
Geometric Aspects of Robotic Mapping and Monitoring of Data
Centers1

Chris Mansley† Jonathan Connell* Canturk Isci* Jonathan Lenchner*
Rajarshi Das* Jeffrey O. Kephart*

Fig. 1. The THOMAS system developed for data center monitoring

Abstract— We describe THOMAS, an inexpensive au-
tonomous robot capable of navigating previously unseen data
centers and monitoring key environmental parameters. We
show the effectiveness of THOMAS with two experimental
studies and discuss various practical geometric issues that have
arisen during its design and evaluation.

I. INTRODUCTION

Over time, data centers around the world are consuming
ever more energy, with those in the US now responsible for
an estimated 2% of the nation’s electricity budget [4], [7].
All of the power required to run IT equipment is ultimately
dissipated as heat, and a comparable amount of power may
be required by cooling systems employed to remove it. Thus
efficient data center cooling is of paramount importance.

A common contributor to data center (DC) cooling inef-
ficiency is over-aggressive cooling, which can result from a
lack of understanding of the DC temperature distribution or
failure to properly adjust cooling system parameters.

†C. Mansley, Department of Computer Science, Rutgers University,
Piscataway, NJ 08854, USA. cmansley@cs.rutgers.edu

*J. Connell, C. Isci, J. Lenchner, R. Das and J. Kephart,
IBM T.J. Watson Research Center, Yorktown Heights, NY 10532,
USA. {jconnell, canturk, lenchner, rajarshi,
kephart}@us.ibm.com

1For the full, separately under-submission, version of this abstract see
http://www.research.ibm.com/people/l/lenchner/docs/icra11 submitted.pdf.

In order to enable frequent, low-cost DC monitoring,
we have developed THOMAS (THermal Observation using
Mobile Autonomous Sensing), shown in Fig. 1, a fully
autonomous robotic platform for navigating, mapping and
sensing key environmental data. In large data centers that
it has already mapped, THOMAS can selectively choose
locations at which to collect sensor readings, so as to
near-optimally recover a temperature profile given a con-
strained sampling budget. A robotic sensing platform such
as THOMAS enables one to easily and cheaply deploy new
sensors or sensor types, avoiding expensive installation costs
that would be associated with static sensor deployment.

After describing the design and implementation of
THOMAS and discussing its successful field deployment
in two data centers, we describe and evaluate a selective
sampling method used by THOMAS to reduce the time
or number of observations required to obtain a sufficiently
accurate thermal profile of a data center. Finally, we present
several geometric problems that arise in the context of
this application, in the hope that they will inspire more
formal problem formulations and creative solutions by the
computational geometry community.

II. THOMAS: DESIGN AND IMPLEMENTATION

The primary design objective of THOMAS is to support
autonomous, low-cost navigation and monitoring of key
environmental metrics in a data center. While we have
limited the first deployment to include temperature sensors
only, natural next steps include adding air flow and humidity
sensors. Since these quantities typically vary vertically, we
provide sensing capabilities at different heights. In addition
to monitoring and navigation, THOMAS also provides live,
runtime feedback to higher-level management software for
dynamic cooling efficiency analysis, data center reconfigu-
ration, hot/cold spot detection and remediation, and adaptive
cooling techniques.

THOMAS was developed on top of the iRobot Create
robotic research platform. Its robust, low-cost mobile chassis
provides a high-level interface for motor control, odometry
and on-board sensors. The capabilities of the Create platform
were augmented with a webcam-based vision component for
navigation and tile detection, an off-the-shelf netbook for
on-board processing and a custom thermocouple interface,
attached to an aluminum pole for sensing temperature at

Localization and
Environment

Detection

Navigation
Methodology

Actuation
Decisions

Robot-level
Actuation

Odometry
Feedback

Auxiliary Sensing
Information

(Vision, Laser, Sonar)

Temperature
and Airflow
Sampling

Runtime Data Center
Thermal, Airlow and

Asset Mapping

Data Center
Monitoring and
Management

Software

Adaptive Cooling
Reconfiguration

Efficiency Analysis

Fig. 2. Mobile DC Monitoring Architecture.

various heights. Figure 2 demonstrates the high-level archi-
tectural overview of THOMAS.

