom
requirement. For example, in a cloud-scale system consisting
of thousands of eight-core servers, the 40% headroom
requirement may, in principle, be decreased to nearly zero.
Furthermore, to save energy, VMs can be consolidated in
fewer servers running at their highest capacity (a mode that
typically has the highest energy efficiency per unit of
computation), with the remaining physical servers put in low
power states during periods of low demand [5]. Therefore,
understanding key migration characteristics and improving
migration performance are crucial for improving resource use
and energy efficiency of virtualized systems.
The purpose of this paper is threefold. We experimentally

measure migration performance and energy consumption
as a function of several factors, use the insights gained from
the experiments to design an improved live migration
technique, and then measure the resulting improvements in
performance and energy consumption. This paper is
organized as follows. After providing some background on
live migration technology, we characterize the impact of
workload characteristics such as memory footprint and usage
intensity, and network infrastructure and hypervisor
configurations, on migration performance and identify the
key performance-limiting factors.
Next, we introduce a new fast live migration technique that

we have developed called FM (fast migration). FM reduces
the observed CPU bottleneck by changing the default
hypervisor and networking parameters and by exploiting the
remote direct memory access (RDMA) transport found in
modern interconnects such as 40-Gb/s InfiniBand**,
resulting in speedups in live migration of 1 to 2 orders of
magnitude. Finally, focusing on a typical dynamic workload
and placing the unused servers in low power states (in a
manner that partially resembles the VMware** Distributed
Power Manager [6]), we quantify how this speedup can
translate into reduced headroom and greater CPU utilization
and also demonstrate energy-efficiency improvements of
20% over existing techniques.

Background: characteristics and costs
of live migration
Live migration is a key enabler for distributed resource
management in virtualized systems because it allows VMs to
migrate across physical systemswithout service disruption [7].

Live migration creates a clear separation between guest user
activities and data center management operations,
such as provisioning and physical resource allocation.
It enables physical system maintenance and remediation
without service downtime. Used in conjunction with workload
placement and power management middleware, it can support
significant performance and power optimization benefits by
allowing physical hosts to be evacuated and powered off
without service interruption. Here, we first present a brief
technical overview of live migration operation and then
discuss some of the key workload and system characteristics
that can affect migration performance.

Live migration overview
The simplest conceivable VM migration technique is
pure stop and copy, which entails suspending the VM,
transferring its entire memory contents and architectural state
to another physical host, and then reinstantiating it there.
This approach has the advantage of being highly deterministic
and easy to implement, but because of its long downtime
(the period during which the VM is stopped), this approach is
often not preferred for practical applications. In contrast,
live migration strives to keep the VM downtime to a minimum
while also ensuring that the total time required for the overall
end-to-end migration (the migration latency) stays within
reasonable bounds.
A live migration approach called precopy-based migration

can reduce downtime considerably by transferring memory
contents to the destination host while the VM continues to
execute on the source host. This is commonly an iterative
process. During the period when the active memory of the
VM is transferred to the destination, the copy of the VM that
is still executing will Bdirty[some of the transferred pages
by rewriting on them. The hypervisor memory management
unit tracks the dirty pages, which are then resent to the
destination in subsequent migration iterations. The iterative
process continues until a small working set size is reached or
until an iteration count limit is reached. At that point, the
migration execution changes from the precopy to downtime
phase, during which the VM is stopped and the remaining
active memory of the VM and the architectural state,
such as register contents, are transferred to the destination
host. Since most of the memory of the VM has been
transferred to the destination beforehand, the downtime is
typically minimal, except for some pathological cases.
After this small downtime, the VM resumes execution at the
destination. Current implementations for VMware [8],
Xen** [7], and Kernel Virtual Machine (KVM) [9] are all
based on precopy-based live migration. While precopy is the
dominant approach for existing migration implementations,
there are also other live migration techniques such as
postcopy-based migration [10, 11]. Postcopy migration
defers memory transfer after the VM is resumed at the
destination, and thememory pages can be retrieved on-demand

4 : 2 C. ISCI ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

based on the postresume behavior of the VM. IBMPowerVM*
uses both the precopy and postcopy approaches [11].
While the characterization and proposed techniques in this

paper are generally hypervisor agnostic, we perform our
evaluations and prototype implementation on Linux** KVM
[9]. Therefore, here, we also briefly mention the specifics
of live migration implementation in KVM. The objective of
the existing KVM migration implementation is to minimize
the KVM stop time, which is the time a VM spends during
downtime, possibly at the expense of increased VM
migration time. The default BVM stop time objective[in
KVM is 30 ms. The VM stop objective is a key parameter of
live migration. When increased, some network and storage
connections may time out, or various other system outages
may occur. When decreased, VM migration may not
complete. KVM uses iterative precopy-based migration and a
heuristic to determine whether the VM stop time objective
can be satisfied.

Cost of migration
While live migration results in very little service disruption
(possibly on the scale of tens of milliseconds), it is associated
with some costs. Due to iterative scanning, tracking, and
transfer of VM pages, additional CPU and network resources
are consumed. Therefore, live migration can potentially
degrade the performance of the VM that is being migrated, as
well as the hosts and network involved in the migration
(which, in turn, means that the performance of all of the VMs
or other processes on those hosts can be affected) [7–13].
This condition, which we refer to as brownout, makes it
desirable to minimize the time a VM spends in live migration.
In cloud-scale computing environments, live migration

may increase the number of VMs in transit at any given time,
thereby increasing the burden on the system infrastructure.
Consequently, the gains from agile resource management
may diminish as the resource management overheads begin
to dominate. Therefore, it is beneficial to improve the VM
migration efficiency either by improving the mechanics of
VM migration or by improving the physical server or
network configurations.

