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Abstract—To track security and compliance requirements and perform problem diagnosis, administrators of cloud computing systems
need to monitor significant system changes occurring on the set of cloud instances under their supervision. Considering the large
number of instances (virtual machines, containers) possibly operating under multiple configurations, this is a difficult-to-track process.
Standard solutions to this problem rely on manually-created rules to identify changes. These techniques suffer from a limited scope, rely
on domain expertise, and are time-consuming and error-prone. Recently, more streamlined approaches that automatically determine
the type of individual system changes have been proposed, but these techniques assume that system states right before and after each
individual change can be captured, a rather difficult requirement to enforce in real world usage. This paper proposes DeltaSherlock, a
practical system change discovery framework that can capture system states on-demand and detect multiple system changes between
them. We evaluate DeltaSherlock over 25,000 system changes caused by software installations collected from virtual machines (VMs)
deployed over a commercial cloud. DeltaSherlock can accurately identify multiple software installations with 96.8% accuracy when
supplied with a non-overlapping record of system changes and with 77.8% accuracy when supplied with random irregular observations

possibly containing overlapping or incomplete changes.

Index Terms—change discovery, multi-label classification, cloud operations management.

1 INTRODUCTION

Cloud computing, with its promise of efficient and
always available computing, has observed widespread
adoption in IT solutions and enterprise applications.
State-of-the-art cloud deployments operated by large
organizations frequently scale up to thousands of cloud
instances (i.e., VMs, containers, etc.) [1]. Complications
in managing such large scale deployments are exacer-
bated by the widespread adoption of DevOps method-
ologies, agile development, and Continuous Integration
/ Continuous Delivery practices, which led to a drastic
increase in the rate with which the code and applications
in these systems are updated. A main management
challenge IT administrators are facing is tracking and
understanding these fast-paced changes for various pur-
poses such as compliance, security, or configuration drift.

Standard solutions for system monitoring and change
discovery involve rule-based mechanisms that search for
specific files or features to indicate that a certain change
has been made to the system. System specialists design
these rules based on information obtained from libraries
and repositories such as National Vulnerability Database
(NVD) [2] and Open Source Software (OSS) [3]. These
rule-based solutions require heavy involvement of expert
administrators. Efficient rules can only be designed with
a good understanding of the software and systems. Such
solutions have limited scope, are rather fragile, and
are time-consuming to produce. A tiny modification in
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the changes may easily bypass the pre-designed rules.
Today’s software and packages are typically released
multiple times a week if not multiple times a day. When
user changes on instances are mixed with these updates,
each instance in the cloud can evolve differently. System
administrators face difficulties in constantly maintaining
and updating these rules to keep up with the fast cycle
of the software and system changes. Overall, rule-based
approaches are inefficient in cloud setups and automated
solutions are needed.

Recently, automated approaches for system change
discovery that create a “fingerprint” from a system
change and compare it to a knowledge base of known
changes have been proposed [4], [5]. This approach al-
lows a general solution for the change discovery problem
and eliminates the manual case-by-case analysis process.
However, it has the limitation of assuming that system
change events occur one at a time and it is possible to
capture the changes observed after each event.

In this paper, we advance the state-of-the-art by
proposing a mechanism that can identify multiple sys-
tem changes caused by software installations that occur
between two system observations. Our contributions
can be listed as follows: (i) we propose a multi-label
classification approach that automatically and efficiently
identifies multiple changes observed in system state, (ii)
we utilize a set of features that can be extracted from
file system structures to provide short and informative
representation of the impact of software installations on
systems, (iii) we evaluate effectiveness of proposed ap-
proaches over 25,000 system changes collected from VMs
deployed on a commercial cloud, (iv) finally, we propose
DeltaSherlock, a cloud discovery service that uses one-
way fingerprints and machine learning methodologies to
analyze system changes.



The rest of the paper is organized as follows. Section 2
presents the relevant literature. The proposed multi-
change discovery process is presented in Section 3. In
Section 4, we describe our experimental framework and
in Section 5, we evaluate proposed approaches. Section 6
introduces proposed change discovery cloud service,
and we conclude in Section 7.

2 RELATED WORK

System changes in the cloud today are mostly discov-
ered and identified with rule-based approaches: system
experts design lists of rules for change identification
and discovery, which check for the existence of certain
files and indicated properties, such as sizes of files,
some specific contents of configuration files, etc. [6], [7].
Package managers and history logs are also utilized for
monitoring system evolutions [2], [3].

