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Abstract Power management is becoming an increasingly
critical component of modern enterprise computing environ-
ments. The traditional drive for higher performance has in-
fluenced trends towards consolidation and higher densities,
artifacts enabled by virtualization and new small form fac-
tor server blades. The resulting effect has been increased
power and cooling requirements in data centers which el-
evate ownership costs and put more pressure on rack and
enclosure densities. To address these issues, we exploit a
fundamental characteristic of data centers: “platform het-
erogeneity”. This heterogeneity stems from the architec-
tural and management-capability variations of the underly-
ing platforms. We define an intelligent heterogeneity-aware
load management (HALM) system that leverages hetero-
geneity characteristics to provide two data center level ben-
efits: (i) power efficient allocations of workloads to the best
fitting platforms and (ii) improved overall performance in
a power constrained environment. Our infrastructure relies
upon platform and workload descriptors as well as a novel
analytical prediction layer that accurately predicts workload
power/performance across different platform architectures
and power management capabilities. Our allocation scheme

R. Nathuji (�) · K. Schwan
Georgia Institute of Technology, Atlanta, GA 30032, USA
e-mail: rnathuji@ece.gatech.edu

K. Schwan
e-mail: schwan@cc.gatech.edu

C. Isci
VMware, Palo Alto, CA 93404, USA
e-mail: canturk@vmware.com

E. Gorbatov
Intel Corporation, Hillsboro, OR 97124, USA
e-mail: eugene.gorbatov@intel.com

achieves on average 20% improvements in power efficiency
for representative heterogeneous data center configurations,
and up to 18% improvements in performance degradation
when power budgeting must be performed. These results
highlight the significant potential of heterogeneity-aware
management.

Keywords Power management · Distributed resource
management · Heterogeneous systems

1 Introduction

Power management has become a critical component of
modern computing systems, pervading both mobile and en-
terprise environments. Power consumption is a particularly
significant issue in data centers, stimulating a variety of re-
search for server systems [2]. Increased performance re-
quirements in data centers have resulted in elevated densities
enabled via consolidation and reduced server form factors.
This has in turn created challenges in provisioning the nec-
essary power and cooling capacities. For example, current
data centers allocate nearly 60 Amps per rack, a limit that
is likely to become prohibitive for future high density rack
configurations such as blade servers, even if the accompany-
ing cooling issues can be solved [24]. In addition, a 30,000
square feet data center with a power consumption of 10 MW
requires a cooling system which costs $2–$5 million [21]. In
such a system, the cost of running the air conditioning equip-
ment alone can reach $4–$8 million a year [24]. Coupled
with the elevated electricity costs from high performance
servers, these effects can substantially affect the operating
costs of a data center. Overall, these trends in power/cooling
delivery and cost highlight the need for power and thermal
management support in data centers.
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Previous work on server management has focused on
managing heat during thermal events [21] or utilizing plat-
form power management support, such as processor fre-
quency scaling, for power budgeting [9, 18, 24]. In this pa-
per, we approach the problem of managing data centers from
a different perspective by considering how to intelligently
allocate workloads amongst heterogeneous platforms in a
manner that (i) improves data center power-efficiency while
preserving/satisfying workload performance requirements,
and (ii) meets data-center-level power budgets with minimal
impact on workload performance. Typically, data centers
statically allocate platform resources to applications based
upon peak load characteristics in order to maintain isola-
tion and provide performance guarantees. With the continu-
ing growth in capabilities of virtualization solutions (e.g.,
Xen [1] and VMware [25]), the necessity of such offline
provisioning is removed. Indeed, by allowing for flexible
and dynamic migration of workloads across physical re-
sources [6], the use of virtualization in future data centers
enables a new avenue of management and optimization. Our
approach begins to leverage some of these capabilities to
enhance power efficiency by taking advantage of the ability
to assign virtualized applications to varying sets of underly-
ing hardware platforms based upon performance needs and
power consumption characteristics.

Throughout their lifetimes, data centers continually up-
grade servers due to failures, capacity increases, and mi-
grations to new form factors [12]. Over time, this leads to
data centers comprised of a range of heterogeneous plat-
forms with differences in component technologies; power,
performance and thermal characteristics; and power man-
agement capabilities. When provisioning resources to work-
loads in these heterogeneous environments, power efficiency
can vary significantly based on the particular allocation. For
example, by assigning a memory bound workload to a plat-
form that can perform dynamic voltage and frequency scal-
ing (DVFS), run-time power consumption can be reduced
with minimal impact to performance [19]. We propose a
novel heterogeneity-aware load management (HALM) ar-
chitecture to achieve this power-friendly behavior in data
centers.

Allocating power and cooling resources is another sig-
nificant challenge in the modern data center. Though clearly
beneficial for transient power delivery and cooling issues,
power budgeting solutions can also be useful in the provi-
sioning of these resources. Traditionally, power and cooling
have been allocated based on the nameplate rating of the sys-
tem power supply or its maximum output power. However, a
fully utilized server with a typical configuration will see its
electrical load between 60%–75% of the name plate rating
with most enterprise workloads. Therefore, providing power
and cooling capacity based on these worst case assumptions

results in either over allocation of power and cooling ca-
pacity or underutilization of server rack space leading to in-
creased capital costs and underutilized data centers. Allocat-
ing power and cooling capacity based on the average work-
load behavior within a server and across a data center allows
significantly increased densities but requires dynamic pro-
tection mechanisms that can limit server power consump-
tion when demand temporarily exceeds available capacity.
These mechanisms have been recently proposed in the liter-
ature and explored in the industry [8]. While very effective
in limiting power and protecting the infrastructure, they may
result in nontrivial degradation of peak performance, espe-
cially when the power constraint is too prohibitive. In this
paper we illustrate how HALM can lessen the performance
impact of data center power budgeting strategies.