Characterizing migration performance
and factors affecting migration
Live migration performance is affected by many factors,
which include the following: 1) the VMs themselves, 2) the
migration implementation, 3) hypervisor options, and 4) the
virtualized infrastructure characteristics such as the servers
and the network configuration. Here, we explore these factors
and quantify their contribution to overall migration
performance with real system experiments based on KVM.

Evaluation framework
We quantify the migration performance on two IBM
model HS21 blade servers. We evaluate two KVM

implementations with different migration transmit buffer
sizes that correspond to the actual canonical KVM
configurations of two Linux distributions. We use a 32-bit
KVM distribution based on Fedora** Core 10, with a
transmit buffer of 1 KB, and compare this to a KVM
distribution based on 64-bit Red Hat Enterprise Linux 5.4,
with a transmit buffer of 32 KB.
We use a standard 1-Gb/s basic network interface to

determine baseline performance.We also use 10-Gb/s Ethernet
to demonstrate the performance impact of network bandwidth
and larger packet sizes on live migration. RDMA-based
migration software is described in the next section.
We used the low-level KVM interface for migration, rather

than the higher level support libraries such as libvirtd, because
the higher level libraries do not provide all of the required
migration functionality we needed for our experiments. We
developed a centralized controller that interfaces with each
KVM host and tracks host inventory and VM resource
demand. We also developed individual host agents that
communicate with the central controller and between one
another for live migration coordination. A live migration is
initiated by the centralized controller and afterward carried out
by the source and destination hosts. In our implementation,
the overall migration proceeds in the following sequence of
four steps. First, a Blistening[VM starts at the destination.
Second, the source host starts the active migration to the
destination. Third, the controller periodically polls the source
hypervisor to track migration progress. Fourth, once the
migration is completed, the source VM is terminated and the
VM continues its execution at the destination.
We used two benchmarks to evaluate the workload impact

on migration: The first is from Standard Performance
Evaluation Corporation (SPEC) CPU2006 suite [14], and the
second is based on memory microbenchmarks that we
developed. Microbenchmarks allow the controller to
precisely monitor and manage the active memory size and
page-dirtying characteristics. The memory microbenchmark
has an adjustable working set size and a configurable delay to
adjust the dirtying rate. We used /sysfs and nmon tools for
tracking resource use on each host. The host agents also
employ process-level monitoring of individual VM-level
resources. We track actual end-to-end migration latency in
our experiments, defined as the time difference between the
start of active migration (second step) and the first complete
migration status (end of third step). In our migration
characterization experiments, we used the default stop time
objective of KVM. However, later in the RDMA evaluations,
we also demonstrate the performance impact of using
different VM stop time objectives.

Impact of workload characteristics on
live migration performance
Memory activity of workloads significantly influences the
migration latency. Idle VMs can be migrated in a single or

C. ISCI ET AL. 4 : 3IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

few iterations since not many memory pages are written
between the iterations. Active VMs with a high page-dirtying
rate and large active memory may require many more
iterations and consequently have much longer migration
latency values. (The system configuration impact on
migration performance is detailed in the next section.)
We evaluate two dimensions of migration performance.

First, we examine how the active memory and the overall
writable working set size affect migration latency with a fixed
worst case dirtying rate. Second, we evaluate how the rate of
change in dirtying rate affects migration latency. Figure 1
shows the effect of active memory size on migration latency.
Each curve represents migration performance under different
hypervisor, network, and migration configurations. The
horizontal axis represents the amount of active memory used.
Note that the active memory size is not the actual configured
VM memory size, which is fixed at 2 or 4 GB in these
experiments. The performance impact of active memory
drastically varies for different migration configurations.
Nonetheless, it remains as one of the strongest influencers of
overall migration performance. A baseline configuration is
shown in the first case (i.e., first row) in the table. As the
active memory grows from 64 to 1,536 MB, the migration
latency increases from 11 to 246 seconds. This is more than a
20-fold difference in migration latency, observed by the same
VM with different workload configurations. For the final
configuration (see case 7 in the table), migration latency
increases by a factor of three as the workload is increased

from its minimal to its maximal value, from less than
2 seconds to slightly above 5 seconds.
Different dirtying rates also result in dramatic and

somewhat predictable changes in expected migration
latency. For example, for the 1-Gb/s migration network,
the migration latency increases from 23 to 180 seconds as
the dirtying rate increases from 60 to 200 MB/s. However,
the overall latency saturates at this level even as we
further increase the dirtying rate because the dirtying rate
reaches the line speed around 120 MB/s, after which the
transferred pages during precopy cannot keep up with the
dirtying rate of the workload. Here, the term Bline speed or
Bwire speed[refers to speeds in which the data is
transmitted and processed at the maximum speed allowed by
the hardware.
Last, a comparison of idle VM migration latency values

demonstrates the impact of overall iterative memory transfer
behavior. We configure the same base VM with different
memory sizes ranging from 256 MB to 2 GB. Across all
the memory sizes, the overall migration latency remains
within 2 seconds. This shows that, even with a small amount
of active working set, the major contributor to the overall
migration latency is the active memory state.

