Phase Characterization for Power:

Evaluating Control-Flow-Based and Event-Counter-Based Techniques
Blind Review

Abstract

Computer systems increasingly rely on dynamic, phasedmmsstem management techniques, in which system hardware
and software parameters may be altered or tuned at run-tandifferent program phases. Prior research has considered
range of possible phase analysis techniques, but has fd@ais®st exclusively on performance-oriented phases; dtiem
of power-oriented phases has not been explored. Moredwehtlk of phase-analysis studies have focused on simalatio
evaluation; there is need for real-system experimentsghatide direct comparison of different practical techrégu(such
as control flow sampling, event counters, and power measmeshfor gauging phase behavior.

In this paper, we propose and evaluate a live, real-systersorement framework for collecting and analyzing power
phases in running applications. Our experimental framdusimultaneously collects control flow, performance couatel
live power measurement information. Using this framewuar,directly compare between code-oriented techniques (suc
as “basic block vectors”) and performance counter techiigifior characterizing power phases. Across a collectiorotii b
SPEC2000 benchmarks as well as mainstream desktop appfisabur results indicate that both techniques are prongsi
but that performance counters consistently provide betpresentation of power behavior. For many of the experiedn
cases, basic block vectors demonstrate a strong relatipristween the execution path and power consumption. Howeve
there are instances where power behavior cannot be captivoad control flow, for example due to differences in memory
hierarchy performance. We demonstrate these both withofméerchmarks and examples from real applications. Overall,
counter-based techniques offer average classificatiooreiwf 1.9% for SPEC and 7.1% for other benchmarks, whiledasi
block vectors achieve 2.9% average errors for SPEC and 1for%ther benchmarks respectively.

1 Introduction

In recent years, phase behavior of applications has drawoweirgy research interest for two main reasons. First, the
increasing complexity and power demand of processor &uthites mandate workload dependent dynamic management
technigues. These techniques extensively benefit frorkitrg@pplication phases to optimize power/performanagetraifs
and to identify critical execution regions for managemaestioams [1, 3, 9]. Second, in parallel with increasing preoes
complexities, architectural simulation studies develap@ving need to research long execution timescales to @ [ite
increasingly variable behavior of applications. Thesalist benefit from phase characterizations that summarigk- ap
cation behavior with representative execution regiorisyialting the prohibitively high computational costs ofde-scale
simulations [28, 32].

Various prior studies demonstrated that phase behaviobeasbserved via different features of applications. Most of
these approaches fall into two main categories: In the fatggory application phases are determined from the cdifdwol
of the applications or the program counter (PC) signatuféiseoexecuted instructions [9, 20, 16, 28, 31, 32, 33, 23thén
second category, phases are determined based on the panfwricharacteristics of the applications [3, 7, 11, 18, 8h, 3

Although there have been some previous efforts to compaevaluate phase characterization techniques [2, 8, 22],
they do not perform a direct comparison of the two main apgres. Moreover, there is generally a missing link between
phase characterizations and their ability to represenepd&havior, especially with real-system experiments.hSower
characterization is very important for real-systems, asmagry goal of phase characterization is dynamic power mameent

of running systems.

Following from these motivations, in this work, we compahage characterizations based on PC signatures and perfor-
mance behavior of applications. Our study primarily evedadhese techniques for accurate power behavior chaeatien
on a real-system. We compare these with respect to the aotealsured runtime power dissipation behavior of applica-
tions. Specifically, we look at phase analysis based on Ibésik vector (BBV) features of an application [32] to detaren
regions of similar power behavior. We compare this to phasésrmined by a particular set of performance monitoring
counter (PMC) events that are chosen to reflect power dissipd 9]. We test the power characterization accuracy e$éh
methods on 21 benchmarks from SPEC2000 suite and 9 othehibanis derived from commonly used desktop and mul-
timedia applications. We show that, in general, trackindgremance metrics performs better than tracking contrat fio
identifying power phase behavior of applications. Additily, we present specific examples from microbenchmarkis an
real applications demonstrating cases where power phaseibe cannot be deduced from code signatures.

There are three primary contributions of this work. Firsg fnave designed an accurate, real-system method for synchro
nizing BBV signatures, performance events, and power nieagnts on running machines. This method allows us to study
large-scale application behavior on running systems réliaa being limited to simulation approaches. Secondziuntd this
experimental framework, we evaluate how how BBV and PMC thaggroaches perform from a real power characterization
point of view. Compared to an uninformed phase characti@izaboth phase based techniques achieve significanthehig
accuracies in identifying power phases, leading to 2-6x é&asors for benchmarks with significant power variationastl.
we compare control flow (BBV) and performance (PMC) basedaghes against each other for their power phase classifi-
cation abilities. Overall tracking performance behaveads to 30-40% less errors than tracking control flow in 1sgm8ng
real power phase behavior.

The rest of the paper is organized as follows. Section 2 dgsithe reasons why control flow and performance phases
can significantly differ. Section 3 describes our experitagon platform. Section 4 explains the collection of BBVdan
PMC information with our experimental setup. Section 5 dbégs our phase classification methods. Section 6 desaibes
guantitative evaluation and presents the power phaseatbaration results. Section 7 provides detailed obsematfrom
performed experiments. Section 8 provides a final discassidBY and PMC based approaches and their applications.
Section 9 summarizes related work and Section 10 offersanclasions.

2 What Control Flow Information Does Not Show

Before delving into the details of our experimentation ahdge characterization methodology, here we discuss thensa
why control flow and power/performance behavior of an ajgpiicy may disagree. We then show the extent of disagreement
for one case, with a synthetic benchmark example.

There are multiple aspects of application behavior thataarse the control flow and performance based approaches
to reach different phase characterization conclusidignamic change in data localitguring an application’s execution
can cause the power behavior to significantly change. Whitedhange can be easily recovered from memory related
performance metrics, code signatures cannot reflect thésexution footprints are not alteretffectively same execution
represents the converse of the above effect. In variouscagiphs, multiple procedures or code segments performiasim
processes, leading to practically identical power belravibese are considered as fairly different phases in tefresro
trol flow, which may result in many different phase clustdrattdo not reflect actual changes in program power. Typical
examples for these are scientific or other iterative praogsspplications performing different tasks on an inputwgimilar
power/performance implication®perand dependent behavioray result in similar effects as the first case, where power

and latency of a unit depends on the input operands, des@teame control flow. Typical cases for these are overflow
handling and scaling of execution based on the input operalgs or widths [4].

Below, we demonstrate a complete case study to show theatiffes that can arise between control flow and and perfor-
mance based phase tracking for power. This presents oneta$plee sources of disagreement, varying data localitydd/e
not provide examples to the other two cases here for spadatioms. However, we revisit these after presenting ouvgro
phase characterization study, with observations fromewa¢rimented applications.

2.1 Dcache Microbenchmark

We design a simple synthetic example benchmdrche, to demonstrate the effect of data locality on power andgperf
mance. While increasing the address range for data accegsasts power and performance drastically with reducedecach
affinity, this change of behavior goes unnoticed by the @bffitvw observations.

We implement this in thécache microbenchmark with a random list traversal over a singteetisional vector. This
vector is constructed such that, each vector element corntiaé address of the next element to be accessed. Each cess ac
is determined randomly from the pool of yet “untouched” edents, thus providing uniform probabilities that each as@as
be to any location in the vector address space. The lastsatesement is linked back to the first vector element, fognain
complete cycle. The main microbenchmark loop then contislyatravels through these links for a large number of iterest
to avoid cold start effects.

In Figure 1, we show the relevant C and assembly code snifpethe main microbenchmark loop for random list
traversal. Inside the C code, we also layout the generiovécversal path constructed at initialization. The lénojft this
vector determines whether the elements reside in L1 cacheathe or memory. For example, for our experimentation
platform, a single threaded Pentium 4 processor, L1 and tRBesaare 8KB and 256KB. Therefore, integer vector sizes less
than 2K and 64K will be mostly resident in L1 and L2 caches eetipely.