Intelligent mapping of applications to underlying plat-
forms is dependent upon the availability of relevant infor-
mation about workloads and hardware resources. As part of
HALM, we extend the use of workload and platform de-
scriptors for this purpose, which are then used by a pre-
dictor component that estimates the achievable performance
and power savings across the different platforms in the data
center. These predictions are finally used by an allocation
layer that map workloads to a specific type of platform. This
overall infrastructure is evaluated using data center con-
figurations consisting of variations upon four distinct plat-
forms. In summary, the main contributions of our HALM
system are: (i) a platform heterogeneity-aware power man-
agement infrastructure that improves data center power effi-
ciency under workload performance constraints and limited
data center power budgets; (ii) an allocation infrastructure
that uses workload and platform descriptors to perform map-
pings of hardware to virtualized workloads; and (iii) an in-
telligent load shedding policy to dynamically meet transient
changes in power consumption limits. Evaluations of our
system performed on state-of-the art platforms, including
Intel® Core™ microarchitecture based hardware, demon-
strate the benefits of exploiting platform heterogeneity for
power management.

2 Motivation

2.1 Data center composition and exploiting heterogeneity

Data center deployments are inherently heterogeneous. Up-
grade cycles and replacement of failed components and
systems contribute to this heterogeneity. In addition, new
processor and memory architectures appear every few years,
and reliability requirements are becoming ever more strin-
gent. The effect of these trends is reflected by a recent sur-
vey of data center managers that found that 90% of the facil-
ities are expected to upgrade their compute and storage in-
frastructure in the next two years. Figure 1(a) shows a distri-
bution of different systems in a representative enterprise data
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Fig. 1 Data center heterogeneity and management benefits

center. As the figure shows, the data center contains nine dif-
ferent generations of systems that have either (1) different
processor architectures, cores and frequencies; (2) varying
memory capacity and interconnect speeds; or (3) different
I/O capabilities. While all systems support the same soft-
ware stack, they have very different and often asymmetric
performance and power characteristics.

Traditionally, the non-uniformity of systems in a data
center has been characterized by different levels of perfor-
mance and power consumption. However, recently, another
dimension has been added to this heterogeneity because
server platforms are beginning to offer rich thermal and
power management capabilities. Processors support DVFS
and aggressive sleep states to conserve CPU power. New
memory power management implementations allow differ-
ent DRAM devices to go to lower power states when in-
active, and enable bandwidth throttling for thermal protec-
tion. Server power supplies exhibit different conversion ef-
ficiencies under different loads, directly impacting the over-
all power efficiency of the system. Since power efficiency
has become an important thrust in enterprise systems, we
expect component and platform vendors to continue intro-
ducing new power and thermal management capabilities into
their products, including I/O and system buses, chipsets, and
network and disk interfaces, making future platforms even
more heterogeneous.

Previous work has proposed different approaches for
energy-efficient workload allocation in clusters, but none
have accounted for system level power management and
thermal characteristics. Therefore, the workload allocations
proposed by previous approaches will yield less than ideal
results since they are completely unaware of power and ther-
mal management effects on system performance and power
consumption. To illustrate this phenomenon, we experimen-
tally compare two dual processor systems, A and B , run-
ning two different workloads, as shown in Fig. 1(b). The
differences between the two systems are in the power sup-
ply unit (PSU) and processor power management capabili-
ties. System A has a less efficient power supply at light load
and has processors with limited power management support.
System B, on the other hand, has a high efficiency power
supply across all loads and processors that support a rich set

of power management capabilities. We measure power con-
sumption on these platforms using two different synthetic
workloads: one with full utilization (W1) and one with a
very low level of utilization (W2). W1 consumes about the
same amount of power on both platforms. However, allocat-
ing the low-utilization W2 to system A leads to very power
inefficient execution. Since A does not support power man-
agement and has low PSU efficiency at light load, its total
system power is more than 50 W higher than that of sys-
tem B . Thus, while both systems meet the performance de-
mand of both workloads, heterogeneity-aware resource allo-
cation can decrease total power by more than 10%, translat-
ing into millions of dollars in savings for large data centers.
As this example shows, a full knowledge of system power
and supported power management features is required to ef-
ficiently allocate workloads. Our HALM system is designed
to provide such functionality.

