
WORKLOAD ADAPTIVE POWER MANAGEMENT

WITH L IVE PHASE MONITORING AND

PREDICTION

CANTURK ISCI

A D ISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE PROGRAM IN

ELECTRICAL ENGINEERING

SEPTEMBER 2007

c© Copyright by Canturk Isci, 2007.

All Rights Reserved

Abstract

In current computer systems, power dissipation is widely recognized as one of the pri-

mary critical constraints. Improving the power efficiency of current and emerging systems

has therefore become a pressing challenge and an active research area over recent years.

Dynamic, on-the-fly management techniques aim to address this challenge by adaptively

responding to the changes in application execution. These application patterns, commonly

referred to as “phases”, expose distinct, dynamically-varying and often repetitive charac-

teristics of workloads. Dynamic management techniques, guided by workload phase infor-

mation, can effectively tune system resources to varying workload demands for improved

power-efficiency.

This thesis researches new methods to characterize and predict application behavior for

a dynamic power management endgoal. Specifically, this workhas two major thrusts. First,

it explores different approaches to characterize and predict dynamically varying workload

power behavior. Second, it discusses runtime management techniques for real systems that

can proactively adapt processor execution to varying application execution characteristics.

This work develops a runtime, real-system power model that provides processor power

consumption details in terms of the component powers of different architectural units. We

show that similarity analysis methods applied to these component powers help expose

power phase behavior of applications. A small set of “power signatures” can represent

overall workload power characteristics within 5% of the actual behavior. We develop

a “transition-guided” phase detection framework that can identify repetitive application

phase patterns despite system-induced variability effects. This detection strategy can iden-

tify recurrent phase signatures with less than 5% false alarms on running systems. Last, we

propose a workload-adaptive dynamic power management framework guided by runtime

phase predictions. This predictive power management approach is shown to improve the

energy-delay product of a deployed platform by 7% when compared to existing reactive

techniques and by 27% over the baseline unmanaged system.

iii

Overall, this thesis shows a roadmap to effective on-the-flyphase detection and pre-

diction on real-systems for application to workload-adaptive dynamic power management.

With the increasing focus on adaptive and autonomous systemmanagement, this research

offers practical techniques that can serve as integral components for current and emerging

power-aware systems.

iv

Acknowledgements

This dissertation would not have existed without the guidance and support of my ad-

visor, Margaret Martonosi. She has been an invaluable inspiration to me as a researcher,

a mentor and a writer throughout my graduate study. I am deeply thankful for her ex-

tensive advice on all aspects of my research from developingresearch ideas to presenting

outcomes. Her patient and positive approach has been my primary source of motivation

during challenging periods. I believe, working with and learning from Margaret has made

me a better academic, and has been one of the greatest privileges of my life at Princeton.

I would like to thank my dissertation committee, Doug Clark, Li-Shiuan Peh, Sharad

Malik and Ricardo Bianchini, for their insightful comments onthis work. Their feedback

has been very valuable for me to improve this thesis. I am grateful to Doug and Li-Shiuan

for their timely feedback and many excellent suggestions onthe previous drafts of this

dissertation.

I owe many thanks to my great lab mates in the “mrmgroup”, including Zhigang Hu,

Russ Joseph, Philo Juang, Fen Xie, Ting Liu, Qiang Wu, Yong Wang, Hide Oki, Gilberto

Contreras, James Donald, Chris Sadler, Pei Zhang, Eric Chi, Abhishek Bhattacharjee, Vin-

cent Lenders, Maria Kazandjieva, Carole Wu and Manos Koukoumidis. I am grateful for

their support in countless paper revisions, practice talksand research discussions. I have

learnt a great deal from them over the years, and their friendship and unique personalities

have made my lab life a lot more enjoyable.

I was also fortunate to collaborate with some great researchers in industry. I thank

Pradip Bose, Alper Buyuktosunoglu, Eugene Gorbatov and Rick Forand for their mentor-

ship and encouragement. I gained tremendous knowledge and experience working with

them during my graduate study.