In both C and assembly codes, the parts in italics reprelsemb&in microbenchmark loopnpl instruction at @804874

/* FOR VARl OUS ARRAY SI ZES: */ 8048736: call 80483b8 <_i nit+0x38>
804873b: add $0x10, %esp
/* Initialize The Array Data: */ 804873e: movl $0x0, Oxf fffff88(%bp)
. 8048745: nov/| $0x0, Oxf f f f ff8c(%ebp)
804874c: cnpl $0x5f 5e0f f, Oxf f ffff8c(%bp)
“ 8048753: jle 8048778 <mmi n+0x258>
& 8048755: sub $0x4, Y%esp
. 8048758: pushl Oxffffff9oc(%ebp)
804875b: push $0x8048922
8048760: pushl 0x8049a98
5 8048766: call 80483b8 <_init+0x38>
: 804876b: add $0x10, Y%esp
m 804876e: lea oxffffffaO(%ebp), Yeax
8048771: incl (%eax)
8048773: jmp 8048588 <nmi n+0x68>
8048778: i mul $0x4, Oxf f ffff88(%bp), %edx
804877c: nov oxffffffbd(%bp), Yeax
- 804877f: nov (%ax, %edx, 1), %eax
» 8048782: nov Y%ax, Oxf fffff88(%bp)
. 8048785: | ea oxffffffoc(%uebp), %eax
. :) . 8048788: i ncl (%ax)
! M n (’;A cr EBe.nchrmr k Loop */ 804878a: incl Oxffffff8c(%bp)
array_index = 0; 804878d: inp 804874c <mmi n+0x22c>

for (ind=0; ind<100000000; i nd++) 804878f : nop

{ . . 8048790: v $0x0, %eax
array_i ndex = data[array_i ndex];

_ + 1 8048795: lea oxfffffffa4(%ebp), %esp
} count = count ' 8048798: pop %ebx
8048799: pop Y%esi
*
/* M croBenchmar k END*/ 304879a: pop vedi
804879b: pop %ebp
804879c: ret

Figure 1. Dcache microbenchmark

is the loop exit condition check amabv instruction at @80487F is our “indeterministic load” to retrieve next vector index
In the assembly code, bold lines show the control flow bourdawhere the execution path may divert.

2.2 Showing Effect of Data Locality on Control Flow, Performance and Power Characteristics with Dcache

We show the control flow, performance and power behavidcathe benchmark for three distinct vector configurations:
L1 intensiveL2 intensiveandmemory intensiveln L1 intensive case, data vector practically resides inleading to very
high L1 cache hit rates for the vector element accesses. imt&@sive case, vector accesses incur around 90% L1 misges,
almost perfect L2 hits. In memory intensive operation, mefthe accesses also initiate a memory transaction. We r&cqui
control flow information by sampling PC every 1 million insttions (with a random jitter of 100 instructions to elini@a
biased sampling). We collect performance metrics—L1, L2 medhory access rates, and instructions per cycle (IPC)—by
sampling PMCs. We collect power information from real measents via a current probe.

70
0x8048736 18 ==|PC
16 e r 6o
—PWR
o oo %we o o o o o0 o oo 3 ® @ oo oo o ood 1.4 L 50
0x8048753 é 12
g . " 40 %
0x8048766 g g
g 08 r o
0x8048773 E) 06
o o0 . L2 * o > » s o Ld ®» 000 oo 20
°w o0 * o 000 »e * * bl Ated * 60 00
* * LEAd » 0o * LIRd ®We o0 o 00 000 0.4
[poe o *» WOo 00 0 000 wO ® & 4 We 400 00 o
® O 6 000 0 00 0 0 o6 * L A ad * L o4 10
o * ..0..0.0“.0 .0 0.0.0&.0~ %00“ 0.2
0x804878D
0 0
2.5E+09 9.8E+09 1.7E+10 2.4E+10 2.5E+09 1.1E+10 1.7E+10 2.4E+10
(a) Dcache PC trace and control flow boundaries. (b) IPC, L1 access rates and power.
0.04 70 0.06 70
-2 ~~MEM
00357 ——PWR 1 60 005
0.03 4
+ 50
3 n & 004
T 0.025 4 k=
% v \-WM oz ’i B
2 0024) 2 003 5]
E 30 g E 30 %
L 0.015 & L &
5 o 0.02
o 20 a 20
0.01
0.005 - 10 oot 10
0 0 0 0
2.5E+09 1.1E+10 1.7E+10 2.4E+10 2.5E+09 1.1E+10 1.7E+10 2.4E+10
(c) L2 access rates and power. (d) Memory access rates and power.
Figure 2. Control flow, performance and power behavior of dcache microbenchmark during three
modes of operation: L1 intensive, L2 intensive and memory in tensive execution. In each plot, x axis

is executed instructions.

In Figure 2, we show the resultant behavior in terms of cdfima (a) and power/performance (b-d) for the three config-
urations. In each plot, the three shaded regions corresjoothe three different configurations. First region cormsfs to
L1 intensive execution, 2nd to L2 intensive execution arairdgion to memory intensive execution. Figure 2.(a), tHelso
horizontal lines represent the control flow boundaries asvahin the assembly plot of 1. The PC scatterplots show, which
sequential execution parts the sampled instruction adésdall into.

It is clearly seen from Figures 2.b-d that, the three conéitions lead to distinctly different execution phases imer
of both power and performance. All performance metrics stiery different behavior in all three phases. Power behavior
change is subtle, but observable between L1 and L2 intensdgkes. On the other hand, it is distinctly different betwe2n

and memory intensive execution. While performance metasg\eidentify these three phases, there is no observakierpa
in control flow behavior, as major executed code lies in tmeesaontrol flow boundaries.

3 Software and Hardware Measurement Platform

To collect synchronous PC, PMC and power information duan@pplication’s execution, we use dynamic instrumenta-
tion via Pin [25]. Pin provides several flexible methods toawyically instrument the binary at different granulastid his
first step,instrumentationsimply decides where in the native code the additionalgufoces to analyze the application be-
havior should be inserted. Afterwards, whenever one oftliestrumentation checkpoints are reached, Pin gains tiiteato
of the application and injects corresponding analysisimest During execution, each time the instrumented lonatere
visited, their injected analysis routines also executeyiding the dynamic application information. This secorhge of
operation is calle@dnalysis Although conceptuallynstrumentatiorandanalysisare two exclusive processes. Pin operates
similarly as a just-in-time (JIT) compiler. Instrumentatifor a code trace happens immediately before it is exedoted
the first time. Thereforeinstrumentationand analysisare usually temporally intermixed, with instrumentatdominant
execution at the beginning of an application and analysisidant execution towards the end, as very few new tracesmare
countered. Pin utilizes a single executalfletool, to perform instrumentation and analysis on an applicatitath Pintool
contains separate routines for instrumentation and aesilgsperform these processes.

e
Colfect performance | Analysis Instrumentation | : Read / flush
eventrates/ - : device file
reset counters :
. L detach/ attach
St i cevicesieto
A serfal port device
Performance : .S‘al . | 08 serial External Power
Counter : P Instrument : device file Measurement via
Hardware H trace head b,;ce ,,'ZZZS H Current Probe
H addresses : e
| Application Binary |
Machine .
Under Test
Figure 3. Experimental setup for power phase analysis with P in.

Figure 3 presents an overview of our experimental setupdamp phase analysis with Pin. In our Pintool, we use trace
level instrumentation to keep track of executed code traCes analysis routine consists of three levels of hierarc¢hsst
level simply provides an account of executed instructioBecond level samples one PC address approximately every 1
million instructions. Highest level analysis is evoked v&00 million instructions. This routine generates one BBdM
the 100 PC samples, reads performance statistics from PhiCl®gs the measured power history from the serial device file
These three sources of data collection are shown with tlee thcoming arrows to the analysis routine of our Pintool.

Itis important to isolate application behavior from Pin oggéon. Pin provides application exclusive control flondrha-
tion, however, performance monitoring and power measungsrege independent of Pin operation. Therefore, we provide
handles to our Pin routines to disable the logging of datgpfover and performance at routine entries; and to reenakde da
logging at routine exits. As we mentioned, instrumentadod analysis are not mutually exclusive temporally. Troresf
we use these handles during both instrumentation and asagsshown with the arrows in Figure 3. Nonetheless, thast e
additional handles exclusive to the analysis tool such setireg the PMCs and flushing device file at the end of a complete

« N
Instrumentation Execution
dominant dominant

60

540

a 20
0 T T T T T

t T T T } T T T T T T T t T
0 20 40 60 0 100 200 300 400 500 600 700 0 50 100 150 200 O 20 40 60 80

Time [s] Time [s] Time [s] Time [s]
(a) Native execution power (b) Flattened power behavior with Pin basic block instrumentation (c) Improved external power behavior with Pin (d) Power behavior assigned to
behavior without instrumentation trace instrumentation and conditional inlining application execution by Pintool

Figure 4. Effect of Pin instrumentation on application powe r behavior for SPEC gcc benchmark
with 166 dataset. (a) shows the native power behavior without instru mentation. (b) shows Pin
instrumentation overwhelming gcc power behavior with naive BBL instrumentation. (c) shows th e
retained power behavior with trace instrumentation and con ditional inlining with external power
measurement (including both Pin and gcc). (d) shows power behavior assigned to application as
isolated by our Pintool power analysis routine (gcc only, by selectively disabling device logging
during Pin execution).

sampling period. We provide further details to each of the@ dallection mechanisms in the following sections, wheee w
also provide information on the fidelity of our experiments.