2.2 Benefits of heterogeneity-aware management

To further motivate the need and benefits of heterogeneity-
aware management in data centers, we perform two oppor-
tunity studies. The first study considers the possible benefits
of allocating workloads by matching system capabilities and
workload execution characteristics to reduce a data center’s
power profile while also meeting workload performance de-
mands. We analyze an example of running a set of work-
loads in a data center configuration with four unique types
of platforms described later in the paper, each with differ-
ent power/performance characteristics. The set of workloads
includes ten computational benchmarks (swim, bzip2,
mesa, gcc, mcf, art, applu, vortex, sixtrack, and
lucas from SPEC CPU2000) and one transaction-oriented
workload (SPECjbb2005). We generate all subsets of four
from these eleven benchmarks and compare three alloca-
tion policies for each of the subsets in Fig. 2(a). The ‘worst
case’ allocation distributes the benchmarks across platforms
to maximize power consumption, ‘random’ allocates work-
loads to platforms randomly, and ‘optimal’ distributes the
workloads to minimize power consumption. For each work-
load, we allocate as many systems of a given type as nec-
essary to meet workload throughput requirements. Subsets
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Fig. 2 Opportunity analysis of heterogeneity-aware management

that have benchmarks with more homogeneous behavior, i.e.
similar processor and memory usage behavior, appear on the
left side of the graph, while subsets with more heteroge-
neous benchmarks appear on the right. As can be seen from
the figure, subsets of workloads with more heterogeneous
behavior can substantially benefit from heterogeneity-aware
resource allocation. Averaging across all subsets, the opti-
mal policy can reduce total power by 18% when compared
to random allocation and by 34% over worst-case allocation,
without compromising workload performance.

The second opportunity study considers how the aggre-
gate throughput of a set of workloads varies within a given
power budget based upon allocations. In particular, we as-
sume that we have one of each of our four unique platforms
and again generate subsets of four workloads from a set of
SPEC CPU2000 benchmarks. For each subset, we calculate
the minimum, average, and best case throughput across all
permutations of possible allocations of the four workloads
onto the four platforms. Figure 2(b) provides the results,
where each scenario is normalized by the minimum through-
put value to provide fair comparisons. We find that on aver-
age, the best case allocation provides a 23% improvement
in performance over the random allocation, and a 48% im-
provement compared to the worst-case. These results high-
light the relationship between allocation decisions and per-
formance when a power budget must be imposed.

Summarizing, HALM addresses the power benefits of
heterogeneity-aware allocation for two cases: (1) when there
is no power budget and (2) when such a budget must be
imposed temporarily due to power delivery or cooling con-
straints or as part of a power provisioning strategy [8].

3 Scalable enterprise and data center management

Our previous discussions have motivated the need to aug-
ment the behavior of data centers to improve manageabil-
ity by leveraging the heterogeneity in platform capabilities.

HALM extends this support with its heterogeneity-aware
workload allocation infrastructure that utilizes the flexibil-
ity of rapidly developing virtualization technologies. Virtu-
alization attempts to provide capabilities and abstractions
that significantly impact the landscape of enterprise man-
agement. For example, there is active work to ensure per-
formance isolation benefits, where it will be possible to
run multiple virtual machines (VMs) within a given phys-
ical platform without interference among applications [15].
Currently, VMs can coexist on a platform with negligible
performance interference as long as resources are not over-
committed. Approaches that allow for resource pools and
reservations as well as dynamic resource sharing and recla-
mation can aid in providing isolation even when systems
are over-provisioned. Secondly, by encapsulating applica-
tion state within well defined virtual machines, migration
of workloads among resources can be performed easily and
efficiently. A more powerful contribution of virtualization,
however, is the ability to combine multiple resources across
physical boundaries to create virtual platforms for applica-
tions, providing a scalable enterprise environment. HALM
assumes the existence of this flexible and powerful virtual-
ization support.

The usage pattern of data centers is becoming increas-
ingly service-oriented, where applications and workloads
may be submitted dynamically by subscribers/clients. When
managing these types of applications certain management
actions, such as allocation decisions, happen at a coarse
granularity with finer adjustments being made at runtime
to address transient issues such as reduced power budgets.
One can imagine how such a data center might be managed
with the typically used assignment approaches. At some in-
frequent interval the pool of applications and service level
agreements (SLAs) that specify their required performance,
in metrics such as throughput or response time, are com-
piled. Applications are then assigned to platforms using
a simple load balancing scheme based upon utilization or
queue lengths, possibly even accounting for differences in
the performance of the systems [26], so that SLAs are met.
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Fig. 3 HALM architecture

When load must be reduced to address power budgeting re-
quirements, load might be shed from workloads in a simi-
larly random or round robin fashion. This approach clearly
leaves room for improvement, since it does not consider
power or platform differences in any way. HALM addresses
this weakness by performing heterogeneity aware alloca-
tions as well as intelligent load shedding.

The HALM architecture can be organized into three ma-
jor components: (1) platform/workload descriptors, (2) a
power/performance predictor, and (3) an allocator, as shown
in Fig. 3(a). We use platform and workload descriptors to
provide our workload allocator with the differences amongst
workloads and platforms. These descriptor inputs are uti-
lized by the predictor to determine: (1) the relative perfor-
mance of workloads on different types of platforms, and
(2) the power savings achievable from platform power man-
agement mechanisms. Coupled with coarse platform power
consumption information (obtained via online power moni-
toring) (3) the allocator, performs the assignments of work-
loads to the available resources.