Even though well-designed rules and careful manual
checks can be used in accurate identification of sys-
tem changes, maintaining such rules is very difficult
in today’s short package release cycles and large-scale
system deployments. Well-designed rules require good
understanding and specific knowledge of systems and
packages, which can only be delivered by system ex-
perts, indicating substantial amount of manual effort
and cost. Furthermore, rules are fragile and have poor
re-usability. A rule for discovery of an old package
release can easily fail to discover a newer release. Most
software packages are released multiple times a week.
Hence rules require constant maintenance and updates.
Finally, different changes generally require specific dis-
tinguishable rules for discovery, which is inefficient for
cloud deployments where thousands of different system
changes happen simultaneously.

In addition to the rule-based approaches, several prior
papers have studied system problem detection and di-
agnosis based on comparison with existing examples.
Registry entries and system event logs have been used
in troubleshooting methods that identify problems on
a given system [8]. EnCore [9] learns configuration
rules from a given set of sample configurations, and
then automatically detects software misconfigurations.
Minersoft builds an inverted index file-tree structure
using file metadata, and uses the file-tree to discover
the software [10]. The “fingerprint” or the “signature”
concept has been proposed as an abstraction of the raw
data, which provides an interface for the application of
statistical or machine learning techniques in identifying
system state or compliance. Most of these fingerprinting
methodologies are based on system performance met-
rics [11], [12].

Recently, the concept of “discovery by example” for
system change discovery have been proposed [4], [13],
[14]. The main philosophy behind this approach is to
record all the system metadata that is modified during
the changes caused by the system event, generate finger-
prints from them and apply machine learning algorithms

to train models for discovery. Comparing with rule-
based approaches, “discovery by example” eliminates
the requirement of manual or expert input. The models
can be iteratively updated with newly collected data
to automatically keep pace with software and systems
updates. Furthermore, since “discovery by examples”
automatically extracts abstracted semantics using the
whole changed metadata set, it avoids sticking to any
piece of specific feature, which makes this approach
more robust to slight tweaks compared to rule-based
approaches. However, these approaches simply assume
that it is possible to perfectly single out and capture the
changes associated with each system event. In a more re-
alistic cloud setting, changes obtainable/observable may
represent multiple or partial (incomplete) events. In this
paper we propose multi-label discovery approaches for
such cases. Our solution can be used to answer questions
such as: (1) how many system events happen during a
given period; (2) what these events are; (3) whether a
specific event happened during the given period; and
(4) whether there are any relations among those events.

3 MULTIPLE CHANGE DISCOVERY

Our goal in this work is to identify multiple system
events occurring in a given time interval. It is common
to observe multiple system events that occur in close
proximity in time, e.g., two packages installed together,
software updates are deployed while user is configuring
the OS, etc. System changes observed in such cases
represent a mixed accumulation of the changes imposed
by the multiple events. Discerning which change is
associated with which event is challenging. Using system
changes to detect system events becomes harder in these
scenarios. In this work we address this harder problem.

Our approach is depicted in Fig. 1. We assume that
a changeset that contains all system changes observed
by the system during a given period is provided, and
identification of events that cause these changes is re-
quested. We tackle the multiple system event identifi-
cation problem by first creating “smart” and “compact”
features (we call these feature sets fingerprints) represent-
ing application nature from observed system changes,
and then using these fingerprints to train multi-label
classification machine learning models. Such models can
identify multiple system events using the fingerprints
created from (accumulated) changes observed during
known (multiple) events. The trained models are then
used in predicting the events that caused changes ob-
served in real-life systems.

System changes are caused by a variety of system
events, such as software, application and package in-
stallations, updates, system configurations, process ex-
ecutions and other user operations. In this study we
focus on system changes created by multiple application
installations, as application installations are known as
one of the most significant factors leading to notable
system changes [15]. However, we note that proposed
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Fig. 1. Multiple change discovery steps. Multi-label classi-
fication models built from fingerprints created during con-
trolled system change exercises are used for predicting
types of system events observed in real-life systems.

approaches are generally applicable for system changes
caused by other events, and the procedures remain
essentially the same and are independent of the types
of system events.