All our experiments described in this paper were performedad.4GHz Pentium 4 processor with Linux operating
system, kernel 2.4.7-10. The experiments are carried ahtthie SPECCPU 2000 benchmarks using reference datasets and
other benchmarks derived from well-known suites and dgs&pplications. All benchmarks are compiled with gcc and g77
compilers with base compiler flags.

3.1 Instrumentation Details

In our experiments, initially we used basic block level (BBhstrumentation to collect PC information. In this casestfi
analysis routine—called at every basic block entry—keptktiEfexecuted instructions. At every 1 million instructiomge
called the 2nd analysis routine to log PC address. Howesamaverage every 5-7 instructions make a BBL, doing instru-
mentation at this granularity caused the instrumentatiohtb overwhelm benchmark power behavior. Although it perfs
a minor operation, the 1st routine has been the bottleneekdlits call frequency. As this research relies on collectaal
measured power behavior, the most important specific ceraion is to be able to preserve the power variations indlbge
benchmark behavior. Therefore, we applied following ojtations to instrumentation to retain variation in powehdor:

- Trace InstrumentationThis is a one level coarser instrumentation than BBL graitylarovided by Pin. A trace is a
single entry, multiple exit (unlike single exit BBLS) codegion. As we keep track of each trace head (i.e. each change in
control flow), this method still provides required contravilinformation, while reducing the amount of instrumerdatio
1/2—-1/3.
- Conditional Inlining: One obvious feature of our analysis hierarchy is that, #ngtllanalysis is performed very frequently,
to determine the condition for applying the second levelyaig Here, the condition is, whether 1 million instructso
are executed. Therefore, the task of first level analysis Ermply count instructions up to 1 million, and call the sed¢o
level whenever the condition is met, at a much lower frequestarting with toolkit 1795, Pin API provides routines for
inlining this first level condition checking. This is seendi@stically improve performance as long as the “then” raitias
significantly lower frequency. Therefore, in our impleraditn, we make use of this feature. This helps reduce theiérec
times by 5x and also helps retain the original power behadfiapplications.

In Figure 4, we show the effects of instrumentation on powahavior forgcc benchmark withl66 dataset. Figure

4.(a) shows the actual measured power behavigicofwithout any instrumentation. Figure 4.(b) shows the restitbur
initial experiments. Here, power behavior gifc is overwhelmed by the frequent calls to the first level arialysutine.
Consequently, the observed power behavior is rather flatraflecting the variations in actual benchmark executiam. |
Figure 4.(c), we show the improvement achieved with trasgrimentation and conditional inlining. This figure alsowh

the two phases of Pin operation clearly, where the initiagss of benchmark is instrumentation dominant and as lots of
new traces are encountered and later it becomes executibaretysis dominant as mostly the previously entered traces
re-execute. The power behavior reported in this case is feoternal” measurements. We mean by this, an external power
monitor is used to collect power information during the exém of the application within Pin. Therefore, what we sge i
the aggregate power behavior of both Pin gnd. As we have briefly discussed, we use Pin to exclusively coisolated
benchmark power behavior, by excluding power logging duRm instrumentation and analysis routines. We show inreigu
4.(d) the actual observed power behaviorgoc by our Pintool. Here, we can demonstrate most of the instntatien (and
analysis) effects are filtered out from the power behaviendeom within Pin with our power monitoring method. Note
that this trace cannot be identical to that of Figure 4.(djhdugh what we measure is mostly benchmark executionether
are inevitable differences due to inlined first level analysutine, and imperfect synchronization of power andqrentince
measurements. Nonetheless, it can be seen that the originpbral power behavior of the application, as well as the
magnitudes of application power variations are both prxegskmwhich are the most important prerequisites of our resea

3.2 External Power Measurement and Pin Interface

We provide real power behavior feedback to our power phaaeacterizations via external, live power measurements.
We perform power measurements by measuring the currentifiimattie processor with a current probe. This measurement
information is then fed back to the measurement system beesdrial port interface.

This power measurement is performed continuously at ruetieflecting the actual power consumption as experienced
by the processor. Therefore, this power behavior refleesatgregate effects of all the Pin tasks running on the system
at a given time period. As the purpose of our power charaatoin research is to efficiently identify phases reflecting
real power behavior of an application, it is crucial to beeatdl disect the application power behavior from Pin analysis
and instrumentation. To perform this, we use certain césmfrom the instrumentation and analysis routines of outd@in
eliminating their contribution to collected power infortizan.

In our experimentation system, measured power informat@mnes to the serial interface as 15 bytes of ASCII followed
by a newline. By default, this data passes through the deufédr, and is silently logged into a 4KB serial device file—if
the serial port is programmatically opened. The tail of files extends as new data is received from the serial port and
current file position advances as data is read by the usdrpgevgram. In order to log only application execution specifi
power data in this file, we use separate controls inside tht@@liroutines that can detach/attach serial device dfieen the
device file viat er mi os flags. This approach allows us to preserve previous powarigisvhile preventing further logging
while inside an instrumentation/analysis routine. At tii ef a routine, the driver is enabled to log further powetedimr
continued application execution. At the end of a 100 milliestruction sampling period, the highest level analysigfion
halts logging and reads the logged power history for the ggsipling period. This history is then averaged and is asgign
as the observed power for the past sampling quantum. Aftdeyéhe buffer is flushed and reenabled for logging at the sta
of next sampling interval.

With this approach, we provide a valid matching betweeniappbn execution flow, performance statistics and applica
tion specific power behavior. Inevitably, there exist sesgrof error due to measurements, transient operations ehfairm
the control functions for selective logging and asynchienoperation of different data sources. However, in the @xpe

mented cases, our selective power collection process pesduower information with good fidelity, as compared tovaati
execution behaviors of applications. Measured power hehavall cases are similar, both temporally and in termseifal
variations.

4 Generating BBV and Performance Information from Pin/Hardware Structure

4.1 Program Counter Sampling and BBV Generation

To track control flow based application phases, we use thie baxck vector (BBV) approach [32]. BBVs summarize
application execution by tracking both which basic blockshe application are touched and how many times each basic
block is visited during a sampling interval. BBVs are shownépresent application execution behavior by providinghbo
working set information and execution frequencies foratiht basic blocks [8]. BBVs are constructed from execuilimn
by mapping executed PC addresses to the basic blocks of dinatigm binary. Originally, each component of a BBV is
a specific basic block, and the magnitude of the componemnésepts how often the corresponding basic block has been
executed for a past sampling period. For practical purpd3B¥'s are generally mapped into smaller dimensional vector
via random projection/hashing or eliminating least sigaifit dimensions [2, 22, 32, 33].

In our implementation, we use Pin to sample the PC addrestesa heads. Using trace instrumentation provides certai
advantages to BBV generation. As each trace head is alsoatbask start address, each sampled PC actually correspond
to a specific basic block. This eliminates any need for priofiling of the binary to identify basic block boundaries and
searching through these boundaries at runtime PC samplimgyp the PCs to basic blocks. Consequently, different ssinpl
PCs represent different elements of the BBV and number opkemior a specific PC represents the execution frequency
of the corresponding block. For sampling periods, we useiqusly published granularities [2]. We sample one PC every
1 million instructions and construct a BBV at every 100mifliinstructions. Thus, each BBV has an L1 norm of 100.
We perform static instrumentation of applications with gealetermine the dimensions of basic block profiles. Eveer aft
eliminating untouched basic blocks and libraries, apgitices exhibit large BBV dimensions ranging from 330@0q) to
100 Gwi n). These lead to highly sparse and impractical to implemeéBiV¥8 Consequently, we also apply dimension
reduction. For the reduced dimensions, we choose 32 bydiated on previous work [33]. We use a variation of Jenkins’
32 bit integer hash function [21] to reduce the large andadei BBV dimensions into common 32 dimensional vectors.