The purpose of platform descriptors is to convey informa-
tion regarding the hardware and power management capabil-
ities of a machine. A platform descriptor is made up of mul-
tiple modules, representing different system components, as
shown in Fig. 3(b). Each module specifies the type of com-
ponent to which it refers, such as processor, memory subsys-
tem, or power supply. Within each of these modules, various
component parameters are defined. For example, a module
describing the processor component may have attributes like
its microarchitecture family, frequency, and available man-
agement support. Workload descriptors are also structured
in modules, headed with attribute declarations. Within each
module, a list of values for that attribute is provided. As
workload attributes often vary with the platforms on which
it executes, our descriptor design allows multiple attribute
definitions, where each definition is predicated with com-
ponent parameter values that correlate back to platform de-
scriptors. Figure 3(b) illustrates the structure of the resulting
workload descriptor. We further explain the meaning of the

MPI (memory accesses per instruction) and CPICORE (core
cycles per instruction) attributes in subsequent sections.

Platform descriptor information can be provided in a vari-
ety of ways. It can be made readily available using platform
support such as ACPI [13], and possibly also with some
administrative input. To provide the required workload de-
scriptors, we profile workloads on a minimal set of orthogo-
nal platforms, with mutually exclusive component types. We
then use an analytical prediction approach to project work-
load characteristics on all available platforms. As we discuss
in Sect. 5, this approach provides accurate predictions that
scale with increased amounts of heterogeneity.

4 Methodology

4.1 Platform hardware

Our hardware setup consists of four types of rack mounted
server platforms summarized in Fig. 4(a), where LLC de-
notes last-level cache size. All four types of platforms con-
tain standard components and typical configurations that en-
tered production cycles. In our experiments Linux was in-
stalled on all systems for measurement of various attributes
(e.g. CPI, MPI, etc.) as well as performance. We validated
that the performance results matched those with Xen using
a subset of workloads and platforms, but performed the ma-
jority of our experiments in a non-virtualized environment to
have better access to performance counters used to measure
other workload attributes.

The platform names are based on their processor code
name in this paper. All four platforms are dual-processor
systems. Woodcrest, Sossaman, and Dempsey are CMP
dual-core processors, and Irwindale is a 2-way SMT proces-
sor supporting Hyper-Threading Technology. All platforms
have 8 GB of memory. Woodcrest and Dempsey support
Fully Buffered DIMM (FBD) memory with a 533 MHz
DDR2 bus, while Sossaman and Irwindale support unreg-
istered DDR2 400 MHz memory. Woodcrest and Dempsey
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Fig. 4 Experimental platforms

Table 1 Levels of
heterogeneity in our
experimental platforms

have dual FSB architectures with two branches to memory
and two channels per branch.

All four types of systems are heterogeneous in a sense
that each has a unique combination of processor architec-
ture and memory subsystem. If we assume that Intel Core
microarchitecture/Pentium® M and NetBurst constitute two
types of processors and LLC-4 MB/FSB-1066/FBD-533
and LLC-2 MB/FSB-800/DDR2-400 constitute two types of
memory, all four platforms can be mapped as having unique
processor/memory architecture combinations. Note that all
four platforms also have vastly different power and perfor-
mance characteristics. For example, the Intel Core microar-

chitecture is superior to NetBurst both in terms of perfor-
mance and power efficiency. FBD based memory, on the
other hand, provides higher throughput in our systems at
the expense of elevated power consumption due to increased
DDR2 bus speed and the power requirements of the Ad-
vanced Memory Buffer (AMB) on the buffered DIMMs.
The four platforms occupy separate quadrants of a hetero-
geneity space with dimensions of microarchitecture hetero-
geneity and memory subsystem heterogeneity, as shown in
Fig. 4(b). We refer to this initial level of heterogeneity as
“across-platform heterogeneity”. However, in addition to
this, all these server platforms also support chip-level DVFS.
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This leads to a second degree of heterogeneity, where one
type of platform can have instances in a data center that
are configured to operate at different frequencies. We re-
fer to this as “within-platform heterogeneity”. As process
variations increasingly result in the binning of produced
chips into different operating points, this within-platform
heterogeneity becomes an inherent property of the gen-
eral data center landscape. Finally, many of these platforms
may incorporate some processor dynamic power manage-
ment (DPM) techniques that adaptively alter platform be-
havior at runtime. This creates a third source of heterogene-
ity, “DPM-capability heterogeneity”, where platforms with
built-in DPM hooks exhibit different power/performance
characteristics from the ones with no DPM capabilities. In
Table 1, we show how these three levels of heterogeneity
quickly escalate the number of distinct platform configura-
tions in a data center scenario.

All experimental power measurements are performed us-
ing the Extech 380801 power analyzer. The power is mea-
sured at the wall and represents total AC power consumption
of the entire system. The power numbers presented in this
paper are obtained by averaging the instantaneous system
power consumption over the entire run of each workload.
Our assumption is that infrastructure support for monitor-
ing power consumption will be utilized to obtain this type
of workload specific power characteristics online, instead
of parameterized models. For example, all power supplies,
which adhere to the latest power supply monitoring interface
(PSMI) specification, support out-of-band current/voltage
sampling allowing for per platform A/C power monitoring
reflected by our actual power measurements.

4.2 Application model

When power managing computing environments, improve-
ments can be attained with a variety of approaches. In this
work, we consider two scenarios. The first assumes a lack
of budgeting constraints, concentrating on a workload allo-
cation that reduces power consumption while maintaining
baseline application performance. In other words, we max-
imize the performance per watt, while holding performance
constant. The second addresses power budgeting by per-
forming load shedding to reduce power consumption while
minimizing performance impact to workloads. We consider
application performance in terms of throughput, or the rate
at which transaction operations are performed. Therefore,
it is not the execution time of each transaction that defines
performance, but the rate at which multiple transactions can
be sustained. This type of model is representative of appli-
cations such as transaction based web services or payroll
systems.