Effect of system configuration
on migration performance
Here, we explore some of the key system configuration
options and demonstrate the achievable improvements and

Figure 1

Live migration performance for different hypervisor, hardware, and network configurations at different workload intensities. (See text for an
explanation of the acronyms and abbreviations used in the table.)

4 : 4 C. ISCI ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

observed bottlenecks. In particular, we explore the effect of
different hypervisor versions with different migration buffer
sizes, different network adapter hardware and network
configurations, and different migration configuration
parameters. Figure 1 summarizes these different configurations,
numbered 1 to 7, depicting progressive combinations of the
configuration options. The options are expressed in the figure
legend as follows. BBuf[represents the transfer buffer size
used in migration implementations of two different hypervisor
generations. The low-performance configuration is based
on a 1-KBbuffer, which limits themigration traffic packet sizes
to 1 KB. The 32-KB buffer represents the high-performance
hypervisor implementation. In this case, while the buffer can be
as large as 32 KB, memory state updates can be still
opportunistically sent at 4-KB packet sizes. BNetw[is the
network infrastructure used for migration traffic. B1 GbE[is
the baseline 1-Gb/s network hardware, and B10 GbE[is the
10-Gb/s hardware. The term BMTU[represents the maximum
transmission unit, i.e., the largest packet size that can be
transferred over the network without fragmentation.
The last column, BB/W capping,[refers to a KVM-specific

dynamic migration bandwidth capping policy. The KVM
default bandwidth capping policy (see BKVM default[
in Figure 1) follows a Bslow start,[in which the migration
bandwidth is gradually increased based on the migration
progress. This has a very significant net effect on migration
performance, i.e., the bandwidth used and the overall
progress follow a staircase pattern, where the majority of
elapsed time can be spent in the early steps. In some of the
system configurations, we eliminate this B/W capping to
enable migration at maximum bandwidth. We refer to this
policy as BUnlimited[in Figure 1.
As mentioned, the different latency curves of Figure 1

correspond to the different configurations represented in
cases 1 to 7. Here, case 1 represents the baseline
configuration with 1-KB buffer, 1-Gb/s network with an
MTU of 1,500 bytes, and the default bandwidth capping
policy. In contrast, case 7 depicts the case with the most
aggressive migration optimizations with 32-KB buffer and
10-Gb/s network with an MTU of 8,000 bytes and with an
unrestricted migration bandwidth. The end-to-end
performance across the two end cases shows a compelling
50-fold improvement. The remaining cases 2 to 6 show the
possible intermediate configuration options.
In Figure 1, we also observe that the baseline buffer size and

the KVM default bandwidth management policy exhibit the
first order of bottlenecks before the network configuration.
Thus, simply optimizing the network infrastructure, without
considering all the different constraints having an impact on
migration performance, has a limited benefit. For example,
the 10-Gb/s hardware configuration in case 2 over the 1-Gb/s
base case 1 reduces migration latency by 24% on average.
However, a higher (48%) latency improvement is achieved on
the 1-Gb/s network (case 3) simply by employing the

unlimited bandwidth policy. The combined performance
improvement with both unlimited bandwidth policy and larger
transfer buffer on the 1-Gb/s network (case 5) leads to a
fourfold reduction compared to the base case (case 1). In both
cases 3 and 5, the improvements were based on simple
hypervisor and migration configurations, without
necessitating any hardware change.
As we improve migration performance with a larger

transmit buffer and unlimited bandwidth policy, the
performance bottlenecks begin to shift from hypervisor and
migration implementation to the network infrastructure
and configuration (configuration for cases 5 to 7). The
network bandwidth becomes the true fundamental bottleneck
for the 1-Gb/s network with larger transmit size and
unlimited bandwidth (case 5). This shows that the migration
bandwidth usage pegs at 1 Gb/s, whereas the other resources
remain underutilized. (When we use the term pegs,
we mean that the migration processes consume all the
bandwidth that is available to them, thus saturating
the bandwidth usage at 1 Gb/s.) In this case, improving the
network infrastructure to a 10-Gb/s network (case 6) has
much more significant benefits compared with the prior case.
Therefore, while the prior comparison (case 1 versus 2)
achieved only a 24% improvement, updating the network
infrastructure (case 5 versus 6) leads to a 2.5-fold reduction
in overall migration latency. Configuration case 7 presents
one last level of improvement via increasing the MTU. With
1-KB transmit buffers and a 1-Gb/s network, the impact of
increasing MTU from 1,500 to 8,000 bytes is negligible, as
the migration traffic cannot take advantage of the larger
MTU. However, with a 10-Gb/s network and a 32-KB buffer,
the impact of larger MTU sizes (case 7) also becomes
quite significant, further reducing the migration latency of
the prior configuration (case 6) with a smaller MTU by a
factor of 3.6.
With the impact of different configuration options, we have

observed the primary migration bottlenecks shift from
bandwidth capping and transmit buffers to network
infrastructure and configuration. With the final configuration
(case 7), however, the bottleneck shifts to a different
resource, i.e., the compute capacity of the host. Figure 2
shows this CPU saturation for configuration case 7, where the
migration bandwidth usage peaks at approximately 4.5 Gb/s
as the thread orchestrating the VM migration saturates the
processor core on which it is running, pegging it at 100%. At
this point, the described configuration options cannot directly
mitigate this final bottleneck. The migration performance
may be further improved by a different migration
implementation with a reduced CPU demand or using
multiple migration threads. We discuss our RDMA-based
migration implementation for reducing CPU demand in the
next section. Another key performance aspect of live
migration is the VM stop time objective, which we also
explore in the following section.