As has been discussed in previous studies [22], samplirgyalimcurs some amount of information loss. However, for any
practical implementation of runtime control flow trackirsgmpling is inevitable. As we have shown, our choice of sargpl
provides acceptable intrusion to program power behavioaddition, our observations show, our sampled PC infoonati
still leads to similar similarity information for large deacontrol flow behavior. We compare full-blown BBVs, constied
from complete PC information, to our sampled BBVs with saritly matrices [32]. Both methods reflect the major phase
content in terms of execution flow similarity and lead to $amphases for small numbers of target phase clusters.

4.2 Monitoring Using Performance Counters

Our performance oriented methods read performance cauateuntime via handles in our Pintool. In order to track
power phases, we use a set of 15 performance counters thgb@deproxies for power estimation. The counters include
CPU instruction counts, L1 and L2 access rates, and bugatidins for memory behavior. The method is similar to prior
research [19], but streamlined to avoid counter rotatidree final set of 15 PMC events can be monitored simultaneously
without conflicts. Therefore, no PMC configuration is reqdiexcept at the initial Pintool startup.

We developed several handles to control PMC monitoring fwithin our Pintool. At Pintool initialization, we use

PrepCntrscall to configure the 15 events to be monitored. This is thetrheavyweight call, and is called only once,
before application execution commences. We pro@tiertCntrsand StopCntrscalls to selectively start/halt performance
monitoring at instrumentation and analysis routine egitgles. These are used to avoid polluting the PMC inforonaiiith
Pin execution. Although we provide the start/stop handiedltroutines, after our initial experiments, we do not ikedhem
for instrumentation and 2nd level analysis routines, aB ttosts are seen to be comparable. Note that, this traderoff
effects PMC information, without any effect on BBV genepatand power measurements. Our experiments show that, PMC
information still performs superior in phase charactditmaand most of the large scale phase behavior is preseAfést.
every 100 million instruction execution, the highest leahlysis routine callReadCntrgo collect the past performance
statistics for the current sampling period. These 15 ewarsrare used to construct a 15 dimensiédC vectorwhich is
used the gauge the similarity of execution samples in aaimilanner as BBVs. After the collection of PMC information,
the analysis routine resets the counters \R#setCntrand initiates monitoring for the next sampling interval.

5 Phase Classification

We cluster gathered BBV and PMC vector samples into phastismuiltiple clustering algorithms. First, we develop a
fast, but less accurate method based on the descriptiongdbps work [18]. This method is more suitable for runtime
analysis as it assigns samples to phases as they are obs@eechll this methodrirst Pivot Clustering To corroborate
the observed characterization results are not due to theechbclustering, we also experiment with a very computslty
expensive methodhgglomerative ClusteringWe use two variations of this methodomplete linkagandaverage linkage
Patil et al. [28] show in their representative phase geiterat SPEC INT and FP lead to on average 4 and 5 phases respec-
tively. Therefore, in this study, to provide consistenutesand error metrics across all applications, we targeatds 5 final
phases for all benchmarks. Afterwards, we show that obderailts are consistent as the target number of phasesesghang

5.1 First Pivot Clustering

First Pivot Clustering usegivot samples to represent different phases. In the originalrigitien of this method, a new
gathered sample is compared to all previous pivots, i.etesteof different phases. If the current sample is withipec#fied
threshold distance of a pivot, it is assigned to that phak#.id not within the similarity distance of any of the pivots
starts a new phase and is added to the list of pivots as thesemative sample for the new phase. By this way, The ofigina
description can assign samples to phases at runtime. Thieagh provides an upper bound to the distance within each
phase, but it does not guarantee a fixed number of phases.

We change this to an iterative process, where the thresbalbinged dynamically based on both the acquired and target
number of phases. With this modification, we classify botiVBBind PMC vectors into 5 final phases after a few iterations.

5.2 Agglomerative Clustering

Agglomerative clustering is a tedious bottom-up approactidstering samples into phases. In this approach, clogter
algorithm starts with an initial clustering solution Nf clusters, wheré\ is the number of samples. At each iteration, the
algorithm compares all pairwise combinations of the cursat of clusters and finds the best candidate pair of clusters
combine into a single cluster. The pairs are compared basediokage criterion, which determines the best candidates.
This iterative process continues until a final target numdfeslusters are reached or a distance threshold among duste
is exceeded. For agglomerative clustering, we experimdhttwo types of linkages, complete and average linkage. We
describe these below.

5.2.1 Average Linkage

Average linkage compares the average distance betweamgils pairs belonging to two different clusters. For twestdus
with i and j samples respectively, it computes the distance betweehedll j pairs and finds the average distance between
the clusters. Performing this operation for all cluster bomations, it chooses to combine two clusters with the mimm
average distance. This leads to clusters with similar reigall dimensions, but can result in significantly differesnges

for different clusters.

5.2.2 Complete Linkage

Complete linkage does similar comparisons as averageg@kdowever, it compares the maximum pairwise samplefuista
among clusters. It combines the clusters with the least maxi distance among all their pairs. Consequently, the figtal s
of clusters have similar ranges among most of their samalg®mugh the range across each dimension can be different.

In all our analyses we use L1—manhattan—distance, as our meeasdistance between two samples. For BBV based
clustering, we compute the L1 distance between the two sporeding 32 dimensional BBVs. For PMC based clustering, we
use the two 15 dimensional PMC vectors to gauge the sinyilbatween points. We apply above three clustering methods
and evaluate clustering criteria based on these distances.

6 Power Phase Characterization: Evaluation of Techniques ahResults

We apply our described power phase classification methosevieral benchmarks. Using both control flow and perfor-
mance features, we cluster each benchmark into 5 phasesnuitiple clustering methods. Here, we discuss first how we
evaluate the fidelity of these phases in terms of power behalaracterization. Afterwards, we provide the completeo$
results based on these evaluations. With the demonstredatts, we show how code signatures and PMC phases perform in
identifying power behavior characteristics with respecat‘gold standard” phase classification as our lower bourmidaan
“uninformed” classification as the upper bound. We alsogmea direct comparison between BBV phases and PMC phases
for power characterization.

6.1 Evaluating the Error of Power Phase Characterization

We evaluate the quality of generated phase clusters by aomypthe measured power at each sample to the aggregate
power for the whole cluster the sample belongs to. For a beadhwith N samples, each sampiéi = 1,...,N) is an
element of one of the final phase sBjgj = 1,...,5). Each sample has a corresponding set of g, pmg, pwr], where
bby and pmg are the corresponding BBV and PMC vectors used during pHasteadngs, angwr; is the measured power
value during samplés execution. For each phaBg we compute a “representative poweR;, as the arithmetic average of
the power values for the tothl; samples belonging to that phase. Then, for each saimpecompute the squared difference
between the sample’s actual power vapwer; and the representative powRy for its owner phas®;. We denoteR; values
corresponding to each samplwith Rj. Afterwards, we compute the rooted average of these squkiffecences over all
samples for our final RMS error figuEgrms We summarize this error computation in Equation 1.

pwri
R = N (i=1...,5)
N
S (pwr —Rji)?
Ervs= \\ =N 1)

This error value represents the quality of power phase cteaation for a given phase classification method on the
evaluated benchmark. The methods are the combinationaakeld feature (BBVs or PMCs) and clustering algorithm (first
pivot, agglomerative with average or complete linkage). W&k this error measure to gauge the effectiveness of BBV and
PMC based features in representing power phase behavippbi€ations in our experiments with various benchmarks.

6.2 Error Boundaries

To gauge the ability of the phase classification technigneiscerning application power behavior, we also provide th
error boundaries that can be achieved with perfect knoveledgower information—lower bound—as well as without any
knowledge of application behavior—upper bound.

To compute lower error bounds, we look directly at the meagyrower, which is the independent target experiment
parameter in all other analyses. We apply all three cluggaigorithms to each benchmark’s power information an@éé&mh
case choose the smallest error value achieved. We refestttild standard” measure &sseline errofin our results.

For the upper error bounds, we design a separate clustestigpah which assigns each sample to any of the final target
phases randomly, without using any application behavifarimation. We refer to the results of this “uninformed” pbaas
characterization asandom error We show the results achieved with these approaches to &r leenchmark. These
demonstrate opportunities for improvement that remainfenvdmuch improvement each tested phase analysis featagsbri
to power characterization.