The goal of HALM is to evaluate the power-efficiency
tradeoffs of assigning a workload to a variety of platforms.

Since the performance capabilities of each platform are dif-
ferent, the execution time to perform a single operable unit,
or atomic transaction, varies across them. As previously
mentioned, virtualization technologies can help to extend
the physical resources dedicated to applications when nec-
essary to maintain performance by increasing the number of
platforms used to execute transactions. In particular, trans-
actions can be distributed amongst nodes until the desired
throughput is reached.

For our analysis, we consider applications that mimic
the high performance computational applications common
to data center environments and also heavily exercise the
power hungry components of server platforms, the proces-
sor and memory. Two aspects of these workloads are cap-
tured in our experimental analysis. First, these workloads
are inherently transactional, such as the previous financial
payroll example or the processing of risk analysis models
across different inputs common to investment banking. Sec-
ond, with the ability to incorporate large amounts of memory
into platforms at relatively low costs, these applications of-
ten execute mostly from memory, with little or no I/O being
performed. Though I/O such as network use can play a sig-
nificant role in multi-tier enterprise applications, we leave
consideration of such characteristics to future work. To real-
ize our application model, while also providing determin-
istic and repeatable behavior for our experimentation, we
utilize benchmarks from the SPEC CPU2000 suite as rep-
resentative examples of transaction instances. SPEC bench-
marks allow for the isolation of processor and memory com-
ponents, while also generating different memory loads. In-
deed, many SPEC benchmarks exhibit significant measured
memory bandwidth of 5–8 GB/sec on our systems. In order
to provide an unbiased workload set, we include all SPEC
benchmarks in our experiments. For each application, we
specify an SLA in terms of required transaction processing
rate, equal to the throughput achievable on the Woodcrest
platform.

5 Workload behavior estimation

The power/performance predictor component of our HALM
framework can be implemented in multiple ways. For ex-
ample, one can profile a set of microbenchmarks on all plat-
form configurations and develop statistical mapping func-
tions across these configurations. However, as the platform
types and heterogeneity increase, the overhead of such ap-
proaches can be prohibitive. Instead, we develop a predic-
tor that relies on the architectural platform properties and
adjusts its predictions based on the heterogeneity specifica-
tions. We refer to this model as the “Blocking Factor (BF)
Model”. The BF model simply decomposes execution cycles
into CPU cycles and memory cycles. CPU cycles represent
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Fig. 5 Performance prediction
results

the execution with a perfect last-level cache (LLC), while
memory cycles capture the finite cache effects. This model is
similar to the “overlap model” described by Chou et al. [5].
With the BF model, the CPI (cycles per instruction) of a
workload can be represented as in (1). Here CPICORE repre-
sents the CPI with a perfect LLC. This term is independent
from the underlying memory subsystem. CPIMEM accounts
for the additional cycles spent for memory accesses with a
finite-sized cache:

CPI = CPICORE + CPIMEM. (1)

The CPIMEM term can be expanded into architecture and
workload specific characteristics. Based on this, the CPI of
a platform at a specific frequency f1 can be expressed as
in (2). Here, MPI is the memory accesses per instruction,
which is dependent on the workload and the LLC size, L

is the average memory latency, which varies based upon the
memory subsystem specifications, and BF is the blocking
factor that accounts for the overlapping concurrent execu-
tion during memory accesses, which is a characteristic of
the workload:

CPI(f1) = CPICORE(f1) + MPI · L(f1) · BF(f1). (2)

Using variants of (2), performance prediction can be
performed relatively easily for within-platform heterogene-
ity, as well as across-platform heterogeneity. For within-
platform heterogeneity, the frequency-dependent compo-
nents of (2) are scaled with frequency to predict workload
performance on a different frequency setting. The top chart
in Fig. 5 provides results for an example of this type of pre-
diction with an orthogonal platform (Sossaman). The figure
contains the actual measured performance for our workloads
together with the predicted performance.

In the latter case of across-platform heterogeneity, the
natural decoupling of the microarchitectural and memory

subsystem differences in the BF model enables us to esti-
mate application performance on a platform lying on a dif-
ferent corner of the memory and microarchitecture hetero-
geneity space. Among our four experimental platforms, two
“orthogonal platforms”, which span two opposite corners
of the platform heterogeneity quadrants in Fig. 4(b), can be
used to predict performance on a third “derived platform”.
The lower chart in Fig. 5 shows the prediction results for the
Woodcrest platform, whose performance is “derived” using
the CPICORE and CPIMEM characteristics of the orthogonal
platforms (Sossaman and Dempsey respectively). Overall,
for the orthogonal platforms, the BF model can very accu-
rately predict performance with an average prediction error
of 2%. For the derived platforms, our predictor can track
actual execution times very well, though with an increased
average prediction error of 20%. In the following sections,
we show that this performance prediction methodology pro-
vides sufficient accuracy to represent workload behavior and
allows HALM to achieve close to optimal allocations. Fur-
ther details of this prediction methodology can be found in
our previous work [22].