C. ISCI ET AL. 4 : 5IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

Low-latency VM migration using RDMA
By exploiting the observations in the previous section and
making use of RDMA, we modified the VM migration code
in the Linux KVM to develop a fast migration mechanism
that we call FM. FM bypasses known bottlenecks in the
KVM and Transmission Control Protocol (TCP) software
stacks to migrate VMs at near wire speed, 1 to 2 orders of
magnitude faster than the existing implementations.

Use of RDMA versus TCP for live migration
The current KVM migration implementation, based on
TCP, has a relatively high processing overhead. TCP also
requires large message sizes to achieve its peak bandwidth.
(It is worth noting that the current migration implementation
in KVM [9] was not designed for speed, as noted by its
author A. Liguori in a private communication. It will be
beneficial to compare a performance-optimized version of
future TCP-based migration implementation with the
RDMA-based migration. Improving the performance of the
TCP stack and TCP-based migration was beyond the scope
of this paper.)
High-latency transports have a cascading effect on the

migration latency. Not only are the per-page transfer latency
and duration of migration iterations longer, but the workload

modifies more pages during that increased latency, which
increases the number of iterations required to complete the
migration. We observed a nonlinear relationship between the
migration latency and the network throughput. For some
workloads, live migration never completes because the VM
stop time objective cannot be satisfied.
We believe it would be worthwhile to explore using the

RDMA mechanism found in modern interconnects such as
InfiniBand, Ethernet (iWarp**), and RDMA over Ethernet to
reduce live migration latency [15]. The potential advantage
of RDMA is its relatively low processing overhead due to its
elimination of network protocol overheads typically
associated with TCP. RDMA transfers application data
directly (zero-copy) from source memory to target system
memory. Open Fabrics Library isolates the hardware
differences between different fabrics (InfiniBand or 10 Gb/s
Ethernet). On the other hand, the main drawback of using
RDMA operations is that they require user pages to be
present in memory during transfer because RDMA network
adapters use physical memory addresses. This is called
Bpinning[or memory registration. (Note that in a typical
RDMA operation, the entire memory is not pinned but only
the selected pages being transferred at the time.) Two
additional drawbacks are that 1) currently, RDMA is mostly

Figure 2

Network and CPU resource use for four consecutive migrations of the same VM, based on a 10-Gb/s network configuration with MTU ¼ 8;000 B, on a
hypervisor with a 32-KB transmit buffer and migration bandwidth capping policy. The first and third peaks depict an incoming VM migration (i.e., the
host is the destination), and the second and fourth peaks show an outgoing migration (i.e., the host is the source). (RX: receive; TX: transmit.)

4 : 6 C. ISCI ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

employed in scientific clusters and 2) RDMA-enabled
hardware is generallymore expensive. Careful implementation
and experimentation are needed to establish whether the
advantages of RDMA outweigh its disadvantages.

RDMA-based FM implementation
We added an RDMA-assisted option to the existing migration
implementation. In our design, migration protocolVheaders,
markers, trailers, device statesVstill flow over TCP,
unchanged. RDMA is used only for copying VM memory
contents since that is the dominant portion of the state of a VM.
Note that both TCP and RDMA transfer data over the same
physical wire but using different protocols.
Memory pages need to be registered before the RDMA

operation. Memory registration serves two purposes: 1) It
pins the pages, making them physically present in memory,
and 2) it produces physical addresses of the pages that the
RDMA adapter needs. Memory registration can consume a
significant amount of time, particularly for unmapped pages.
Unmapped pages are virtually in the virtual address space of
a VM, but they may not have been physically allocated yet.
We measured memory registration overheads of various
buffer sizes and derived the following approximations:
Tunmapped ¼ N � 2:4 �s/pageþ 29 �s, and
Tmapped ¼ N � 0:14 �s/pageþ 27 �s, where N is the buffer
size in terms of the number of 4-KB pages. These
relationships indicate that per-page-registration overhead is
increasingly smaller for larger N .
We implemented three different mutually exclusive

RDMA-based migration schemes: option A, overlapped
memory registration and data transfer; option B,
preregistered memory; and option C, skip unmapped
guest VM pages (see Figure 3).
Option A registers memory in large chunks and attempts to

eliminate the latency impact of memory registration by
overlapping it with RDMA transfer. VM memory is logically
treated in 1-MB chunks for registration purposes only. When
a page needs to be registered, the surrounding 1 MB of
memory is also registered to amortize the overhead. The
registration operation is expected to overlap with the
previously initiated data transmissions.
Option B registers all memory pages in advance before

VM migration starts. We introduced a new KVM quick
emulator (QEMU) monitor command named
Bmigrate_rdma_prepare[for this purpose. QEMU is the
open-source processor emulator used in KVM. The main
drawback of this approach arises from the fact that
identifying VMs to migrate in advance may not be feasible in
some agile migration management scenarios.
Option C identifies unmapped guest VM pages from

the /proc/(pid)/pagemap interface and transfers a page only
when it is backed by a physical memory or a swap device. VM
pages that have never been accessed or Bballooned out[by the
hypervisor may not physically exist; typically, those pages

logically contain all zeros (called a zero page). Option C skips
those pages, whereas options A and B transfer them, although
they contain no useful information. Option C may be useful
in some operational scenarios, where VM memory size is
much larger than the mapped memory size.
Changes to the existing KVM migration code were

minimal. No changes to the Linux kernel were made. Only
ten files in the user-space portion of KVM were altered; these
pertained to QEMU and migration. To support RDMA, we
introduced 1,009 lines of code in two new files. Overall, we
inserted 1,246 new lines of code and deleted 22. We used the
Open Fabrics RDMA library and Connection Manager
Abstraction for connection setup/removal
management across the network. Two command line options
were added to the qemu command line. The �rdma . . .