6.3 Experimented Benchmarks

For our power phase analysis experiments, we obtain cofitng) performance and power characteristics for several
benchmarks on our test machine. We look at 11 SPEC INT benismall excepper | bnk due to compilation problems—
and 10 SPEC FP benchmarks—excluded are F90 benchmarks. \&fnesmpt with all reference datasets for the 21 SPEC
benchmarks leading to a total of 37 different experiments.

In addition to SPEC, we also use 9 other benchmarks from quewtudies and derived from well-known applications.
These benchmarks aghost scri pt, dvi ps, gi nmp, | ane, cj peg, dj peg, mesh, st reamandndbnch. For some cases, we
alter the dataset or iterations for the benchmarks to ael@ger execution times. We describe these benchmarksmnd a
modifications here.

In the first categonghost scri pt anddvi ps are conversion utilities commonly used in document creafideir behavior
can depend on the nature and layout of the input document, lew, | ane, ¢j peg anddj peg and media processing tools,
used to convert among formats or manipulate media files., hash, st reamandndbnch are iterative applications with
multiple sequential functions similar to many scientifierquutation tools.

Forghost scri pt anddvi ps we use a large document of 190 pages, with different sizeésagthe middle of document.
ghost scri pt converts a postscript input to pdf, add ps converts dvi input to postscript.

G np is an image manipulation tool [13]. We ugenp in batch mode to perform several image processing opestion
such as blurring, filtering and applying digital effects. g@ading on the computation and memory intensity of the agpli
functions, they can lead to different power behavior. Welus® MP3 encoder [34] to encode a wave file under varying
guality settings. Both power levels and the total executmnease with the quality setting€§j peg anddj peg are image
compression and decompression programs from MediaBerigh e usecj peg to encode a very large (110 MB) ppm
image file into jpeg andj peg to decode the jpeg file into ppm. Their power behavior alsmgha during execution and
with input data.

Mesh is a well-known program used in dynamic program optimizastudies [10, 30]. It performs various computations

11

over the input mesh edges and faces, with sequentially ee@cepetitive functions. Our mesh input consists of 10Ke®od
and 60K edges, leading to very quick iterations. To empleabig execution of separate functions, we alter the origiesth
code to repeat each function 100-200 timé&Hbnch is a relatively older, scalar molecular dynamics benchnjazf. It
performs seven different molecular dynamics tasks witfedBht sizes or complexities. To extend its execution, wedase
the number of time steps for each task by 4-50x. Bwmkh andndbnch have similar iterative properties of scientific
computation. Although they iterate within different casitpaths, each task usually has similar computation prigsert
except for changes in memory intensity. These lead to fémtybehavior with small data footprint&t r eamis actually a
synthetic benchmark, commonly used to measure sustainestery bandwidth [27]. It iterates over four small tasksndpoi
different computations. Similar to the above two applicas,st r eamalso exhibits a stable power behavior during normal
operation. However, it has a loop carried positive feedlihek eventually overflows the inputs for its tasks, resglima
drastic change in power behavior. For agtir eamexperiments, we use an iteration count of 275 and data si2endfion
entry arrays.

6.4 Power Phase Characterization Results

We show the overall results for our experiments in Figurés SFhree figures show phase characterization errors for
the three clustering algorithms. In each figure, we show ppes—~+andom—and lower—baseline—error bounds for each
application and the achieved error with BBV and PMC basedagghes. We also show the average accuracies for SPEC
INT, SPEC FP and other experimented benchmarks.

First, obtained characterization results are consisietiépendent of the applied clustering algorithm. In gelnéigure 5
shows relatively higher errors due to the cheaper clugieriathod. However, the general accuracy relation betweevisBB
and PMCs are preserved.

Comparing among the three sets of applications, SPEC FRkcapphs lead to relatively low errors even with random
phase clustering for some cases. This is due to the gendnmofieer behavior of these benchmarkp] u, art, si xt rack,
wupwi se). In some other cases, benchmarks go through specificlirétin (i.e. equake) or periodic (i.e.amp) phases
with significant changes in all control flow, performance @agver features. In these cases, both BBVs and PMCs achieve
very good power characterizations approaching baselnoeser

SPEC INT shows significantly higher errors for all approacthee to higher variations in behavior. In many of the shown
cases, BBVs and PMCs are seen to have significant improvemmentandom clustering. This shows the benefits of phase
tracking for power behavior characterization.

Most of the other experimented benchmarks show signifigdnther error ranges due to their high power variability
based on input data characteristics and functional behavidhese cases, applying phase analysis, especiallyRiit8s,
proves to be very useful in identifying similar power beloavi

Overall, for the three benchmark sets, BBV phases achigeesasn average 52% of random clustering errors, for bench-
marks with non-flat power behavior. PMC phases lead to 34%mdam errors. For PMC based approach, power char-
acterization accuracies vary between 2-6x improvemerds imndom clusterings for these benchmarks. Performinge sam
comparisons with respect to baseline errors show, BBVs erage achieve 2.9x higher errors compared to baselineg whil
PMCs errors 1.8x of baseline figures. These comparisons, 8BW and PMC phase analyses have significant benefit in
characterizing power behavior. However, there still eggbortunities to improve power phase behavior charaetéoiz of
applications.

As above measures also indicate, in almost all experimerasels, PMC based phase analysis performs better than BBV
based approach for representing power behavior. Direcpaason shows, PMCs lead to 2.2% and 1.4% errors for SPEC

12

lIl- |L‘l‘l‘l|l‘lllllllllu I Illllllllllllll Il;lllllllll (o llllllll;ll;‘lll Ill‘llllllllL‘

£ o il
$.03 =
25009 ——
S 0= a =
Codo
LI =
=
QO @~ OB YT ®™N O

[m] Jou3 SN

(¥3H10) 3NV

weans

ysaw
yaugpw

Badlp

Badlo

owe|

dwib
yduosisoyb

sdinp

(d403dS) 3Inv

Jol Isde

u joenxis
urdwwe
ur—ayenba
zei e
ToI Ue
Jolesaw
urnidde

ur pubw
uwims

Jar asmdnm

(LNI1D3dS) 3AY

JaI jlomy

90In0s™ zdizq
wesboid zdizq
oydelbzdizq
SUBIPUS|” XaUOA
ZURIPUS| XSUOA
TURIPUS| XaUOA
Joi deb
JalBwysni_uos
‘eAifex"uoa
%009~ U0d

Jo1 1osred
urAyero
durjow

qe|1os 296
arelbaiu 006
1dxa~ 026

00g 296

997 99b
anosuda
aoejduda
2anos™ dizb
wopues dizb
weiboid~diz6
Bo|~dizb
owydes6~dizb

and PMC phases with first pivot clustering.

Figure 5. Power characterization errors (absolute) for BBV

lIl- |l|l|l|l|l|l|l|lllll|] Illllllllllllll Il;lllllllll [| llllllll;ll;‘lll Ill‘lllllll‘L‘

£ @ s

S = —

2>98]

S D= =
Comia

LR -

o

-

gQo®~©L Y ®N O

[m] 1013 SNY

(43H10) 3IAV

weans

ysaw
yougpw

Badlp

Badlo

auwre|

duwif
1duosisoyh

sdinp

(d403dS) 3nv

Joi Isde
uroRNXIS
uldwwe
ur-ayenba
[ACIT:]
Tl ue
JoI esaw
u"nidde
ul”pubw
urrwims

Jos asimdnm

(INI1D3dS) 3AV

JaI jjomy
2aInos ™ gdizq
weiboid zdizq
olydeifgdizq
£ueIpUd|” XaLOA
ZueIpus| XaloA
TURIPUS| XSUOA
Jo1 deb
Ja18WYsSNI_ U0
ehllexuos

%002 U0d

Ja1 1asred
urAyeso
durjow

qeos 296
ajeiBbajui 006
Jdxa~00b

00Z 296

991 096

ainos uda

aoe|d uda
dainos~ dizb
wopues dizb
weiboid"dizb
Bo|~dizB
owydesb~dizb

and PMC phases with agglomerative

Figure 6. Power characterization errors (absolute) for BBV

clustering-average linkage.

o Il‘lllllllllllllllllu 1 Illlllhlllllln Il;lllllllll b n llllllll;ll;‘lll Ill‘“lllll‘L‘

£ 2 =
$.0% =
E>9 8
S D= =
Comdao -
L] p
=l
QOo®~©OLYT MmN O

[m] 1013 SINY

(43H10) IV

weans

ysaw
yougpw

badlp

Badlo

awe|

dwib
1dussisoyd

sdinp

(d423dS) 3NV

Jo1 I1sde
urjoenXIs
ur dwuwe
ul“axyenba
zal ye
Tl ue
Jasesaw
u"nidde
ulpubw
urwims

JoI asimdnm

(LNI1D3dS) 3AY

JaI jjomy

9aInos™ gdizq
weiboid zdizq
alydelf zdizq
£ueIpUd|” XaUOA
ZUBIPUS| XSUOA
TURIPUS| XSUOA
Jor deb
Ja1BWYSNI_U0d
ehlleyuos

3002 UOd

Jas 1asred
urAyein
durjow

qeios 2096
ajeibajui00b
Idxe™ 006

00z 996

99T 096
anosuda

aoe|d uda
8oinos™ diz6
wopues dizb
weiboid dizb
Bo|~diz6
aydesbdizb

and PMC phases with agglomerative

Figure 7. Power characterization errors (absolute) for BBV

clustering-complete linkage.