The final heterogeneity type supported by our predictor
is the DPM-capability heterogeneity. For this, we consider
a platform that enables DVFS during memory bound exe-
cution regions of an application. We implement this func-
tionality as part of OS power management, based on prior
work [14]. To incorporate DPM awareness, we extend the
predictor component to estimate the potential power savings
that can be attained when executing a workload on a DPM
enabled platform. Experimental results show that there is
a strong correlation between the MPI of a workload and
its power saving potential. Therefore, we utilize the MPI
attribute in the workload descriptors to predict the power
saving potentials of workloads on DPM enabled platforms.
Figure 6 shows that our MPI based prediction approach ef-
fectively captures the power saving potentials of different
workloads and successfully differentiates applications that
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Fig. 6 Power saving
predictions for DPM enabled
platforms

can benefit significantly from being allocated to a DPM en-
abled machine. As we describe in Sect. 6.1, we use this pre-
dictor to choose workloads that should be assigned to the
DPM enabled platforms.

6 Management policies

6.1 HALM allocation policy

After processing the workload and platform descriptors,
and utilizing our BF model for performance prediction, the
next step is to perform allocation of resources to a set of
applications in a data center. Evaluations are based on a
greedy policy for allocating workloads. In particular, with
each application i, we associate a cost metric for execut-
ing on each platform type k. Workloads are then ordered
into a scheduling queue based on their maximum cost met-
ric across all platform types. The allocator then performs
application assignment based on this queue, where applica-
tions with higher worst-case costs have priority. The plat-
form type chosen for an application is a function of this cost
metric across the available platforms as well as the estimated
DPM benefits. As a cost metric for our policy, we define
Ni,k , the number of platforms of type k required to execute
a workload i, Ni,k . This value is clearly a function of both
the performance capabilities of the platform and the SLA re-
quirement of the workload. Ni,k can be analytically defined,
given the transaction based application model utilized in our
work. For each application i, the service level agreement
(SLA) specifies that Xi transactions should be performed
every Yi time units. If ti,k is the execution time of a trans-
action of application i on platform k, the resulting number
of platforms required to achieve the SLA can be expressed
with (3)

Ni,k =
⌈

Xi

�Yi/ti,k�
⌉
. (3)

The ti,k values are provided by the performance predictor.
It should be noted that there is a discretization in Ni,k , which
is due to the fact that individual atomic transactions cannot
be parallelized across multiple platforms. Ni,k is therefore
better able to handle errors due to the inherent discretiza-
tion performed, making it a strong choice as a cost metric

(other possible metrics are discussed and defined in our pre-
vious work [22]). Given the use of Ni,k as our cost metric,
our allocation approach first determines the platform types
of which (1) there are enough available systems to allocate
the workload and (2) the cost metric is minimized. We then
use DPM savings to determine whether a more power ef-
ficient platform alternative should be used between those
with the same cost value. In other words, if there are mul-
tiple platform types for which an application has the same
Ni,k value, we utilize a DPM specific threshold to decide
whether or not it should be scheduled to a DPM enabled
platform type. As we demonstrate in the following section,
this threshold based approach can be effective in identifying
workloads that can take advantage of DPM capabilities.

6.2 HALM power budgeting policy

In order to address transient power delivery or cooling is-
sues, it is sometimes necessary to temporarily reduce power
consumption in a data center. To provide this mechanism,
we develop a load shedding policy based upon an existing
workload allocation scheme. The goal of the policy is to re-
duce the amount of resources provided to applications in or-
der to meet a power budget while still allowing all workloads
to make some progress. In other words, application perfor-
mance may be degraded compared to prescribed SLAs, but
all applications achieve some fraction of their SLA.

Our power budgeting policy is, again, a greedy approach.
For all applications with resources that can be shed, i.e.
applications that utilize more than one platform, we de-
fine a power-efficiency metric as the throughput per Watt
that is being provided by each resource. Afterwards, the re-
sources with minimal power efficiency are shed until the
power budget is met. As our experimental results demon-
strate, this simple metric allows for improved performance
when power budgeting must be performed, as well as better
fairness across workloads in terms of performance degrada-
tion experienced.

7 Experimental evaluation

7.1 Increasing power efficiency

In order to evaluate our heterogeneity-aware allocation ap-
proach, we perform power and performance measurements
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of our SPEC based representative transactional workloads
across each type of platform. To scale these results to the
number of platforms present in data centers, this measured
data is extrapolated analytically using a data center alloca-
tion simulator which combines real power and performance
data, prediction output, and allocation policy definitions to
calculate power efficiency in various data center configura-
tions. In the simulator, we provide the output of the predictor
as input to the allocation policy. We always assume that the
platforms which are profiled are the 2 GHz Sossaman plat-
form and the 3.7 GHz Dempsey system. Since we assume
the workload attributes are profiled accurately on these sys-
tems, for fairness we also assume that for these two plat-
forms performance data is obtained via profiling as well and
is therefore known perfectly. We then consider three differ-
ent scenarios: (1) all other platform performance informa-
tion is known perfectly (oracle) (2) our BF model is used to
predict performance for the remainder of platforms as de-
scribed in Sect. 5 (BF model) (3) incorporating a simple sta-
tistical regression approach (Stat. Est.). For this regression
method, we profile a subset of applications across all plat-
forms to obtain linear performance prediction models para-
meterized by variables that can be obtained by profiling a
workload on the 2 GHz Sossaman and 3.7 GHz Dempsey
systems (CPI, MPI, etc.). The regression models can then
be used to predict performance of any application. The base-
line allocation scheme we compare against is a random one,
since it closely estimates the common round-robin or uti-
lization based approach.