The vision system was designed to exploit the grid-like
structure of the tiles in a DC. Almost universally, the floor of
a DC is comprised of a rectangular grid of industry standard
2 foot by 2 foot tiles, some of which are perforated to allow
cool air to pass up through them from a pressurized plenum.
THOMAS’ inexpensive webcam is mounted approximately
30 inches above the floor to image the tile ahead. From
the image the vision system extracts the orientation of the
robot relative to the floor grid and its location within the
current tile. The vision subsystem is also responsible for
differentiating between plain, perforated and blocked tiles.

The basic mode of operation is for THOMAS to traverse
the DC, stopping at each tile to take temperature readings.
After stopping in a tile it grabs an image of the tile ahead and
processes it to determine its actual pose, whether the next tile
is visitable or blocked, and its tile type (i.e., perforated or
plain). Certain challenges associated with the vision process
are the extraneous lines introduced by boxes and cabinets,
different perforated tile patterns and the occlusion of some
tile borders by DC equipment.

The THOMAS vision system is robust with respect to
contrast, illumination and partial occlusion of tiles. However,
it only provides a differential pose relative to a tile, rather
than a full robot pose with respect to the room. We use
odometry to keep track of tile crossings and rotations. For
global localization, we combine these differential visual
observations with odometric feedback using an Extended
Kalman Filter (EKF) [6]. The global reference frame is
defined by the starting location and orientation.

Given the current tile pose in the global reference frame,
the map containing the tile type (perforated or not) and tile
obstruction (occluded or not) must be created. In order to
fully explore the data center layout, we use a frontier-based
exploration system based on A* [3], [8]. As our evaluations
show, this exploration algorithm visits, on average, only 16%
more tiles than the number of visitable tiles in the DC.

III. FIELD DEPLOYMENTS

We conducted two sets of experimental deployments of
THOMAS in two separate production DCs. The first set of
experiments was performed at a research DC in Hawthorne,
N.Y. This research DC presented many interesting challenges
due to its frequent reconfiguration and most importantly
because of its many different types of perforated tiles. It thus
became an ideal training DC for THOMAS’ tile classifier and
we conducted dozens of experimental runs there to tune the
vision and localization algorithms.

Our experiments demonstrated the robustness of
THOMAS in detecting and navigating through a variety of
obstacles that can be encountered in DCs, the reliability
of localization with dynamically-varying DC layouts, and
the resilience of our vision system in classifying a range
of different tile configurations. Overall, this Hawthorne DC
comprised 4800 square feet, contained 220 visitable tiles
and was completely scanned in 46 minutes.

The second of our deployments was at an enterprise DC
in Southbury, CT. This DC was much more static, tiles were
relatively uniform, and obstructions were limited in number.
Although the tiles in this DC differed substantially from
those of the research DC, with different colors, perforation
patterns and tile edges, THOMAS successfully scanned this
data center on its first run and in several follow-up runs. This
DC comprised 960 square feet, contained 115 visitable tiles
and our initial scan was completed in 28 minutes.

IV. SELECTIVE SAMPLING

In small DCs such as those used in field deployments,
complete scans of every location will complete in a reason-
able amount of time. However, in large DCs, complete dense
scans could take days to complete, rendering continuous
monitoring impractical. A dense scan over a long time period
could have inherent temporal variations, reducing the scan’s
usability. Moreover, in many enterprise DCs, administrative
constraints would limit the duration for actively scanning
the DC. Thus, in lieu of repeat dense scans, it is desirable
to judiciously select a number of informative points that
accurately represent the thermal profile of the entire DC.

For selecting a near-optimal subset of sensing locations,
we used the mutual information (MI) criterion proposed by
Guestrin et al. [2]. Given the complete set of N samples we
choose a subset of size K such that we can best recover the
temperatures at the remaining N − K locations, using an
interpolation method known as Gaussian Process regression
[5]. If we let A denote the set of locations already measured
by the robot, our objective is to maximize the change in
mutual information by adding a new sensing location, in
other words, we wish to maximize:

MI(A ∪ y)−MI(A) = H(y|A)−H(y|Ā) (1)

where H(x|z) is the conditional entropy and y is a proposed
new sensing location.