INT and FP, while BBVs achieve 3.4% and 1.5% errors. For tihemnéxperimented benchmarks, PMCs and BBVs have

7.1% and 14.7% average errors respectively. For most ofdhehmarks PMCs achieve 30-40% less errors than BBVs with
an average of 33%. This direct comparison between BBVs and$>ow, although both techniques provide useful features

to identify power phase behavior, in general PMCs feature$eatter candidates for identifying power phases.

6.5 Sensitivity to Different Target Number of Phases

We have presented our complete analysis for a fixed targebeuof 5 phases for consistency. However, we have also

experimented with various number of target phases to vérdyreliability of our results. We show these in Figure 8.

Here, we show the effect of target phases with agglomeratisering/complete linkage. For all the benchmarks, we

perform clusterings for final phase numbers varying from 5@060. We show the achieved errors as both RMS and maxi-

13

=0=AVE MAX Error (BBV)
—o—AVE MAX Error (PMC)

=0~AVE RMS Error (BBV)
—o—AVE RMS Error (PMC)

0 20 40 60 80 100 0 20 40 60 80 100
(a) Average error.] ~ (b) Max error.
Figure 8. Variation of errors with respect to number of final p hases.

mum observed values. For each benchmark, we compute the R 8aximum error figure for each target phase count.
Afterwards, we average these values over all benchmarleatdhra single error figure for each target phase count.

Intuitively, for a single final phase, both BBVs and PMCs wékch the same error, equivalent to the power standard
deviation of the whole benchmark samples. Afterwards, asnimber of phases increase, errors for both methods will
decrease with different slopes. As phase numbers grow ttsaafinity, both error curves will converge to 0, i.e. wheeele
phase is a singleton sample.

In Figure 8, we show the behavior up to 100 phases for denaiimsirpurposes. As phase counts grow beyond 100, both
curves reach 0. For all practical purposes, PMC based ppastesm consistently better, independent of the numbemnat fi
phase clusters.

7 Observations from Experimented Applications

Initially we discussed some of the possible reasons thatceaise control flow information and performance statis-
tics to arrive at different conclusions about applicatimwpr behavior. We showed how control flow information and
power/performance characteristics of an applicatioredifinder varying data locality with tiizache microbenchmark.

Here, we show our observations from actual applicationswieaexperimented on. We demonstrate the effects of other
sources of disagreemenperand dependent behaviandeffectively same execution

7.1 Operand Dependent Behavior

We show an interesting example to operand dependent behaitio the st r eam benchmark. St r eam performs four
repetitive operations with simple vector kernels. It opesaon three vectors, b andc. The four operations areopy
(c[j] = a[]j]), scale(b[j] = scalar«c[j]), add(c[j] = a[j] + b[j]) andtriad (a[j] = b[j] + scalar«c[]j]). It targets at measuring
sustainable memory bandwidth with vectors larger thaneadtes and by avoiding data reuse. Here, we use this appticat
to show an interesting operand dependent behavior and jificetions on power. There exists a positive feedback betwe
each iteration of the four described operations. This catise the FP operations to overflow at iteration 261, where firs
vectora overflows attriad. This is then propagated to vectdrandc in the next iteration. This overflow causes the three
FP kernels to experience a slowdown larger than 10x, whdedipy operation is not significantly effected. Consequently,
power dissipation experiences a drastic phase changes exelcution path is still conserved.

In Figure 9, we show the resulting behavior in terms of poB&Y signatures and PMC signatures. Figure 9.(a) shows,
the power (top) and BBV signatures (bottom) with respectdecated instructions. We show BBV signatures as stacked
vector sample bars, where magnitude of each vector compades on top of the stack. Here, we see the repetitive BBV
vector patterns throughout the execution, correspondirtige 4 different operations repeated 275 times. As the abihbiwv
is repetitive, the sudden power drop goes undetected witisBBn Figure 9.(b), we show the same execution with few of
the PMC vector samples. Here, we show the execution withemdp cycles, to emphasize the actual effect of overflow

14

ESO
g 40 Overflow at iteration 261
)
o 30
L il N
Rl
HAEATRTETETATT A EEEX AR LATATRY I LT
\
25 13.7 24.8 36.0 47.1 58.2 69.4 80.5 91.7
Instructions [xBillion]
(a) Stream power behavior and BBV patterns.
NI e . o A s
Eso E —PWR
E ; ; — 12
5] - Overflow at iteration 261 —WEM
< 40 f IPC "
o) 3 Q
o 3 =
30 p o
1 o
Q
: c
{os g
S
0
0 40 80 120 160 200 o

Cycles [xBillion]
) (b) Stream power and PMC patterns]
Figure 9. Power phase change at overflow condition for st reambenchmark. (a) shows BBV signatures,

unable to detect the phase change, (b) shows PMCs detecting t he change. (b) is drawn with respect
to elapsed cycles to show the actual time behavior.

on elapsed time in different power phases. While, the lowargng@hase occupies less than 6% of executed instructions,
the time spent in this phase is more than half of total exenutiTracking PMCs easily identifies this power phase change
resulting from operand dependent behaviostafeam

7.2 Impact of Effectively Same Execution

Phase characterizations of applications have two relatétbmes. First, phase characterizations provide feedfmack
identifying phase changes in program behavior. Secongl,dlassify applications into similar regions of executidrnese
two aspects have an inverse relation, which can be considierierms ofsimilarity and granularity [15]. Dictating more
restrictive similarity features within each phase resiltsigher number of phases with smaller granularity. Theag,nien,
lead to numerous false alarms for spurious phase transjtaamany of the small variations in tracked features doafleat
in application (power) behavior. Thus, a desired propestyphase characterization is to lead to high granularitysphahat
capture major application behavior; balancing similagityl granularity.

Effectively same execution represents a characteristiader when PMC and BBV approaches perform differently in
achieving this balance. In many occurrences, applicatwai& through different code paths, while performing simila
computational tasks. These lead to different code sigestimdicating different phases, while actual power phasebior
is similar.

We demonstrate the impact of this effect with ttesh benchmark. During its executionesh first reads an input mesh
configuration and performs various tasks on the input mesbstMf these tasks have computationally similar properties
leading to effectively same execution behavior—while irfedtifnt execution address spaces. In Figure 10, we showfpart o

15

D
o

Power [W]
a1
o

N
o

6
5 — A _—
[e]
z 4 | |]
% 3 -
g2
1 BBV Phases (N=5)
Pt = PMC Phases (N=5)
0
4
3 M
(@]
Z, _ m— —_—
@ © |
[2]
81 -
o 0 BBV Phases (N=3)
Bl PMC Phases (N=3)
4 12 30 51 73 94 115

Instructions [xBillion]

Figure 10. Mesh power and BBV signatures (top) and generated PMC and BBV phas es with target
cluster numbers of 5 (middle) and 3 (bottom). Multiple contr ol flow phases with effectively same
power characteristics disguise actual power phases in BBV b ased classification. Actual power
phases are labeled as H, L and M, for high, low and medium power dissipation regions.

the execution characteristics foesh. In the figure, we first show the measured power behavior. Weeeaily separate
mesh execution into three power phases by observing the powee.trd/e label these “actual” power phasedfd and

M on the power trace. Representing phases with high, low amtiumepower consumption. Underneath the power trace,
we show the corresponding BBV vector patterns for each sanmfdain, we present the 32 dimensional BBVs as stacked
bars, where each vector component adds up to the stack basedmagnitude. Several distinct control flow phases are
observable from the BBV patterns. We separate each of tleggens with vertical dotted lines. These correlate welhwit
mesh tasks. First high power phase corresponds to the sortitkgatitsr reading nodes and initialization. This task sorts
nodes based on their types. It operates mainly in L1 cacheerfdrms several arithmetics. The following low power ghas
results fromSetBoundaryDataask which sets the values for boundary nodes. This tasklyrastesses L2, and has low
overlapping computation, which leads to less power. Afs task,nesh repetitively operates on three computation tasks,
namely,ComputeForces()IComputeVelocityChangegnd SmoothenVelocity()These constitute the medium power phase of
mesh. All these tasks also make significant L2 accesses. Howtlair,overlapping higher FP computations lead to relagivel
higher power.