The efficiency improvements achievable in a data center
are also dependent upon the system’s current mix of appli-
cations. To obtain our results, we randomly pick applica-
tions and allocate them using the random approach until no
more workloads can be scheduled. Using the resulting set
of workloads, we then evaluate power consumption when
using our prediction and allocation policies, and compare
them against the random allocation result. This is repeated a
hundred times for each of our data points.

We first look at the benefits achieved with HALM in
data center configurations with across-platform and within-

platform heterogeneity but no DPM support. In particular,
we include the four base platforms, Woodcrest, Sossaman,
Dempsey, and Irwindale, as well as the frequency variations
of the platforms. We create data center configurations with
equal numbers of each type of system. Trends are consistent
across various data center sizes, so for brevity, we include
here only results with 1000 platforms of each type. The re-
sulting data center has 13 types of platforms, and power con-
sumptions vary with allocation as shown in Fig. 7(a). The
first interesting observation is that platform heterogeneity al-
lows us to achieve improved benefits over a simple random
approach. Indeed, we see improvements of 22% with perfect
knowledge and 21% using our BF based prediction com-
pared to a random allocation policy. We also observe a sig-
nificant difference between the statistical and analytical pre-
diction schemes. The regression approach is unable to scale
in terms of accuracy with increased heterogeneity, whereas
the BF approach achieves close to optimal power savings.

In order to evaluate how well our allocator can exploit
DPM support, we extend the thirteen platform type configu-
ration with an additional Woodcrest 3 GHz platform which
provides DPM support. We again find that our BF prediction
method can provide improved aggregate savings across all
machines over the statistical approach as shown in Fig. 7(b).
To more closely determine our ability to exploit DPM mech-
anisms, we also evaluate the power consumption of the thou-
sand DPM-enabled platforms (all of which are active). We
find that our BF model based allocation is able to improve
the power efficiency of these platforms by 3.3%. This illus-
trates the potential of HALM to provide additional benefits
when platforms vary in the power management they support.

7.2 Maximizing performance under power budgets

As a second benefit of HALM, we evaluate the ability to
perform load shedding when power budgeting must be per-
formed. In particular, our goal is to maximize performance
obtained in the data center while observing power budgets.
For the purposes of this paper, we consider transient power

Fig. 7 HALM power improvements



« CLUS 10586 layout: Large v.1.3 reference style: mathphys file: clus54.tex (petras) aid: 54 doctopic: OriginalPaper class: spr-twocol-v1 v.2008/04/14 Prn:15/04/2008; 16:06 p. 11»

Cluster Comput

1081 1135

1082 1136

1083 1137

1084 1138

1085 1139

1086 1140

1087 1141

1088 1142

1089 1143

1090 1144

1091 1145

1092 1146

1093 1147

1094 1148

1095 1149

1096 1150

1097 1151

1098 1152

1099 1153

1100 1154

1101 1155

1102 1156

1103 1157

1104 1158

1105 1159

1106 1160

1107 1161

1108 1162

1109 1163

1110 1164

1111 1165

1112 1166

1113 1167

1114 1168

1115 1169

1116 1170

1117 1171

1118 1172

1119 1173

1120 1174

1121 1175

1122 1176

1123 1177

1124 1178

1125 1179

1126 1180

1127 1181

1128 1182

1129 1183

1130 1184

1131 1185

1132 1186

1133 1187

1134 1188

Fig. 8 Power budgeting results

budgeting where workloads are not (re-)migrated, but in-
stead, based upon an existing allocation, resources are tem-
porarily withheld from applications and placed into low
power states. For comparison, we consider three such ini-
tial allocations from the previous section, one based upon
a random allocation, one based upon perfect oracle perfor-
mance information, and finally an allocation based upon pre-
diction with our BF approach. For each allocation, we con-
sider two load shedding policies, one which randomly se-
lects an application and sheds resources (i.e. a single com-
pute node) if possible, and our greedy “smart” policy de-
scribed in Sect. 6.2.

Figure 8(a) provides the aggregate performance across
all workloads in the data center for different power budgets.
The performance results are normalized with respect to the
maximum achievable performance at the maximum uncon-
strained power budget (100%). The figure shows how the
performance of different allocation policies decrease with
decreasing power budgets. The range of applied power bud-
gets is limited to 50% as there is no possible allocation that
meets the budget below this point. The six scenarios con-
sidered are random shedding based upon a random allo-
cation (rand-rand), our load shedding policy based upon a
random allocation (smart-rand), similarly the two shedding
approaches based upon oracle based allocation (rand-oracle
and smart-oracle), and finally, shedding based upon a BF
prediction based allocation (rand-BF and smart-BF). We see
multiple interesting trends. First, the intrinsic benefits of the
heterogeneity-aware allocations towards budgeting are ap-
parent in the figure by the fact that performance does not
begin to reduce until lower power budgets compared to a
random allocation scheme. We also see that given a particu-
lar allocation, our shedding policy provides benefits in per-
formance across the set of power budgets. Moreover, again,
we find that our BF prediction model behaves very close to
an oracle based allocation when our load shedding policy is
used. Overall, we see benefits of up to 18% in performance
degradation compared to a random load shedding policy
based upon a random allocation. Figure 8(b) evaluates the
performance degradations for the six approaches by also

taking the fairness of load shedding into account. Here, we
show the aggregate data center performance as the harmonic
mean of the individual workload throughputs, which is a
commonly used metric for evaluating fairness [20]. We see
from the figure that a random allocation always exhibits poor
performance regardless of the load shedding policy used.
A heterogeneity-aware allocation, on the other hand, pro-
vides improved fairness, particularly when combined with
our load shedding policy.