I would also like to thank the members of our department staffthat I have known over

the years, including Karen Williams, Sarah Griffin, Tamara Thatcher, Anna Gerwel, Stacey

Weber, Sarah Braude, Meredith Weaver and Roelie Abdi-Stoffers. Their friendly person-

v

alities have always brought cheer to my daily departmental routine. I am grateful for their

patience and help with my countless inquiries during my study at Princeton.

The years I have spent at Princeton have been particularly memorable thanks to my

friends who had shared the many ups and downs of my life over the years. I thank Mehmet

Ekmekci, Mert Rory Sabuncu, Fatih and Aysen Unlu, Filiz Garip, Oguzhan Karakas, Sinan

Gezici, Murat Fiskiran, Vassos Soteriou, Erhan Bayraktar and Alp Atici for their endless

support.

This research benefited from generous financial support fromthe National Science

Foundation, the Semiconductor Research Corporation, the NewJersey Council of Sci-

ence and Technology, Intel Corporation, and IBM Research. In addition, I would like

to acknowledge the support of the Gigascale Systems ResearchFocus Center, one of five

research centers funded under the Focus Center Research Program, a Semiconductor Re-

search Corporation program.

Last but not least, I would especially like to thank my parents, Sevim and Coşkun, my

sister Dilem, and my greater family, including my grandparents, aunts, uncles and cousins

for their constant love and support. I am deeply grateful fortheir guidance, humor and

encouragement. They will always be my main inspirations in every aspect of my life.

Finally, I would like to thank my Belma, who has always been thecalming voice in my

mind, for seeing the best in everything and for being beside me all these years.

vi

To my family.