16

In the lower two plots of Figure 10, we show the phase clasdifios performed by BBVs and PMCs. We apply agglom-
erative clustering with complete linkage and use targesplrmumbersiN, of 5—as our general choice—and 3 for a more
restrictive case. In these plots, y axis shows differensphaanging from 1 to 5 for the first case and 1 to 3 for the second
For each sample, we add a tick mark above the horizontal neesponding to its phase assigned by BBV classification.
We also add a tick mark below the horizontal line that coresis to each sample’s PMC phase. These marks then form the
bands of phases seen in these plots. For example, for thevitasephases, low power phasenssh is classified into phase
“1” by BBVs and phase “3” by PMCs.

These plots show the significant impact of effectively samezetion in phase classification. Rdr= 5, PMCs correctly
identify the three actual power phases. BBVs on the othed hawilapse the high and low power phases into a single phase,
leading to a false characterization. This is because, BB¥istify several different large-scale control flow phag&sstering
starts to overlap these based on their L1 distances, anel tbgslt in combining the high and low phases of power. Thesthr
repetitive control flow phases with effectively same powehdwvior are seen as the more different phases by BBVs, and are
assigned to different clusters. These indicate severse fallarms to spurious phase changes. NFer 3, BBV phases still
show more sensitivity to the three repetitive tasks of mednower phase and assign them to three different phasesisin th
case, all high, low and parts of medium power phases arergesbig same phase (“1") by BBVs. In comparison, PMCs show
very good fidelity. They successfully identify three powegions and assign them to different phases.

This example demonstrates the clear impact of effectivaiyesexecution on control flow based power phase character-
ization. It is important to note that, this effect has imptions for not only phase characterizations, but also mmphase
detection. Various control flow phases, with similar powehdvior can cause a detection framework to produce sewzsal f
alarms for phase transitions. These in turn lead to worsesmaiver operating characteristics and pollution of dgbhase
behavior.

In general, there exist other cases where differences batw®®C and BBV approaches arise including some SPEC
benchmarks such asf . We do not present these here for brevity. Nonethelessathbath BBV and PMC phases provide a
good account of application power phase behavior; in masgsahowing good correlation between power and both control
flow and performance measures. PMCs usually show a betteingino power behavior due to both their proximity to the
actual flow of power in the processor, as well as these disdussurces of disagreement between power and code signature

8 Summary and Recommendations

Here, we first make a final comparison of BBVs and PMCs for pgwerse characterization. We discuss different pros
and cons of the two approaches. Afterwards, we recommendnaination of methods and discuss their applicability to
different dynamic management techniques.

BBVs are widely studied and are shown to have several befefisummarizing application performance or tracking
application phases. Most important advantage of BBVs ig¢ipeatability of the observed phase behavior. Tracked code
signatures do not change due to system effects or with thiicappn of dynamic management actions that affect system
power and performance.

The biggest disadvantage of BBVs lies in runtime appliégbilt is impractical to collect full blown BBV information
during application runtime. Sampling methods, as applettis study, provide acceptable resolution, but BBV getiena
still requires mapping PC samples into control flow blockise3e require additional profiling or instrumentation oflayap
tions. Another related issue is the high dimensionality B#B that requires processing for dimension reduction. bfitazh
to these, false alarms due to changes only in control flowmimportant consideration for a runtime detection systeim. F

17

nally, the indifference of BBVs to varying data locality clae a significant impediment also in power phase charactiniza
for certain real applications [2].

The important advantages of PMCs are, their straightfatwantime applicability and their proximity to processommgs
consumption. PMCs are easily accessible at runtime wititwgight interfaces, which makes them good candidates for
dynamic applications on real-systems. Several PMCs shaoa gorrelations with processor power behavior, therefoey t
don’t suffer significantly from false alarms. Also as sinaméously monitored PMCs are on the order of 10, they reqoire n
data processing for dimension reduction during phase ctearzations.

The most important consideration with PMCs is repeatgbilits PMC data comes from several event counts over the
processor, the values are not identical among repetitibphases. A phase detection method that utilizes PMCs regjuir
to consider event count ranges or has to track deltas tageitreevents to detect phases or phase changes. Our previous
studies show, quantization can be unreliable, while tragkieltas produce higher fidelity. PMC based approach atgores
range considerations. Different dimensions of PMC vecoesnot of similar strength. For example, memory accesstsoun
and instructions issued have different orders of magnitUderefore, scaling of vector components or normalizatioray
be necessary to emphasize the impact of certain events.

Our quantitative results showed that PMCs have relativigliyer fidelity in characterizing power phase behavior. Heave
we believe a better solution can be achieved by combiningtileagths of BBVs with PMC approach. For a general power
phase characterization study, we suggest a hierarchipabagh between BBVs and PMCs. We consider using PMC based
phase tracking as the global mechanism to identify phasegeseand using BBVs to track the repetitive execution prgyre
In terms of decision hierarchy, PMCs can provide confidengghase changes detected from control flow and provide the
final decision whether this is an actual or spurious phaseggaOn the other hand, BBVs can enhance the repeatability of
observed PMC phases, by informing PMC method when a repetitintrol flow is detected.

We consider application of such control flow feedback to PM&dul phase detection in our current research for runtime
dynamic management on real-systems. We envision seveshitations to such power phase characterizations that ean b
used in both architectural studies and real-systems. Textyse aware scheduling[3] can benefit from detecting et
power phases to select among tasks with different powepkemture behavior to reduce performance degradation due to
idling or throttling. Multicore power balancing and actiimigration [14, 29] rely on application behavior to dibtrite
or transfer activity among different components. PowerspBacan provide both history and phase change information to
decision policies of these techniques. These phases aahealssed for dynamic voltage scaling [6, 26] to evaluatescasdl
benefits at runtime based on diversity and duration of difiepower phases.

9 Related Work

Several previous studies investigate phase behavior ditapipns for adaptation and characterization purposessthf
these research studies focus on either control flow or pagnce characteristics of applications. lyer and Marcul¢20],
Dhodapkar and Smith [9], Sherwood et al. [32, 33], Huang €1&l] and Lau et al. [23] analyze control flow behavior of
applications via different features such as subroutineskiwg sets and basic block profiles. These studies use &iionl
based methods to identify application phases for sumnmarigerformance and architectural studies. Patil et al. {28}
look at control flow phases with real-system experimentgyTuse similar dynamic instrumentation to identify BBV pbss
of applications. Their work uses basic block profiles of aggtions to find representative execution points, while eaklat
power characterizations with BBV and PMC phases.

Cook et al. [7] show the repetitive performance phase cheariatics of different applications using simulations.diro

18

[35], Weissel and Bellosa [36] and Duesterwald et al. [11aet performance counters to identify performance based
phases. They use performance statistics to guide dynarimiaations and metric predictions. These works do not wtars
power behavior of applications. Isci and Martonosi [18] émgpuntime power measurements and power estimation with
performance counters to identify phases of applicatiom&ang et al. [5] apply process power profiling to determinéveafe
power breakdowns. While these studies also look at powenimhthey do not investigate control flow approaches. Hu et
al. [16] describe a compile time methodology to find basicklphases at runtime for power studies. This study looks at
control flow information from a compiler perspective, while investigate runtime power phase behaviors of both cbntro
flow and performance statistics.