8 Related work

HALM builds upon existing work and extends the state of
the art in power management research. A variety of mecha-
nisms exist to provide power and thermal management sup-
port within a single platform. Brooks and Martonosi pro-
posed mechanisms for the enforcement of thermal thresh-
olds on the processor [3], focusing on single platform char-
acteristics as opposed to the data center level management
achieved with HALM. Processor frequency and voltage
scaling based upon memory access behavior has been shown
to successfully provide power savings with minimal impact
to applications. Resulting solutions include hardware based
approaches [19] and OS-level techniques, that set processor
modes based on predicted application behavior [14]. HALM
is designed to manage load while being aware of such un-
derlying power management occurring in server platforms.
Power budgeting of SMP systems with a performance loss
minimization objective has also been implemented via CPU
throttling [16]. Other budgeting solutions extend platform
support for fine grain server power limiting [18]. The power
budgeting achieved with HALM is based upon the use of re-
source allocation to reduce power consumption across mul-
tiple systems, as opposed to throttling performance of indi-
vidual components.

At the data center level, incorporating temperature-
awareness into workload placement has been proposed by
Moore et al. [21], along with emulation environments for
studies of thermal implications of power management [11].
HALM can use these thermal aware strategies to perform
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power budgeting based upon data center temperature charac-
teristics. Chase et al. discuss how to reduce power consump-
tion in data centers by turning servers on and off based on
demand [4]. Utilizing this type of cluster reconfiguration in
conjunction with DVFS [7] and the use of spare servers [23]
has been investigated as well. As opposed to these ap-
proaches, HALM attempts to reduce power consumption
by intelligently managing workloads across heterogeneous
servers. Enforcing power budgets within data centers by al-
locating power in a non-uniform manner across nodes has
been shown to be an effective management technique [9].
Techniques for enforcing power budgets at blade enclosure
granularities have also been discussed [24]. HALM bud-
gets aggregate power consumption via resource allocation
without assigning per server power budgets as with these
previous approaches.

Heterogeneity has been considered to some degree in
prior work, including the evaluation of heterogeneous multi-
core architectures with different core complexities [17]. In
comparison, HALM considers platform level heterogene-
ity as opposed to processor asymmetry. In cluster environ-
ments, a scheduling approach for power control has been
proposed for processors with varying fixed frequencies and
voltages [10]. HALM supports heterogeneity across addi-
tional dimensions, such as power management capabilities
and memory. A power efficient web server with intelligent
request distribution in heterogeneous clusters is another ex-
ample which considers leveraging heterogeneity in enter-
prise systems [12]. HALM goes beyond these methods, by
considering not just the differences in platforms’ perfor-
mance capabilities, but also in their power management ca-
pabilities.

9 Conclusions and future work

Power management in data center environments has become
an important area of research, in part because power delivery
and cooling limitations are quickly becoming a bottleneck
in the provisioning of performance required by increasingly
demanding applications. This paper makes use of the man-
agement flexibility afforded by virtualization solutions to
develop a heterogeneity-aware load management (HALM)
system. HALM improves power management capabilities
by exploiting the natural heterogeneity of platforms in data
centers, including differences in dynamic power manage-
ment support that may be available. We introduce a three
phase approach to mapping workloads to underlying re-
sources to improve power efficiency consisting of struc-
tured platform and workload descriptors, a prediction com-
ponent to estimate the performance and power characteris-
tics of various workload to platform mappings, and finally
an allocator which utilizes policies and prediction results to

perform decisions. We also evaluate a load shedding pol-
icy based upon resulting allocations to improve performance
when power budgeting must be performed.

Our results underscore two major conclusions. First, we
show that by intelligently considering the varying power
management capabilities of platforms, the ability for these
systems to obtain power savings using their management
mechanisms can be vastly improved when compared to
other assignment models. Using representative data center
configurations consisting of older P4 based platforms up to
Intel Core microarchitecture based systems, we find that our
allocation architecture can improve power efficiency by 20%
on average. In addition, our results show that by performing
intelligent load shedding when power budgets must be ob-
served, 18% improvements in performance degradation can
be obtained when using HALM.

In this paper, we present the beginning of our investi-
gation into exploiting platform heterogeneity and emerg-
ing virtualization support to improve the power characteris-
tics of enterprise computing environments. As future work,
we plan to integrate the management tradeoffs and lessons
learned from this work into virtualization layer management
applications. This includes the consideration of distributed
virtualized workloads such as tiered web services where dif-
ferent components may be appropriate for each layer, in-
cluding heterogeneous I/O devices. The results presented in
this paper support the potential of this area of research for
power managing heterogeneous computing systems.
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