options indicate that the target server is able to receive data
by RDMA, i.e., � rdmahost 192:168:1:170� rdmaport

9999� incoming tcp : 0 : 8888: On the source system,
migration is started the same way as before, i.e.,
migrate tcp : 192:168:1:170 : 8888:

Experiments: benchmarking setup
We evaluated RDMA-based migration on a 40-Gb/s
InfiniBand system and compared it to a TCP-based
implementation. Here, we present the main results of
our experiments.
Benchmark hardware setup consists of a two

IBM 3650-M3 servers interconnected by InfiniBand.
The M3 model server has Intel X5670 sockets, a 2.93-GHz
processor with six cores and 12 hardware threads.
The server has four PCI Express** (Peripheral Component
Interconnect Express, PCIe**) Gen2 (5 gigatransfers/second)
card slots. A 40-Gb/s InfiniBand card is installed in each
server; the InfiniBand card has an 8x PCIe Gen2 connector.
The lspci command reports the card parameters as follows:
MT26428 [ConnectX Virtual Protocol Interconnect
PCIe 2.0 5GT/s – InfiniBand quad-data-rate/10 GbE].
The benchmark software setup included Linux version

2.6.30 and QEMU 0.12.3. The guest VM was configured
with 3 GB of memory and two virtual CPUs. For the
workload, in the guest VMs, we ran the gobmk benchmark
from the SPEC CPU2006 suite (with the �rate 10 option)
[14–16]. We chose the gobmk benchmark because it
executed a significant amount of store instructions (20%),
and the memory-dirtying rate has a significant impact on the
migration latency, as explained earlier. However, note that
the cache–miss rate due to gobmk is relatively low in
comparison to a few other benchmarks in the suite, e.g.,
mcf, omnetpp, and perlbench. We observed that gobmk
occupied approximately 360 MB of memory, and the
containing guest VM in total occupied approximately
700 MB (out of 3 GB). We started the VM migration after a
benchmark warm-up phase of 90 seconds.

C. ISCI ET AL. 4 : 7IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

Experiments: performance results
We have determined the baseline network throughputs on
a nonvirtualized Linux system. The TCP bandwidth over the
40-Gb/s InfiniBand network was measured as 8.8 Gb/s
with the iperf network testing tool. TCP achieves only a
fraction of the physical network limit, which is 32 Gb/s for
InfiniBand (G 40 Gb/s due to the 10 b/8 b encoding of
signals). In comparison, RDMA throughput reaches 26 Gb/s
on the same configuration with the ib_rdma_bw
microbenchmark from the Open Fabric Library. While the
measured InfiniBand bandwidth of 26 Gb/s is three times
higher than TCP, it is still less than the InfiniBand rate limit
of 32 Gb/s. We confirmed that the PCIe Gen2 (8x)
connection is limiting the bandwidth at 26 Gb/s.
Figure 3 summarizes the main results of the RDMA-based

migration. Each VM migration experiment is represented
with an adjacent pair of bars, i.e., totalmigration time (on the left
bar) and the measured VM stop time (on the right bar). The
RDMA-based experiment results for options A, B, and C are
the three pairs of bars on the right-hand side of the graph. The
six bar pairs on the left-hand side are the results of TCP-based
migration experiments with two different physical networks,
i.e., 1-Gb/s Ethernet and 40-Gb/s InfiniBand. Three different

VM stop objectives were used in the TCP experiments, i.e.,
100 seconds (which is essentially the stop-and-copy migration
technique), 200 ms, and 80 ms. A smaller VM stop objective
of 30 ms was used in the RDMA experiments.
The main advantages of our RDMA implementation are

apparent when compared with the current TCP-based
implementation: 1) RDMA-based migrations complete 1 to
2 orders of magnitude faster than with the current TCP-based
implementation, using the same physical network, and
2) measured VM stop times are much shorter with RDMA.
In the TCP-based migration experiments, as we reduce the

VM stop time objective from 100 seconds down to, first,
200 ms, and then down to 80 ms, the corresponding
migration latency exponentially increases from 6.5 seconds
(for the 100-second stop objective) to, first, 15 seconds (for
the 200-ms stop objective), and then to 77 seconds (for the
80-ms stop objective). Since the workload is dirtying
pages at its own pace, as the VM stop time objective
becomes shorter, the migration code and network ability to
catch up and move the dirty pages in that shorter time
window decreases, and it results in a longer migration
latency. In fact, the TCP-based migrations for this benchmark
do not complete with a VM stop objective of less than 80 ms.

Figure 3

VM migration times and VM stop times for TCP and three different RDMA-based migration methods A, B, and C (see the x-axis labels tcp and rdma).
For the TCP-based method, we used three different VM stop time objectives (labeled Bstop-obj[). As physical transports, we used Ethernet (Beth-1 gb/s[)
and InfiniBand (Bib-40 gb/s[). We configured the VM with 3 GB of memory and two virtual processors. The VM was running the SPEC CPU2006
benchmark gobmk during its migration.