In this section we first explain how changesets are
created, then we explain our fingerprinting techniques
that extract representative features from changesets. Af-
ter that we provide the details of our multi-label classi-
fication algorithms.

3.1 Changeset Creation

A changeset ¢; can be created from two system ob-
servations (say ox—1 and oy). Observations mark meta-
data associated with multiple system features including
system configurations, active/passive connections, file
system state, packages and processes. The differences of
the two observations are stored in the changeset, i.e.,
c,=0x-0x—1. An example changeset is provided in Fig. 2.
First three layers of Fig. 1 exemplifies the process of
changeset creation from observations made on a system
encountering multiple system events.

A changeset created from the difference of two obser-
vations includes the created, modified and deleted fea-
tures. Considering a changeset ¢;, and its corresponding
observations oj_; and o, if a feature is in o, but not
in o,_1, then it is a created feature; If a feature exists
in both observations, but its attributes differ, then it is a
modified feature; and finally if a feature is in o,_; but
not in oy, then it is a deleted feature.

CREATED: {
0S: {
type: ‘RHEL linux’, distro: ‘Red Hat’, version: ‘4.2, ipaddr: ‘9.25.34.1’, hostname:
‘vm23.rescloud.ibm.com’, t-points:{’/dev/vdal’: ‘ext3’, ‘/dev/vda2’: ‘ext4’}, ...

b

FILE: {
‘/etc/hosts”:{permission: ‘-rw-r--r—’, size: 236, user: ‘root’, group: ‘wheel’},
... < one entry per file in the file system > ...

b

PACKAGE: {
tomcaté6 :{version: ‘6.0.2’, vendor: ‘Apache’, arch: ‘x86_64"},
.. < one entry per installed package > ...

3

PROCESS: {
‘httpd’ :{pid: 23, exec: ‘/opt/apache/httpd’, ports: [8080], open-files:
['/var/log/httpd/httpd.log’, ...] },
.. < one entry per running process > ...

b

CONFIG: {
‘/var/tomcat/web.xml’:{<contents of config file can also JSON-encoded. e.g.>
Connector:{sslEnabled: true, maxPostSize: 2MB, port: 8080, URIEncoding: ISO-8859-1}},
.. < one entry per config file (client-specified list) > ...

b

5
MODIFIED: {
... < similar entries to "Created" > ...

b
DELETED: {

.. < similar entries to "Created" > ...

}

Fig. 2. An example changeset.

Our studies show that a tremendous portion of mod-
ified features stem from “background noise”, e.g., back-
end executing processes, system monitoring tools, log
files etc., with only some modifications in their times-
tamps. Thus, they are not good indicators for system
events that we want to discover. In addition, when ap-
plications are installed, there is only a very tiny portion
of deleted features, while most of features are created
features. Since in this work we focus mostly on discovery
of application installations, we generate fingerprints by
only using created features in the rest of the paper.

Among all different types of features in observations,
file features account for the most significant part of
changesets, and moreover, in most scenarios they are
sufficient in identifying system changes, not only for ap-
plication installations, but also for software and system
updates, re-configurations, etc. Therefore, in this work
we mostly utilize file features in changesets to generate
our fingerprints.

3.2 Changeset Fingerprinting Techniques

Directly applying raw changesets in application and
system discovery is inefficient, due to the fact that raw
changesets are usually quite large and include a number
of irrelevant metadata records for the discovery purpose.
These irrelevant records act as “noise” and reduce the
accuracy in discovery. It is important to extract clean and
concise features from the raw changesets. We call the set
of extracted features fingerprints. Fingerprints represent
raw changesets in a clean and condensed form, while
also keeping strong distinguishing capabilities that can
be leveraged in the discovery. In this work, we explore
two fingerprinting approaches, namely histogram and
file embedding fingerprints.

3.2.1 Filename and Histogram Fingerprints

The simplest fingerprint design is to represent the
changeset with a list of file names of all created file fea-
tures, which we call as the filename fingerprint. Filename



fingerprints have strong distinguishing capabilities, as
the combinations of filenames of all created file features
caused by different system events are mostly unique.

A changeset may contain thousands of file features,
and the filename fingerprint is still not sufficiently com-
pact. Furthermore, a number of state-of-the-art machine
learning algorithms are applied on quantified features
rather than text-based features. For these reasons, we
hash and project the filename fingerprint into a new type
of fingerprint, the histogram fingerprint.