There are also previous studies that compare or evaluate pteracterization techniques. Dhodapkar and Smith [8],
perform a comparison between different control flow techagy working set signatures and BBVs. Annavaram et al. [2]
sample executed program counters as a proxy to control flovelaow the correlations between code signatures and applica
tion performance. They show that, control flow does not aw@yrrelate well with application performance. Lau et a2][2
also look at control flow and performance of applicationsttovs a strong correlation can be established by linking @ogr
counter to procedures and loops of applications via prgfilim comparison, our work looks at the direct comparison of
two phase characterization features, BBVs and PMCs wittimenmeasurement feedback for real power evaluation on a
real-system.

10 Conclusion

Phase analysis is increasingly important for computeresystfirst because simulation-based techniques rely on phase
directed sampling to reduce simulation time, and secorchuse real-life adaptive hardware and software mechamiiyns
on dynamic phase-directed readjustments.

With power being such a pressing constraint in current @eoss, it becomes important to understand not just the phase
of performance metrics, but also of their related-buthditstpower counterparts. Observing power phase behavioean
systems is particularly important because the real-sypteames show the impact of a comprehensive range of systiautsef
typically excluded from simulations.

This work has explored methods for real-system power phasergtion. Drawing on prior work, we have developed an
experimental framework for comparing both control-flonséd and performance-monitoring-based phase technigués, a
for comparing against live power measurements. Our reshtig/ that both control-flow and performance statistics jol@v
useful hints to power phase behavior. In general, perfoogdmased phase tracking leads to approximately 33% lessrpow
characterization errors than code signatures.

In some cases where power behavior depends on aspectshatheontrol flow (e.g. data locality, operand values, oriothe
characteristics), phases based on control flow can “missiesiansitions. In other cases, control flow phase clastdita
can result in “extra” phases, where applications perforfieidint tasks with effectively the same execution charésttes.
These effects lead to both false alarms for power phase esaagl incorrect power phase classifications.

Overall, the results presented here show a roadmap toiefemiwer phase analysis in real systems. Control-flow tech-
niques offer a good base, but may well be best applied asdidnhniques together with performance counters that caa mo
closely track the details of program behavior, needed ftead®n of power phases with high fidelity.

References
[1] D. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkada Friedman, M. Huang, V. Kursun, G. Magklis, M. Scott, Gm®&earo, P. Bose,

A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynamicallynyiprocessor resources with adaptive processiidE Computer36(12):43-51,
2003.

19

(2]
(3]
(4]
(5]
(6]
(7]

8l
El

(20]
(11]
(12]

(13]
(14]

(15]
(16]
(17]
(18]
(29]
(20]

(21]
[22]

(23]
(24]
(25]
(26]

(27]
(28]

[29]
(30]
(31]
(32]
(33]

(34]
(35]

(36]

M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. Hamk and B. Davies. The fuzzy correlation between code anfdmeance predictability.
In Proceedings of the 37th annual International Symp. on Migrhitecture 2004.

F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Evemivdn energy accounting for dynamic thermal managemern®rdceedings of the Workshop
on Compilers and Operating Systems for Low Power (COLPR8)y OrleansSept. 2003.

D. Brooks and M. Martonosi. Dynamically exploiting nawavidth operands to improve processor power and performanderoceedings of the 5th
International Symposium on High Performance Computer ifecture Jan. 1999.

F. Chang, K. Farkas, and P. Ranganathan. Energy driwistital profiling: Detecting software hotspots. Rroceedings of the Proceedings of the
Workshop on Computer Systerae02.

K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequecaling based on workload decomposition. Aroceedings of International
Symposium on Low Power Electronics and Design (ISLREDY. 2004.

J. Cook, R. L. Oliver, and E. E. Johnson. Examining perfaroeedifferences in workload execution phasesPioceedings of the IEEE International
Workshop on Workload Characterization (WWGC-2)01.

A. Dhodapkar and J. Smith. Comparing program phase detetgchniques. In 36th International Symp. on Microarchiter; 2003.

A. Dhodapkar and J. Smith. Managing multi-configurabledwaare via dynamic working set analysis. In 29th Annual Iné¢ional Symposium on
Computer Architecture, 2002.

C. Ding and K. Kennedy. Improving cache performance inaigit applications through data and computation reorganizait run time. In
Proceedings of ACM SIGPLAN Conference on Programming LaggDesign and Implementatiob999.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Claiaicig and predicting program behavior and its variapillh IEEE PACT pages 220-231,
2003.

F. Ercolessi. MDBNCH - A molecular dynamics benchmark. etnitional School for Advanced Studies in Trieste. wwwveéiginiud.it/ erco-
lessi/mdbnch.html.

GIMP. GNU Image Manipulation Program. http://www.gimmgb

S. Heo, K. Barr, and K. Asanovic. Reducing power dengitpugh activity migration. IProceedings of International Symposium on Low Power
Electronics and Design (ISLPED), Seoul, Koréaig. 2003.

M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase Shife€&n: A Problem Classification. IBM Researh Report RC&28BM T. J. Watson, Aug.
2003.

C. Hu, D. Jimenez, and U. Kremer. Toward an evaluatiorastfucture for power and energy optimizations. Workshop on High-Performance,
Power-Aware Computin@005.

M. Huang, J. Renau, and J. Torrellas. Positional admptaf processors: Application to energy reductionPhoceedings of the International Symp.
on Computer Architecture2003.

C. Isci and M. Martonosi. Identifying program power glabehavior using power vectors. Pnoceedings of the IEEE International Workshop on
Workload Characterization (WWC-63003.

C. Isci and M. Martonosi. Runtime Power Monitoring in Higend Processors: Methodology and Empirical Data.Ptaceedings of the 36th
International Symp. on MicroarchitectyrBec. 2003.

A. lyer and D. Marculescu. Power aware microarchitest@source scaling. IRroceedings of Design Automation and Test in Europe, DAT&:.
2001.

R. Jenkins. Hash functionfr. Dobb’s Journa) 9709, Sept. 1997.

J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Caldierstfong correlation between code signatures and perfaeném EEE International
Symposium on Performance Analysis of Systems and Saftiare2005.

J. Lau, S. Schoenmackers, and B. Calder. Transitiongpbkssification and prediction. hlth International Symposium on High Performance
Computer Architecture2005.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediatfenA tool for evaluating and synthesizing multimedia and comigatons systems. In
Proceedings of the 30th annual International Symposium @nddrchitecture 1997.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, Wallace, V. Reddi, and K. Hazelwood. Pin: Building custoedi program analysis
tools with dynamic instrumentation. Programming Language Design and Implementation (PLDupe 2005.

G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, andX®opsho. Profile-based dynamic voltage and frequencyrecédir a multiple clock
domain processor. IRroceedings of the 30th International Symposium on Computhitecture June 2003.

J. McCalphin. STREAM: Sustainable Memory Bandwidth iar@nt High Performance Computers. Technical report, Usitseof Virginia.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and Arlganidhi. Pinpointing representative portions of langli itanium programs with
dynamic instrumentation. IRroceedings of the 37th annual International Symp. on Mimbitecture 2004.

M. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-rureveraging smt and cmp to manage power density through the ogesgstem. In
Eleventh International Conference on Architectural Supfar Programming Languages and Operating Systems (ASPXIQOZ004.

X. Shen, Y. Zhong, and C. Ding. Locality phase predictioln Eleventh International Conference on Architectural Supgor Programming
Languages and Operating Systems (ASPLOSO4). 2004.

T. Sherwood, E. Perelman, and B. Calder. Basic blockidigion analysis to find periodic behavior and simulationng®in applications. In
International Conference on Parallel Architectures anch@mlation TechniquesSept. 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Autmally characterizing large scale program behavior, 2082ZTenth International Con-
ference on Architectural Support for Programming LanguagesCGperating Systems, October 2002. http://www.cs.ucsadledrs/calder/simpoint/.

T. Sherwood, S. Sair, and B. Calder. Phase tracking aedigtion. InProceedings of the 28th International Symposium on Computitecture
(ISCA-30) June 2003.

Sourceforge.net. The LAME Project. http://www.mp3aeg/.

R. Todi. Speclite: using representative samples tocedpec cpu2000 workload. Rroceedings of the IEEE International Workshop on Workload
Characterization (WWC-4p001.

A. Weissel and F. Bellosa. Process cruise control: Edeiwen clock scaling for dynamic power managementPtaceedings of the International
Conference on Compilers, Architecture and Synthesis fdrdeited Systems (CASES 2002), Grenoble, FraAag, 2002.

20