4 : 8 C. ISCI ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

We also observe that the VM stop objective is a Bbest
effort[parameter, as the measured stop times are sometimes
longer than the objective. For example, for the 80-ms stop
objective, the measured actual stop time is approximately
160 ms for the 40-Gb/s TCP–InfiniBand configuration and
almost 1 second for the 1-Gb/s TCP–Ethernet configuration.
Examining these two configurations, we observe that the
migration latency values are somewhat similar. However, the
faster network generally results in a shorter VM stop time,
which is desirable.
Comparing the three different RDMA-based migration

implementations, we observe that option A, which
overlapped memory registration and communication, is the
slowest among the three. However, it is still faster than any
TCP-based migration with the same or similar stop objective.
Option B migrates faster than A (1.1 versus 1.6 seconds).
However, option B requires preregistering memory, which is
not accounted for in the 1.1-second value. Option C migrates
in 0.28 seconds and is the fastest among all, as it migrates
only the mapped pages, about 700 MB out of 3 GB in
this experiment.
Note that we did not study the RDMA-based migration

in systems that use over-committed memory. Memory
overcommitment is a popular technique to increase memory
utilization in virtualized systems. The hypervisor reclaims
underused pages in VMs and reallocates them to other VMs
that need more memory. Memory overcommitment may
interfere with the need to pin pages for using RDMA. If the
overcommit function swapped pages out to the swap disk,
then this will significantly penalize the VM migration
performance due to the page-in activity. If the overcommit
function simply reclaimed underused pages in a VM, for
example, by dropping pages in page caches, then the virtual
page in VM essentially becomes an unmapped page.
(Here, the term dropping refers to deleting a page from a
cache or, more precisely, returning the page frame to the free
page list.) Thus, for the latter case, we believe that the
experimental results of all three options A, B, and C are valid
for VMs using overcommitted memory, although we have
not verified this experimentally. Future studies should
investigate whether memory overcommitment is a barrier to
low-latency VM migration.

Improving energy efficiency with low-latency
VM migration
The previous two sections detailed the techniques we
employed for FM and demonstrated how they greatly reduce
migration latency and overhead, improving performance in
the process. Here, we explore the extent to which they
provide a further benefit, i.e., improved energy savings. The
key insight is that reduced latency makes it possible to
recover more quickly from unanticipated increases in
workload. This allows one to achieve service-level objectives
with less headroom and to be more aggressive about

powering servers down, and both of these factors directly
translate to lower energy consumption.
To illustrate this effect, we conducted the following

simulation experiment. We collected a trace of the number of
web requests submitted to an IBM website each second for
two weeks during the 2009 Australian Open Tennis
Championship games. We assumed that the workload was
handled by a web server equipped with a load balancer that
routed requests to a bank of application servers. We modeled
the system with a simple mathematical model of a queue
(G/M/k queue) [17] in which the workload distribution was
provided by the web request trace. The exponentially
distributed service time average was set such that 20 servers
could handle the peak load experienced during the games,
and the number of servers k was varied according to a simple
algorithm with two parameters, i.e., Headroom and minimum
time to run (MTTR). The Headroom parameter is the
percentage of extra CPU that must be reserved above average
demand. MTTR is the minimum time the server must be
powered on, as required for reducing risk and hardware wear.
The simulator takes as input an assumed latency value,
representing the migration latency plus the boot latency
(the time required to bring the server from a powered-down
state to fully operational).
For each of several assumed total latency values, we run the

queuing simulator on the entire two-week trace, measuring
individual response times, system utilization, and power
consumption. For each latency value, several combinations of
Headroom and MTTR are assumed, and the combination that
satisfies a specified level of performance (as measured by the
fraction of transactions that complete in less than a specified
maximum acceptable time) for the least total energy is deemed
the optimal combination for that latency. In the experiments
reported here, the performance criterion was that the response
time should exceed two seconds for no more than 1% of all
transactions. To reach this level of performance at total latency
of 30 seconds, we found that that the best combination was
ðHeadroom ¼ 10%;MTTR ¼ 1 hourÞ, whereas for total
latency of 180 seconds, it was ðHeadroom ¼ 30%;

MTTR ¼ 8 hoursÞ, and for total latency of 300 seconds, it was
ðHeadroom ¼ 60%;MTTR ¼ 24 hoursÞ. These results
quantify how lower latency can substantially reduce the
headroom requirement and permit more aggressive power
management operations for this particular workload.
Figure 4 summarizes the energy savings for the optimal

parameter pairs at several different values of latency. The
horizontal line represents the baseline case representing static
server consolidation, without dynamic server consolidation
or migration. The other curve represents the reduced power
consumption with dynamic server consolidation.
Specifically, this curve depicts the power consumption for
the optimal pair of Headroom and MTTR configurations
for each of several assumed values for total latency, denoted
in the figure as Bpower response þ migration latency.[