vii

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Overview . 6

1.2.1 Live, Runtime Power Estimation 8

1.2.2 Phase Analysis for Power . 10

1.2.3 Mitigating System Induced Variability Effects on Real-System Phase

Detection . 11

1.2.4 Runtime Phase Tracking and Phase-Driven Dynamic PowerMan-

agement . 11

1.3 Literature Review . 13

1.3.1 Processor Power Modeling . 13

1.3.2 Workload Characterization and Phase Analysis 15

1.3.3 Workload-Adaptive Power Management 17

1.4 Thesis Contributions . 20

1.5 Thesis Outline . 21

2 Power and Performance Measurement on Real Systems: Methods and Basics 22

2.1 Experimental Setup Overview .. 23

2.2 Using Performance Counters for Power Estimation 25

viii

2.2.1 Defining Components for Power Breakdowns 27

2.2.2 Selecting Performance Monitoring Events for Power Estimation . . 27

2.2.3 Counter-based Component Power Estimation 28

2.3 Implementation Details for Counter-based Power Estimation 30

2.3.1 Hardware Performance Monitoring30

2.3.2 Real Power Measurements . 31

2.3.3 Overall Implementation . 32

2.4 Power Estimation Results .33

2.4.1 Microbenchmark Results . 34

2.4.2 SPEC Results . 35

2.4.3 Desktop Applications . 38

2.5 Related Work . 40

2.6 Summary . 42

3 Power Oriented Phase Analysis 44

3.1 Characterizing Workload Power Behavior with Power Vectors 45

3.2 Similarity Metrics .49

3.3 Representing Execution with Signature Vectors 52

3.3.1 Representation Accuracy with Power Phases 53

3.4 Comparing Event-Counter-Based Phases to Control-Flow-Based Phases . . 56

3.5 Dynamic Instrumentation Framework 57

3.5.1 Program Counter Sampling and BBV Generation 59

3.5.2 Using Performance Counters to Generate PMC Vectors 60

3.6 Phase Classification . 61

3.6.1 Evaluating Phase Classifications 62

3.7 Phase Characterization Results .. . 64

3.8 What Control Flow Information Does Not Show 66

3.8.1 Operand Dependent Behavior . 67

ix

3.8.2 Effectively Same Execution . 69

3.9 Related Work . 71

3.10 Summary . 72

4 Detecting Repetitive Phase Patterns with Real-System Variability 74

4.1 Real-System Variability .. 75

4.1.1 Variability Effects on Application Behavior 76

4.1.2 Variability Effects on Observed Phase Patterns 77

4.1.3 Taxonomy of Phase Transformations 79

4.2 Transition-Oriented Phases 80

4.3 Techniques for Detecting Repetitive Phases with Variability 82

4.3.1 Removing Sampling Effects on Transitions with Glitch and Gradi-

ent Filtering . 82

4.3.2 Discerning Phase Behavior with Time Shifts 84

4.3.3 Handling Time Dilations with Near-Neighbor Blurring 84

4.3.4 Quantifying Signature Matching with Matching Score 87

4.3.5 Summary of Methods . 87

4.4 Phase Detection Results .88

4.4.1 Receiver Operating Characteristics 91

4.4.2 Comparison of Transition-Guided Approach to Value-Based Phases 92

4.5 Related Work . 93

4.6 Summary . 94

5 Runtime Phase Tracking and Phase-Driven Dynamic Management 96

5.1 Phases for Dynamic Management .98

5.2 Predictability and Power Saving Potential Characteristics of Workloads . . 101

5.3 Phase Prediction . 103

5.3.1 Global Phase History Table Predictor 104

x

5.3.2 Phase Prediction Results . 106

5.4 Dependence of Phases to Dynamic Management Actions 109

5.5 Phase-Driven Dynamic Power Management: Real-System Implementation . 112

5.5.1 Runtime Phase Monitoring and Prediction 114

5.5.2 Dynamic Power Management with DVFS 115

5.5.3 Power Measurement . 115

5.5.4 Evaluation Support . 117

5.5.5 Management Overhead . 119

5.6 Phase-Driven Dynamic Power Management Results 120

5.6.1 Improvements with GPHT over Reactive Dynamic Management . . 122

5.6.2 Alternative Phase Definitions .. 123

5.7 Related Work . 124

5.8 Summary . 126

6 Conclusions 127

6.1 Future Directions . 128

xi

Chapter 1

Introduction

1.1 Background and Motivation

Computing systems have experienced a tremendous sustained growth in performance and

complexity for more than two decades. Exponentially increasing transistor integration en-

ables more devices to be packed within single chips, which inturn provides more function-

ality and state with each generation of processors. Figure 1.1 illustrates this for a range of

processor families [12, 36, 53, 56, 141, 144]. Moreover, reduced process dimensions en-

able faster switching transistors, driving higher operating frequencies with each generation.

Coupled with technology advances, new architectural and compiler techniques have pushed

the performance bar even higher with deeper pipelines, highspeculation, out-of-order and

superscalar microarchitectures, and increasing instruction-level parallelism. In addition,

new simultaneously multithreaded and multicore systems enable thread-level parallelism

[66, 134, 156, 157, 170]. All of these advances translate into more computations per unit

time with each new computer generation.

From a historical perspective, these have been tremendous forward progress in com-

puting performance. By leveraging both technological and architectural advances, micro-

processor designers have been able to actually surpass the performance trends indicated by

Moore’s Law [129, 133]. For example, when we look at the reported performance results

with the SPEC CPU2000 benchmarks between 2000 and 2006, we seemore than 10-fold

1

Intel 4004

Intel 8086

Intel 80286
Intel 80386

Intel 80486

Pentium

Pentium Pro

Pentium II

Pentium III

Pentium 4

Pentium M

Itanium2

Itanium2-DC

Core2 Duo

AMD K5

AMD K6

AMD K7

AMD K8

POWER2

POWER3

POWER4

POWER5 POWER6

Cell

Nvidia G80

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1970 1980 1990 2000 2010

Year of Introduction

T
ra

n
si

st
o

rs
 P

er
 D

ie

1K

10K

100K

1M

10M

100M

1B

10B

Figure 1.1: Number of transistors within a die over time.

increase in integer performance and 14-fold increase in floating point performance for In-

tel family processors [165]. This unabated push towards higher performance and reduced

form factors has provided currently emerging mobile devices with computing capability

that was previously confined to mainframe systems.