We generate histogram fingerprints using a simple
hashing and binning mechanism. This can be achieved
in multiple ways. The approach we took is as follows:
We first calculate the American Standard Code for Infor-
mation Interchange (ASCII) sum of all characters that the
file name contains, then we generate a histogram of these
numerical values. The number of bins, as well as the
range of each bin in histogram is pre-determined. Finally,
we normalize the histogram so that it is independent
of the total number of filenames in the changeset. The
length of histogram fingerprint is fixed at the number of
bins. Details of the histogram fingerprint generation pro-
cess and the determination of the number of histogram
bins can be found in prior work [4].

3.2.2 File Embedding Fingerprints

To harvest the hidden semantic context among files and
folders, we propose “file embedding fingerprints”. File
embeddings try to map files in a system to vectors of real
numbers in a high-dimensional space (200 to 500 dimen-
sions), while preserving the semantic relations between
files. Our file embeddings are an adoption of “word
embeddings” [16], commonly used as part of the nat-
ural language processing and deep learning approaches
employed in Web data analysis. Word embeddings are
known to transform words to vectors in a manner that
preserves the contextual similarity among words, e.g.
words with similar meanings have similar vectors. We
strive to do the same with file embeddings.

Word embeddings are generally created by shallow
neural network models that try to either predict the
current word by using a fixed window of surround-
ing context words or predict the surrounding window
of context words using a given word. word2vec is a
successful and fast open source word embedding imple-
mentation developed by Google [17]. Instead of building
our own neural network models, we use word2vec to
create our filename embeddings. word2vec expects a list
of sentences as input and provides a vector for each
unique word in the provided corpora. To use it as a
file embedding tool, we provide to word2vec lists of
files/folders we create from the file-tree structure and
from the files that are in the same folder with the files
we are interested.

We propose two different models, tree2vec and file2vec,
that respectively utilize the file-tree branch that a file
belongs to and the folder that a file resides in, to define
the “surrounding window of context words” for a

given file. For example, assume that for a given file
/usr/texlive/2015/bin/x86_64-darwin/latex
the file-tree structure and folder structure is as follows:

usr

L texlive

L 2015
Lbin
L x86_64—-darwin

— bibexport
— dvipdfm
I— epstopdf
— latex

— ps2eps

— texdiff

In this case, for the file latex, the tree2vec context is
{usr, texlive, 2015, bin, x86_64—-darwin} and the
file2vec context is {bibexport, dvipdfm, epstopdf,
ps2eps, texdiff}.

In practice, for training and creating tree2vec and
file2vec dictionaries that map files to vectors, we col-
lect all the created files and their tree2vec and file2vec
contexts to create a corpora that we feed into word2vec,
which provides us with a tree2vec and file2vec dictio-
nary for files. To create tree2vec and file2vec fingerprints,
for each changeset we sum the tree2vec and file2vec
vectors of the newly created files in the changeset and
then normalize these vectors to unit vectors.

3.3 Multi-Label Classification for Multiple Event
Identification

It is practically not possible to perform system observa-
tions such that changes caused by each system event can
be captured in isolation in a changeset. Sometimes multi-
ple system events occur at the same time, sometimes new
events occur while a system observation is in progress,
sometimes a system event can trigger multiple consec-
utive system events. In such scenarios, a changeset can
contain multiple (possibly partial) changes from multiple
system events. To be able to use such observations in a
machine learning framework and to correctly learn from
such multiple events that accrued between two obser-
vations, we label such changesets with the set of events
that they represent. To be able to correctly identify the
set of events that are represented in such accumulated
changesets, we use multi-label classification algorithms.

Existing multi-label classification methods can be
mainly grouped into two categories: problem transforma-
tion methods and algorithm adaption methods. Problem
transformation methods transform the dataset to fit for
the classification algorithms, while algorithm adaption
methods modify the classification algorithms to adapt
to the multi-label dataset. Widely used problem trans-
formation methods include binary relevance and cali-



TABLE 1
Dataset properties.