C. ISCI ET AL. 4 : 9IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

We chose the baseline as static consolidation to demonstrate
the achieved improvements with both standard dynamic
consolidation without FM and with using fast RDMA-based
migration. One conclusion we derive from these experiments
relates to the relative energy savings advantage of using
FM in dynamic consolidation over standard migration.
We highlight this relative improvement in our quantitative
results. When the total latency is 900 seconds (15 minutes),
there is a substantial energy reduction over static consolidation.
This is the regime in which Bobroff et al. performed their
experiments [4], where they assumed that the migrations might
occur at least 15 minutes apart. Since we were able to obtain
a second-by-second trace, we are able to explore what
happens for much shorter latency values, finding that there
is a significant benefit for further energy savings as the total
latency is reduced to less than 5 minutes.
We can estimate the energy-efficiency improvements that

would be realized by implementing our FM technique
in a system in which the workload intensity variation was
similar to that observed at the 2009 Australian Open and
in which the VMs were of the size used for the RDMA
experiments described in Figure 3 (3 GB, using 700-MB
active memory). With the default migration and hypervisor
configurations, extrapolation of the results in Figure 3
to the default stop objective of 30 ms suggests that TCP

migration over the InfiniBand network would provide a
migration time approximately equal to that of the 1-Gb/s
Ethernet network, which, from the top curve in Figure 1,
is approximately 180 seconds. In contrast, using the best
RDMA result (option C) in Figure 3, RDMA would
accomplish the same migration in 0.28 seconds. To obtain
the total latency, we must add the time it would take to power
a server back on from a low-power state. Depending on
specifics of the platform and the type of low-power state,
we have observed power-on latency values ranging from
30 to 150 seconds or more. If the power-on latency is
150 seconds, then the total latency is 330 seconds for the
default hypervisor and network setup and 150 seconds for
RDMA. The corresponding normalized power consumption
is approximately 60% for the traditional setup and 50% using
RDMA. Thus, our FM technique achieves 17% higher
energy savings relative to dynamic migration using the
traditional settings. On the other hand, if the power latency
was just 30 seconds, the total latency is 180 seconds for
the traditional case and 30 seconds using RDMA.
The corresponding normalized power consumption values
are about 52% and 40%, respectively, leading to a 23%
improvement in energy savings relative to the traditional
default settings. It is very possible that the relative savings
could be even larger for larger VMs, but specifics await

Figure 4

Overall virtualized cluster power and respective power savings with consolidation under different migration and server power-on latency values.

4 : 10 C. ISCI ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

further experiments that extend the results reported in
Figure 1 to larger VM active memory sizes.

Conclusion
In this paper, we have described cost, performance, and
energy benefits of server consolidation. We argued that
low-latency VM migration combined with low-latency server
power response would significantly reduce the headroom
requirements of virtualized systems, therefore leading to
efficient server resource and energy utilization. We
experimentally characterized the factors having an impact on
VM migration latency and its impact on the CPU and
network resources. We demonstrated that the active memory
size of workloads, the memory-dirtying rate, network
configuration, and the VM downtime objective have a
significant influence on the migration latency. We then
presented an RDMA-assisted VM migration implementation
for KVM. We experimentally compared the RDMA-assisted
benefits to the existing TCP-based VM migration
implementation. While the TCP-based migration may
possibly achieve the network throughput of the
RDMA-assisted migration, its Btax on[CPU resources is
significantly higher than that of RDMA and requires a
continuous development effort in order to fully utilize
ever-increasing network wire rates. (Here, Btax on[refers to
the required resource overhead associated with the migration
process.) We also presented the significant potential of
energy savings with reduced VM migration latency based
on actual data center workloads. Note that the low-latency
VM migration technique, e.g., using RDMA, is only a
component of effective virtualization management. VM
migration management tools and server power state
transitions should also exhibit low-latency behavior to realize
the promised benefits of low-latency VM migration.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of InfiniBand
Trade Association, VMware, Inc., XenSource, Inc., Linus Torvalds,
Inc., Red Hat, Inc., Intel Corporation, or PCI-SIG in the United States,
other countries, or both.

References
1. L. A. Barroso and U. Holzle, BThe case for energy-proportional

computing,[IEEE Comput., vol. 40, no. 12, pp. 33–37, Dec. 2007.
2. X. Meng, C. Isci, J. O. Kephart, L. Zhang, L. Bouillet, and

D. Pendarakis, BEfficient resource provisioning in compute
clouds via VM multiplexing,[in Proc. ICAC, Washington, DC,
2010, pp. 11–20.

3. A. Verma, P. Ahuja, and A. Neogi, BpMapper: Power and
migration cost aware application placement in virtualized
systems,[Middleware, vol. 5346, pp. 243–264, 2008.

4. N. Bobroff, A. Kochut, and K. Beaty, BDynamic placement of
virtual machines for managing SLA violations,[in Proc. IM,
Munich, Germany, G2007, pp. 119–128.

5. J. Moreira and J. Karidis, BThe case for full throttle computing:
An alternative to datacenter design strategy,[IEEE Micro, vol. 30,
no. 4, pp. 25–28, Jul./Aug. 2010.

6. VMware Inc. BResource Management With VMware DRS,[in
Whitepaper, VMware Inc., 2006. [Online]. Available: http://www.
vmware.com/pdf/vmware_drs_wp.pdf

7. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, BLive migration of virtual machines,[in
Proc. 2nd Conf. NSDI, 2005, vol. 2, pp. 273–286.

8. M. Nelson, B.-H. Lim, and G. Hutchins, BFast transparent
migration for virtual machines,[in USENIX Annual Technical
Conf., Anaheim, CA, 2005, pp. 391–394.

9. A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
BKVM: The Linux virtual machine monitor,[in Proc. Ottawa
Linux Symp., Jul. 2007, pp. 225–230.

10. M. Hines, U. Deshpande, and K. Gopalan, BPost-copy live
migration of virtual machines,[SIGOPS Oper. Syst. Rev., vol. 43,
no. 3, pp. 14–26, 2009.