Nonetheless, this forward progress in performance has not come for free. Together with

increasing clock rates and performance capabilities, the power dissipation of computing

systems has also accelerated rapidly. Figure 1.2 illustrates this for Figure 1.1’s processor

families over the same time period [12, 31, 53, 57, 141]. As this figure demonstrates, pro-

cessor generations also experienced an exponential increase in power density. This increase

in power density has recently become one of the primary constraints in microprocessor de-

sign. First, stemming from both increased power dissipation and widespread adoption of

personal computers, the overall energy impact of computingsystems has become an im-

portant issue. Once again looking from a historical perspective, the total worldwide pro-

cessor power dissipation of personal computers increased by more than 50 times over the

last decade [173]. Second, increasing power density has also directly influenced thermal

2

Intel 4004

Intel 8086

Intel 80286

Intel 80386

Intel 80486

Pentium

Pentium Pro

Pentium II

Pentium III

Pentium 4

Pentium M

Itanium2

Itanium2-DC

Core2 Duo

AMD K5

AMD K6

AMD K7

AMD K8

POWER2

POWER3

POWER4

POWER5
POWER6

Cell
Nvidia G80

1.E+00

1.E+01

1.E+02

1970 1980 1990 2000 2010

Year of Introduction

P
o

w
er

 D
en

si
ty

 [
W

/c
m

2]

1

10

100

Figure 1.2: Processor power density over time.

limitations of processors, requiring advanced cooling andthermal management strategies

[58, 155]. Third, increasing power demand, as well as the temporal and spatial power

variations within microprocessors have produced significant strain on effective and reliable

power delivery [92, 141]. Last and more recently, the financial and environmental impacts

of computing system power dissipation has also been widely acknowledged. Especially in

large-scale data centers, the current annual cost of power delivery and cooling has reached

to the order of millions of dollars. If the current trend—that advances in computing per-

formance are accompanied with rising power demand—continues in the next generation

systems, the ongoing costs of power and cooling can soon surpass the initial cost of the

underlying computing hardware by a growing margin [12]. To address the impacts of com-

puter power dissipation, the Environmental Protection Agency has recently announced new

specifications for computer power-efficiency [171]. Based onthe projections of these spec-

ifications, improving the energy-efficiency of computing systems can potentially achieve

$1.8 billion of total energy cost savings over the next five years. Moreover, such empha-

sis on computing power can eliminate greenhouse gas emissions equivalent to the annual

3

emissions of 2.7 million cars.

Interestingly, this is not the first time the computing industry has faced the power chal-

lenge. Early mainframe systems that relied on bipolar devices had experienced a similar

exponential growth in power until the early 1990s, at which point the mainframe industry

had to move towards CMOS devices that enabled an order of magnitude improvements in

power densities [146]. Less than two decades later, we have once again approached the

limits of power density. As CMOS technology continues to be the viable design option for

microprocessors, there is a growing necessity to devise andemploy effective power man-

agement techniques in all levels of computing systems, fromcircuits and architectures to

systems and software. Indeed, recent years have unveiled numerous research efforts that

aim to address power-efficiency at all levels of abstractions.

These different power-management strategies can be categorized as either static and

dynamic management approaches. Static, or offline, techniques involve design-time de-

cisions, profile-based optimizations and compiler-drivenmanagement responses. These

approaches are employed at various design stages and abstraction layers. These include

circuit-level techniques such as transistor reordering and dual-threshold circuits [104, 118,

161], architectural mechanisms such as profiling-based adaptations at subroutine granular-

ities or execution checkpoints [7, 75], systems- and application-level approaches such as

task partitioning and stretching, deadline-based scheduling, software transformations and

remote execution [43, 102, 114, 164], and compiler-driven management techniques that in-

volve profiling and instrumentation of applications with power management hints or state

keeping instructions [1, 65, 71, 122, 154, 180].

Dynamic, or online, power management techniques involve runtime control mecha-

nisms in hardware or software; they tune the configurable computing resources during exe-

cution. There is a large variety of dynamic management techniques across the whole spec-

trum of computing systems hierarchy, spanning from circuitlevel techniques to application

and compiler level power management. Circuit-level adaptations include techniques such

4

as adaptive body biasing and multi-threshold CMOS circuits (power gating) [4, 97, 98].