We evaluated our MI-based selective sampling approach
in comparison to two additional algorithms: random and
uniform. The first algorithm selects k points at random from

Fig. 3. RMS errors for different sparse sampling strategies and different
numbers of sensing locations

all possible sensing locations for a given sample set size of k.
The second algorithm picks k “well separated” points from
among all sensing locations, in a sense that will be described
in the section on geometric considerations (section V-B). An
actual medium-size DC in Zurich, Switzerland containing
approximately 500 tiles was used for the evaluations with
different thermal profiles. For each experiment, a range of se-
lective sample set sizes, k, were used. These k measurements
were used to create an approximation of the thermal profile
of the DC. The estimated and the actual thermal profile were
compared across the whole DC to evaluate the accuracy of
each scheme. Fig. 3 shows the root-mean-squared error for
each of the three sampling techniques for different values of
k. As the figure shows, our MI-based selection is consistently
more accurate than both uniform and random sampling for
k ≥ 10 samples.

We also validated our selective sampling strategy with
actual physical experiments in the small production DC in
Southbury, CT, the layout of which is depicted in Fig. 4(a).
We first configured THOMAS to create a dense scan of
this DC. A portion of the temperature profile acquired from
this initial scan is shown in Fig. 4(b). After the initial scan,
we configured THOMAS to operate in “selective sampling
mode”, where it computed 10 representative sensing loca-
tions, and planned and traversed an expedient path among
these locations, taking temperature readings at the identified
tiles. It then used Gaussian Process regression to approximate
the entire DC thermal profile based on the sparse set of
samples. Compared to the initial full dense scan, the RMS
errors achieved with two separate sparse scans at 10 sensing
points were 1.72 and 2.27◦C. These results indicate that in
an actual enterprise DC setting, THOMAS can effectively
approximate an entire DC thermal profile with a relatively
small representative sample. The two sets of 10 samples (and
ensuing computation using Gaussian Process regression)
took THOMAS only 5 minutes each, compared to 28 minutes
for the full scan.

(a) Data Center Layout – Blue rectangles are racks of IT
equipment, pink rectangles are air conditioning units, cross-
hatched squares are perforated tiles and non-cross-hatched
squares are plain tiles. The heavy black line segment along
one of the edges of each of the blue rectangles indicates the
air intake side of the associated rack.

(b) 3D temperature profile and path taken by the robot in a
portion of the data center.

Fig. 4. The layout and thermal profile for the production data center.

V. GEOMETRIC CONSIDERATIONS

Having introduced THOMAS and described its successful
deployment in two data centers, we cite in this section some
of the myriad interesting geometric problems that arise in the
context of robotic mapping and monitoring of data centers.
One broad class of issues pertains to the vision algorithms
used for navigation, and for recognizing specific types of
objects such as perforated tiles. However, in this section we
choose to focus on a different class of geometric issues: those
pertaining to the choice of path followed by the robot.

One of the fundamental challenges in our algorithm design
is to visit all tiles we need to visit in as little time as possible.
The time-wise efficiency of any algorithm is important
because we generally need to be sure that measurements
of environmental parameters do not vary over the course of
the sampling epoch, and also because we must maximize the
robot’s coverage between battery recharges, which are highly
time consuming.

We divide our discussion of path algorithms into two
main categories: path exploration and selective sampling and
discuss each in turn.

A. Path Planning Issues

To plan our initial path through all tiles with no fore-
knowledge of the data center layout, we use frontier-based

exploration based on A*. A* is a “best-first” heuristic
enhancement to Dijkstra’s shortest path tree algorithm due to
Hart, Nilsson and Raphael [3], and the frontier-based variant
of it we use is due to Yamauchi[8]. When this frontier-based
exploration heuristic encounters a Depth First Search (DFS)
dead end, it returns to the closest unvisited tile and then
continues in DFS fashion. In experiments using layouts of
real data centers with n connected visitable tiles, frontier-
based A* visited an average of 1.16n tiles, while naı̈ve depth-
first search visited an average of 1.84n.