Controlled Uncontrolled
Train Test 30 sec 45 sec
Number of iterations 150 150 15 15
Number of changesets 13,350 12,975 398 299
Number of labels 39,750 70,125 1,304 1,284
Avg # labels / changeset 2.98 5.40 3.28 4.29
Min-Max # labels / changeset 1-5 1-10 2-5 2-6

brated label ranking, while popular algorithm adaption
methods include Multi-Label k-Nearest Neighbor (ML-
kNN), Multi-Label Decision Tree (ML-DT), and Ranking
Support Vector Machine (Rank-SVM) ([18], [19], [20]).

In this work we apply the binary relevance method for
multi-label classification. In binary relevance, a binary
classifier is trained for each label independently. Then
the given test sample is labeled as the combination of
every output of these binary classifiers [21]. We apply
the binary relevance approach onto widely used learning
algorithms including k-Nearest Neighbor (kNN), Logis-
tic Regression (LR), Decision Tree (DT), Support Vector
Machine (SVM) (with different kernels, e.g., linear and
the RBF kernel), and some ensemble boosting algorithms
including Random Forests (RF), Adaptive Boosting (Ad-
aBoost) and Gradient Boosting (GB).

On top of the binary relevance method, we further
design a “confidence value based ranking” approach for
discovery, when the number £ of applications installed
in the changeset is known ahead of time or can be
predicted. In this approach, instead of directly reporting
the outputs of binary classifiers, we sort the “confidence
values” of all the classifiers and select the top k highest
scoring labels as the final labels for the changeset. We
note that the number of applications can be estimated
by various approaches. One approach we adopt is ob-
serving the histogram of file creations along time. When
an application is installed, an increase in the number
of files created can be observed. We count the number
of such “spikes” in the time period during which the
changeset is taken, and use this number as an estimation
of k. Note that this is only a rough estimation because
on one hand, multiple applications can be installed
simultaneously and thus contained in the same “spike”,
while on the other hand, stalls are not uncommon in
even a single application installation, which can lead to
multiple spikes. Still, as will be discussed in Section 5,
using creation time histograms proves to be a reasonable
estimation in general.

4 EXPERIMENTAL METHODOLOGY

Our focus in this study is on identifying application in-
stallations in systems, as application installations are one
of the major sources of changes in cloud systems [15]. As
identification targets, we use a catalog of 91 most pop-
ular non-graphical applications found in the standard
CentOS 7 package repositories.

Algorithm 1 GetControlledObservations(AppList A)

: Observation sequence O <

0 < Observe()

: O.Append(o) > record initial system state
: Arend ¢ RandomPermute(A)

: for each app a € A7*"? do

Install(a) > install app a

0 < Observe() > observe system state
O.Append(o) > save state to sequence S

Algorithm 2 CreateControlledChangeSets(Seq O, Size k)

1: for i + 1 to length(O) — k do
2. c+ Oli+k]— O[] > compute diff of two observations
3 Ctraim ¢ Ctrain g {c} > store changeset to training set

We collect two sets of changeset datasets. The first
dataset represents the type of changes observable in
a controlled environment where observations do not
overlap with system events of interest, while the second
dataset represents on-demand usage of our system with
possible overlaps in system observations and events of
interest (i.e., observations are possibly taken when a
system event is also happening). Generic properties of
these datasets are presented in Table 1.

The first “controlled” dataset is collected by installing
one application at a time to a target VM (in our
case, a Google Compute Engine (GCE) VM of type
nl-standard-1 with 1 vCPU core and 3.75GB mem-
ory) and then making an observation to record the
changes made to the file systems during the installation.
This application installation and observation collection
process is repeated 300 times, creating 300 “iterations”,
with each iteration randomly shuffling the list of 91 tar-
get applications. From the set of collected observations
we create changesets that contain between one and ten
application installations, leading to 26,325 changesets.
We label these changesets with the application(s) in-
stalled during the interval they cover. The processes used
for observation collection and changeset creation are
detailed in Algorithm 1 and Algorithm 2, respectively.

The controlled dataset is divided into two parts. The
first 150 iterations — evenly made up of one, two, three,
four, and five application changesets — are used as
training data in our models, and contain a total of 13,350
training changesets. The second 150 iterations — made up
of one to ten-application changesets (distributed evenly)
— are used as test data in our controlled dataset ex-
periments, and contain a total of 12,975 changesets. It
is important to note that no duplicate changesets exist
between the train and test datasets.