Architectural power management techniques involve pipeline reconfigurations [3, 8, 26,

90, 139, 153], adaptive cache scaling and decay [41, 48, 96, 140], pipeline-delay-based

supply voltage tuning [47], speculation control [23, 123],multiple clock domain architec-

tures [147, 178] and management techniques for chip multiprocessors [94, 103, 115]. At

the system-level many power-aware adaptations exist that target at dynamic management

of the system operation and the underlying platform components. One of the most widely

used dynamic power management techniques at the system level is workload-dependent

dynamic frequency and voltage scaling [33, 176]. Some otheremployed dynamic power

management techniques are adaptive disk control [60], energy-efficient I/O and memory

management [110, 162, 136, 143, 177, 186], task-level energy budgeting [5, 20, 119] and

power-aware scheduling [67, 127]. In addition to system-level management approaches,

there are also some power-aware dynamic compilation techniques [73, 172, 179].

Static approaches generally have the broad view of the entire application, and lead to

simpler control. However, they lack the actual dynamic execution information of appli-

cations. Many software-level static management approaches also require prior profiling

of applications or recompilations to incorporate compilerdirectives. In contrast, dynamic

techniques are directly exposed to the dynamic execution behavior and can guide man-

agement responses on-the-fly. However, the major drawback of these online techniques

lies in their limited view of application execution as they cannot knowa priori the whole

application structure. In general, dynamic management also necessitates more elaborate

monitoring and control schemes to track execution characteristics and to apply manage-

ment responses. Nonetheless, as the need for aggressive power management continues to

increase, such control mechanisms become more attractive in emerging systems despite the

design effort they require. In particular, as current workloads exhibit highly variable and

nondeterministic characteristics, and as the pool of legacy applications grows, static tech-

niques bring limited benefits. Dynamic management techniques offer significant additional

5

improvements in overall system power efficiency.

My research particularly aims to leverage the broad view of application execution at

runtime by monitoring architectural characteristics of applications and inferring dynami-

cally-varying workload behavior. I use observed runtime workload characteristics to detect

and predict repetitive application execution and this repetitive behavior information guides

dynamic management techniques. One of the primary drivers of dynamic power manage-

ment is the inherent variability in both the running workload demands and the underlying

computing systems. Efficiently matching the underlying resources to the dynamically vary-

ing application demands by adaptively configuring these computing structures is a powerful

enabler for power-efficient computation. My dissertation research focuses on two impor-

tant research challenges for such workload-adaptive and dynamically-controlled execution:

(i) Developing accurate and practical characterizations of dynamically varying work-

load demands and correctly projecting future behavior.

(ii) Efficiently managing the dynamic configurations of the underlying computing re-

sources based on projected workload demand.

One primary focus of my dissertation research is to bring real-system experimentation

and validation with real measurements into architecture research. In the following chap-

ters of this dissertation, I provide an overview of the different research aspects and the

accomplishments of my research along these two thrusts.

1.2 Research Overview

My dissertation research explores architectural and real-system techniques to character-

ize and predict wide-scale power behavior of programs and develops autonomous meth-

ods that track and predict dynamically-varying workload characteristics to guide runtime,

workload-adaptive power management techniques. Many of the presented studies aim to

explore and leverage thephase behaviorof workloads. This phase behavior represents the

temporal variations in workload behavior that are commonlyobserved during execution.

6

Figure 1.3: Phase behavior as observed from the measured performance metrics and power
for the vortex benchmark. This execution snapshot can be roughly separated into two
phases that repeat throughout benchmark execution.

These workload phases are known to exhibit repetitive patterns due to the iterative nature

of dynamic execution and can be observed in various forms such as performance charac-

teristics, power consumption and traversed execution address space. Moreover, different

phase patterns can be observed at different phase granularities from a few hundred of in-

structions to billions of instructions. Figure 1.3 shows anexample of this phase behavior

with an execution snapshot from the SPEC CPU2000vortex benchmark when its execu-

tion characteristics are classified into two major phases. In this example, the three charts

show the phase behavior forvortex for two performance metrics as well as with the actual

measured power behavior.