In addition to considering what tile to visit next, an
exploratory path algorithm must also govern the direction
in which the robot faces, since the robot is mounted with
a single camera facing straight ahead. Turning to look at
whether neighbors to the north, south, east or west are
visitable is a cost, but the knowledge gained from looking
in each of these directions can be valuable. In our first
deployment, we initially tried a “lazy looking” algorithm,
such that, if the tile directly ahead was visitable, we would
never look to the sides to see if these neighboring tiles were
visitable or not. The rationale for this strategy is that it
avoids the time cost of continually turning to check whether
neighboring tiles are visitable. Intuitively, this would appear
to be an efficient strategy in tours that consist mainly of long
straight, narrow paths. The drawback is that less information
is available to frontier-based A* when it tries to quickly dart
back to the nearest not-yet visited, but known to be visitable,
tile, once it reaches a dead end. Therefore, we have switched
from “lazy looking” to the opposite strategy, whereby we
turn continually to ascertain the visitability of all neighboring
tiles. In the initial stages of the search, the robot appears to
twitch a lot, but overall its frontier-based A* behavior is more
efficient. We feel it is important to characterize this tradeoff
more precisely and adopt appropriately adaptive strategies.

B. Selective Sampling Issues

The selective sampling problem as posed in the previous
section is over-simplified in several respects. First, we merely
find the k best sampling points that most reliably recover
the values at the remaining sampling locations. However,
it is more meaningful to find the best k sample points
such that the recovered temperature surface is as close to
the true surface as possible. The catch is that the “true
temperature surface” is unknown. However, one can make
the simplifying assumption that our interpolation from the
initially dense set of samples matches reality exactly. Trying
to reproduce the “true” surface in this way would, in general,
give more weight to sampling locations in areas where it is
more difficult to sample.

Other issues with our algorithm for finding the k most
informative sampling points include (i) the time cost is not
considered (i.e. we should consider not the total number of
samples, but the time required to visit the sample locations
and collect the readings); (ii) we attempt to select k samples
in a single shot, and never consider altering that set in
light of information collected from the initial samples; and
(iii) we strive for more samples in regions in which the

spatial gradient of temperature is high, but we are not yet
considering regions in which the time gradient of temperature
is high. Given that our intent is to capture samples that
are representative of a snapshot in time, we should sam-
ple at these time-sensitive locations especially quickly. In
other words, we should scoot around to these time-sensitive
locations and then, in more leisurely fashion, sample the
remaining points.

Our comparison of sparse sampling based on mutual in-
formation to geometrically uniform sampling raises questions
about what “geometrically uniform” sampling really means.
In data centers that are approximately rectangular, we might
divide the data center into equi-sized rectangles and pick
a point as close to the center of each piece as possible.
However, if the data center is particularly thin or wide, this
can result in points that are not well stratified in one of the
dimensions, and hence not well-separated. In highly non-
rectangular data centers, the problem may be even worse. Are
there better methods? We finally chose a different method for
finding well-separated points using circle-packing. How good
is this method? What optimality guarantees can be developed
for it?

We mention one final geometric problem that pertains to
large data centers: no matter how efficiently the tiles are
traversed, a dense scan may take too long for it to be regarded
as an approximation to a snapshot in time and hence serve
as a basis for the determination of near-optimal points to
sub-sample from. Suppose that the robot is given a sampling
budget of just 30 minutes per day. How can it best weave
together a large number of 30-minute samples to obtain a a
decent approximation to the temperature distribution across
the data center at one instant in time?

REFERENCES

[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

[2] C. Guestrin, A. Krause, and A. P. Singh. Near-optimal sensor place-
ments in gaussian processes. In Proceedings of the 22nd International
Conference on Machine Learning, 2005.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[4] J. G. Koomey. Estimating total power consumption by servers in the
U.S. and the world, 2007.

[5] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[6] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT
Press, 2005.

[7] U.S. Environmental Protection Agency ENERGY STAR Program.
Report to congress on server and data center energy efficiency, 2007.

[8] B. Yamauchi. A frontier-based approach for autonomous exploration. In
In Proceedings of the IEEE International Symposium on Computational
Intelligence, Robotics and Automation, 1997.