For creating the second dataset that we call the “un-
controlled” dataset, the same set of 91 applications are
installed in random order on target VMs. However the
application installation and observation processes are
not performed in synchrony. Between each application
installation, a random wait time between 5 and 10
seconds is added and the observations are made in the
background at fixed (30 and 45 seconds) intervals while



Algorithm 3 GetUncontrolledObservations(AppList A,
Interval t)

1: Observation sequence O < 0

: > collect periodic observations every ¢ secs in background
3: while true in background do

4 Sleep(t) > wait ¢ seconds

5 0 < Observe() > observe system state

6:  O.Append(o) > save state to sequence O
7. Arend o RandomPermute(A)
8
9
0
1

N

: for each app a € A7*"? do
Install(a) > install app a
trand < random()%5 + 5

Sleep(tmem?) > wait bw 5 to 10 secs

the applications are being installed.

For our set of 91 applications, the average installation
time we observed in our systems is 1.9 seconds and
the maximum installation time is 5.0 seconds. Hence,
changesets generated from these observations have a
varying number of applications (between 2 and 6). Note
that the installation time here does not include the
installation time of dependency packages of applications.
We assume that all the dependencies have been installed
in advance. In this dataset changes associated with an
application installation process can be distributed across
two changesets, with each changeset containing partial
information about application installation event. On av-
erage, we have as many partial changes as the number
of changesets in the dataset.

Algorithm 3 details the asynchronous observation col-
lection process for test data collection. While collecting
this dataset we used slightly more powerful VMs of
type custom-2-5120 with 2 vCPU cores and 5GB
memory, so that the observation process would not
interfere with the installation process. The observation
process is repeated 30 times (15 times with each interval)
with randomly shuffled application lists to obtain our
uncontrolled test dataset.

The distribution of the changesets in the controlled
and uncontrolled datasets based on the number of ap-
plications are presented in Fig. 3. As seen in the fig-
ure, for the controlled train dataset, the changesets are
roughly equally divided between changesets that contain
one to five applications. For the controlled test dataset
the changesets are roughly equally divided between
changesets that contain one to ten applications. For the
uncontrolled dataset, the majority of changesets consist
of changesets with three, four, and five applications, but
there exists a small percentage of uncontrolled change-
sets with larger than five applications (~7%).

We evaluated the improvements provided by two
types of fingerprinting approaches, namely just his-
togram fingerprints, and combining file2vec, tree2vec,
and histogram fingerprints, which we call the combined
fingerprints. We note that histogram fingerprints are
cheap to compute while file2vec and tree2vec finger-
prints are rather costly as they require training neural
network models using sizable data. The size of file2vec
and tree2vec “sentences” we create from file tree struc-
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Fig. 3. Distribution of datasets based on the number of
applications in their respective changesets.

ture and neighbor files of created files are 47GB and
1.5GB, respectively. Training new dictionaries from these
sentences took 240 minutes and 8 minutes, respectively
on a 2.3GHz, 8 CPU system with 8GB RAM. We note
here that the whole training procedure is performed
offline/ off-the-critical-path.

We also investigate the performance of commonly
used classification algorithms such as logistic regres-
sion (1lr), support vector machines (svm), k-nearest-
neighbor (knn), random forest (rf), and decision trees
(at) for prediction, along with the impacts of boosting
algorithms adaptive boosting (adaboost) and gradient
boosting (gb) on the performance of decision trees. All of
these algorithms are used in a one-versus-all framework,
where a binary classifier is built for each possible appli-
cation. The performance of our “confidence value based
ranking” approach that first predicts the number of ap-
plication installations and then reports that many highest
scoring applications as predictions is also reported.

The Python language and machine learning library
scikit-learn [22] are used in implementing both the train-
ing models and the testing framework. The performance
of the trained models on correctly predicting applica-
tion labels is measured using the standard information
retrieval metrics of recall, precision, and F1-score. Note
that for the case of predicting multiple application instal-
lations within a changeset, recall indicates the fraction of
actual installations that are correctly predicted, precision
indicates the fraction of made predictions that are cor-
rect, and Fl-score is the harmonic mean of these recall
and precision values.