11. W. J. Armstrong, R. L. Arndt, T. R. Marchini, N. Nayar, and
W. M. Sauer, BIBM POWER6 partition mobility: Moving virtual
servers seamlessly between physical systems,[IBM J. Res. Dev.,
vol. 51, no. 6, pp. 757–762, Nov. 2007.

12. A. Verma, G. Kumar, and R. Koller, BThe cost of reconfiguration
in a cloud,[in Proc. 11th Int. Middleware Conf. Ind. Track, 2010,
pp. 11–16.

13. W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, BCost of
virtual machine live migration in clouds: A performance
evaluation,[in Proc. 1st Int. Conf. CloudCom, 2009, pp. 254–265.

14. Standard Performance Evaluation Corporation, SPEC CPU2006,
gobmk Benchmark Description. [Online]. Available: http://www.
spec.org/cpu2006/publications/CPU2006benchmarks.pdf.

15. W. Huang, Q. Gao, J. Liu, and D. K. Panda, BHigh performance
virtual machine migration with RDMA over modern
interconnects,[in Proc. IEEE Int. CLUSTER, Austin, TX, 2007,
pp. 11–20.

16. T. K. Prakash and L. Peng, BPerformance characterization of SPEC
CPU2006 Benchmarks on Intel Core 2 Duo Processor,[ISAST
Trans. Comput. Softw. Eng., vol. 2, no. 1, pp. 36–41, 2008.

17. L. Kleinrock, Queuing Systems: Theory. Hoboken, NJ:
Wiley-Interscience, 1975.

Received February 4, 2011; accepted for publication
March 9, 2011

Canturk Isci IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (canturk@us.ibm.com).
Dr. Isci is a Research Staff Member in the Distributed Systems
Department at the IBM T. J. Watson Research Center. His research
interests are virtualization, data center energy management, and
microarchitectural and system-level techniques for workload-adaptive
and energy-efficient computing. He received a B.S. degree in
electrical engineering from Bilkent University, an M.Sc. degree with
distinction in VLSI System Design from University of Westminster,
and a Ph.D. degree in computer engineering from Princeton University.

Juixing Liu Tower Research Capital LLC (jiuxing.liu@gmail.com).
Dr. Liu works on design and implementation of high-performance
trading systems at Tower Research. Previously, he worked at
IBM T. J. Watson Research Center and conducted research in areas
such as high-performance interconnects and virtual machine
technologies. He obtained his Ph.D. degree in computer science
and engineering from The Ohio State University. He also holds
M.S. and B.S. degrees (both in computer science and engineering)
from Shanghai Jiaotong University, China.

Bulent Abali IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (abali@us.ibm.com).
Dr. Abali is a Research Staff Member in the Systems department.
He performs research and development in the areas of servers, storage,
networks, systems software, and systems management. His most recent

C. ISCI ET AL. 4 : 11IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

work includes memory system architectures, memory compression,
phase-change memory, and processor and I/O virtualization. He has
contributed to numerous IBM products: high-performance computing
clusters, and POWER* processor- and x86-based systems hardware
and system software. He is an author of 17 patents and 40 technical
papers. He received a B.S. degree from Middle East Technical
University, and M.S. and Ph.D. degrees from the Ohio State University
in electrical engineering.

Jeffrey O. Kephart IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA
(kephart@us.ibm.com). Dr. Kephart manages the Agents and Emergent
Phenomena team at the IBM T. J. Watson Research Center, as well
as a strategic research initiative on Data Center Energy Management.
Earlier in his career, Dr. Kephart explored the application of analogies
from biology and economics to massively distributed computing
systems, particularly in the domains of electronic commerce and
anti-virus and anti-spam technology. His team’s research efforts on
economic software agents and digital immune systems have been
widely publicized in such media as The Wall Street Journal,
The New York Times, and Scientific American. Dr. Kephart has played
a key role in establishing autonomic computing as an academic
discipline. He cofounded the International Conference on Autonomic
Computing, for which he currently serves as steering committee
co-chair. He earned a B.S. degree in electrical engineering from
Princeton University and a Ph.D. degree in electrical engineering
(with a minor in physics) from Stanford University. He is author or
coauthor of more than 20 patents and 125 refereed technical papers.
Dr. Kephart is a member of the IEEE and the ACM.

Jack Kouloheris IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA
(jacklk@us.ibm.com). Dr. Kouloheris is currently Senior Manager of
the Scale Out Software area in IBM Research, where he leads a number
of departments working in the area of cloud computing, data center
networking, and advanced memory systems. Dr. Kouloheris graduated
with a B.S.E.E. degree from the University of Florida in 1982.
After graduation, Dr. Kouloheris joined IBM in Boca Raton, Florida,
where he worked on chip and board design for what became the
IBM AS/400* and 9370 computer systems. In 1986, he returned to
school at Stanford University under the auspices of the IBM Resident
Study Program and received the M.S.E.E. and Ph.D. degrees in 1987
and 1993, respectively. Dr. Kouloheris returned to IBM at its T. J.
Watson Research center in Yorktown Heights, New York. He has
worked on a wide variety of projects at IBM Research, including
ATM (Asynchronous Transfer Mode) switch design, video
compression and decompression algorithms, architectures, chips, and
embedded systems design.

4 : 12 C. ISCI ET AL. IBM J. RES. & DEV. VOL. 55 NO. 6 PAPER 4 NOVEMBER/DECEMBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