5 [EVALUATION

We evaluated the prediction accuracy of two finger-
printing algorithms (histogram and combined) and var-
ious machine learning algorithms (dt, rf, 1lr, knn,
svmlinear, svmrbf, adaboost, gb). All machine
learning algorithms presented are trained using the
controlled-train dataset. Parameters of utilized algo-
rithms are optimized over the controlled-train dataset
using five-fold cross-validation. We report F1 scores as
our primary measure of prediction accuracy, although
we present and discuss precision and recall when they
provide insight about performance of solutions.
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training with the controlled train dataset.

5.1

Fig. 4 provides a comparison of fingerprint sizes with the
average changeset file size as the number of applications
in the changeset increase. Fingerprints have a two orders
of magnitude smaller size than changesets and their size
is independent of the number of events.

Fig. 5 shows the training times for the machine learn-
ing models using the controlled train dataset. These
models are trained on a 2.3GHz, 8 CPU system with 8GB
RAM. Algorithms with fast training times are preferable
considering that numerous updates and changes are
made to applications everyday and retraining models
daily with new data is a requirement. The observed
training times in Figure 5 indicate that none of the
machine learning methods have a prohibitively long
training time considering daily re-training requirements.

General Observations

5.2 Experiments on the Controlled Dataset

Fig. 6 provides the average prediction accuracies (F1-
scores) we observed for the two fingerprinting and var-
ious machine learning algorithms while predicting the
application installation events of controlled test dataset.
As seen from the figure, 1r, svmlinear, svmrbf
and adaboost perform considerably better than other
machine learning algorithms. Note that the simpler his-
togram fingerprint features performed considerably well
for most algorithms.

1.0 Bcombined Bhistogram

Fig. 6. Average F1-scores observed for various machine
learning algorithms while testing over the controlled-test
dataset using both combined and histogram fingerprints.

In Fig. 7 we put some of our best performing ma-
chine learning algorithm - fingerprint combinations un-
der more scrutiny and observe their precision, recall
and Fl-scores as the number applications in the test
changesets increases. As expected, all algorithms ex-
hibit a downward performance trend as the changeset
sizes increase, showing that the multi-label classification
problem becomes harder as the number of labels to be
predicted increase. The downward slope of prediction
accuracy accentuates when the number of applications
in the test changesets go beyond five applications, which
indicates that the number of applications in the train-
ing changesets have some effect on performance even
though we are performing one-vs-all classification.

We note that the precisions of the algorithms are gener-
ally high, and histogram fingerprints lead to higher pre-
cision values (higher than 0.90 for adaboost and close
to 100% for 1r and svmrbf), indicating that histogram
fingerprinting algorithm rarely leads to false predictions.
This is expected as histogram fingerprints are distinctive.
However, as the number of applications in a changeset
increase beyond five applications we start to observe
a significant decrease in recall for all applications. The
recall values of some algorithms go as low as 0.50 for
changesets with ten applications indicating that these
algorithms can fail to identify almost half of the events
when there are many events in a changeset. A closer
look at the confidence values provided by high-precision
algorithms with histogram fingerprints indicated that
the confidence values for missed labels were actually
high, just not as high as the learned thresholds.

The observations above led us to hypothesize that if
the number of events in a test changeset were known or
provided, by simply picking the same number of high-
est confidence predictions of our algorithms, we could
observe higher recall values. We note that predicting the
number of events observed in a changeset is relatively
an easier problem if sufficient metadata is available. For
example, by just grouping the new file creations based
on their timestamps we were able to predict the number
of applications in all of our controlled changesets with
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Fig. 7. Precision, recall and F1-score of algorithms as number of applications in the changesets increase.
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Fig. 8. Results of our “two-step” prediction procedure for
algorithms with high precision.

an experimental error of less than 1.6%.

We test our hypothesis on the set of machine learning
algorithms that have provided high precision values
even for large number of applications. The results of our
analysis are shown in Fig. 8. In these experiments we
first use the aforementioned file creation time analysis to
predict the number, say k, of events that occurred within
a changeset. Then we select the top k predictions of the
machine learning algorithms. Note that this approach is
only applicable to learning algorithms that provide con-
fidence values. We observe that providing the number of
applications in the changesets proved to be very helpful
to some algorithms. Our new approach was immensely

helpful to svm-rbf using histogram fingerprints, which
saw F1 scores greater than 0.9 in all cases, and 1r
using histogram fingerprins, which saw F1 scores greater
than 0.9 in all but 9-app and 10-app cases, but had
no impact on the performance of adaboost algorithm
and any algorithm using the combined fingerprints. We
believe this is due to the fact that the thresholds and
weights learned by adaboost are highly dependent on
the training dataset properties.

5.3 Experiments on the Uncontrolled Dataset

We test the performance of the models trained using
the controlled-train dataset over the more difficult un-
controlled dataset using our two-step predictive mod-
els with histogram and combined fingerprints as well.
Observed Fl-scores are depicted in Fig. 9. Observed
Fl-scores are significantly lower due to the fact that
almost all changesets created in this scenario contain
partial installations. Some of these partial installations
contain little or no information so corresponding labels
are harder to predict. As seen in the figure, across the
board, increasing the interval between snapshots seem
to have little effect. Even though 45 second changesets
have more applications (1 more application on average)
they contain less number of partial events leading to
such mixed results for 30 and 45 sec experiments. A
quick check of accuracies show that performance of
histogramn and combined fingerprints are similar, and
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Fig. 9. Performance of tests over uncontrolled dataset
with 30 second and 45 second observation intervals using
(a) combined and (b) histogram fingerprints.

for both fingerprint types 1r and svmrbf are the top
contenders, achieving Fl-scores in the range 0.76 — 0.78.

5.4 Application Size Analysis

Our experiments indicate that there is a significant cor-
relation between correct prediction likelihood and the
“installed size” of an application (according to each
application’s record in the CentOS yum package reposi-
tory). We note that sizes of dependency packages are not
included included an application’s size. Fig. 10 shows
this logarithmic trend in the true- and false-positive
prediction rates of individual applications averaged over
all prediction algorithms. This leads us to surmise that
smaller applications tend to be harder to predict cor-
rectly and easier to predict falsely. False predictions
are likely due to overly-general fingerprints created for
small applications.

6 CHANGE DISCOVERY AS A SERVICE

To demonstrate a real-life implementation of our work,
we have started architecting DeltaSherlock, a system
that provides change discovery functionality as a ser-
vice. Fig. 11 provides an overview of the DeltaShelock
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Fig. 10. Logarithmic correlation between the size of
an appliaction and (a) True Positive Rate and (b) False
Positive Rate we observe during prediction.

architecture. In a typical deployment, the service would
be installed on a client device and configured to per-
form observations of the file system on a fixed inter-
val. Every time an observation is performed, the client
would prepare a changeset representing any changes
made between the last observation and the current one.
Afterwards, it would prepare a fingerprint using the
newly-generated changeset and dictionaries provided by
a separate server device. The prepared fingerprint is
then sent off to the server for analysis, which in turn
sends its prediction(s) back to the client after analysis
is complete. The client finally stores the results in its
log and, depending on the results received, could take
appropriate actions ranging from emailing an alert to
automatically quarantining the system from the network
or shutting it down.

In order to make accurate predictions, the server has
to maintain large and frequently-updated databases of
dictionaries, fingerprints, and changesets representing
the events it intends to identify. To accomplish this
task, we have designed a “swarm of trainers” model,
made up of several trainer node machines constantly
installing and observing software from various reposito-
ries, feeding new changesets and updated dictionaries to



DeltaSherlock Client Server

10

Every x minutes

Request dictionary—p[ Serve latest dictionary ]q-—

. ]

Request changeset
Changeset to

fingerprint

Observation and
changeset creation

Store result, take
action if neccessary [<

Fig. 11. High level view of the proposed DeltaSherlock service.

the server’s databases along the way. Every night, after
receiving this new data, the server would regenerate
new fingerprints to be used for analysis and prediction.
We also envision allowing users to generate their own
changesets by creating a set of pre- and post-installation
“hooks” that could be installed into a package manager
in order automate the observation process.

(8]

Bl

(10]

7 CONCLUSION (1]

In this study, we proposed DeltaSherlock, a framework
for automatic and efficient identification of multiple
changes observed by cloud instances. Our experiments
over 25,000 system changes in the form of software
installations collected from VMs deployed over a com-
mercial cloud reveal that the proposed approach can
identify multiple events with high accuracy (up to 96.8%
accuracy) by just investigating the changes observed
by the file system. We also present our initial design
for providing DeltaSherlock as a service. Our ongoing
efforts include running the DeltaSherlock service on a
public cloud and expanding the capabilities of discovery
by utilizing other system features.
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