From a high-level perspective, my thesis research contributes to existing literature in

four related research areas:

• First, it presents one of the first real-system frameworks for modeling microarchi-

tecture-level power consumption of modern processors at runtime.

7

• Second, I describe workload phase analysis methodologies that target characterizing

the dynamically-varying power behavior of applications.

• Third, my research is one of the first real-system phase analysis studies that tackles

the problem of identifying repetitive execution characteristics despite the system-

induced variability effects. In this direction, I propose novel phase characterizations

and present effective techniques that mitigate the sampling and variability effects.

• Fourth, my work demonstrates a complete predictive dynamicmanagement system

that predicts application characteristics at runtime and performs autonomous system

adaptations to improve power efficiency based on projected workload demand.

Moreover, in this dissertation I describe three different real-system infrastructures that

I developed for experimentation and evaluations. These infrastructures are deployed in

running systems for remote power monitoring and estimation, phase analysis with dy-

namic instrumentation and real-measurement feedback, andphase-prediction-driven dy-

namic power management. Below, I provide an overview of each of these four major

aspects of my dissertation research, which are detailed in the subsequent chapters of this

thesis.

1.2.1 Live, Runtime Power Estimation

The ability to measure or model processor power dissipationlies at the heart of power-

oriented computing research. At the architecture level, much of this is performed via sim-

ulator infrastructures. These either perform analytical power derivations for architecture

components based on technology parameters [24] or use empirical power model macros

derived from lower-level production simulators [21]. Regardless of the taken approach, the

architectural power modeling principle remains similar, where the derived maximum com-

ponent powers are scaled with component utilization rates and architectural parameters to

form component-level power estimates. Together with holding or idle power at zero utiliza-

tion, these power estimates can then approximate the processor power dissipation. While

8

such simulation-oriented techniques provide extensive detail, they are generally prone to

limited absolute accuracy, they are impractical for long-timescale simulations and they of-

ten consider applications in an isolated environment, thuslacking the effects of underlying

system events. Real system measurements can remedy these shortcomings [51, 142, 168].

However, they generally lack the architectural detail provided by simulations and focus

only on total power dissipation.

This line of my research explores an alternative approach tomodeling processor power

consumption that aims to leverage the advantages of both domains. I propose a real-system

power measurement and estimation approach that can also provide microarchitecture-level

detail. Fundamentally, this power modeling approach is similar to the simulation approach,

where we consider maximum component powers scaled with activity factors. However, in-

stead of cycle-level accounting, my technique relies on hardware performance monitoring

events to track component activity. Moreover, I develop this as a runtime power estimation

strategy that operates at native application execution speed. I use real power measurement

feedback to calibrate power estimators, to incorporate nonlinear power behavior of proces-

sor components due to baseline power management techniquesand to provide a validated

absolute estimation accuracy. While there are prior studiesthat also investigate event-

counter-based power estimations [13, 93, 95], these studies do not focus on the distribution

of power to the architectural components. Furthermore, they only consider processors with

small power variation. My work provides both validated total power estimates and their

decomposition into architectural components. These estimates are evaluated on a high-

end system with aggressive speculation and baseline power saving techniques, where the

observed power at different execution regions can vary by asmuch as 600%. This run-

time power estimation framework can approximate processorpower behavior within 5% of

actual power consumption, as validated with simultaneous real measurements.

9

1.2.2 Phase Analysis for Power

In recent years, there has been a growing interest in application phase behavior. Part of this

interest focuses on identifying workload phases for characterization purposes and sum-

marizing execution, while others explore methods to detectphases at runtime to guide

dynamic adaptations [6, 41, 72, 90, 152, 153]. With such phase-based adaptations, com-

puting hardware and software can be tuned at runtime to the demands of different program

phases. Prior research has considered a range of possible phase analysis techniques, but has

focused almost exclusively on performance-oriented phases. Moreover, the bulk of phase-

analysis studies have focused on simulation-based evaluations. However, effective and

practical analysis of application phase behavior on real-systems is essential to employing

these phase-based adaptations on running systems. In addition, there is generally a missing

link between phase characterizations and their ability to represent power behavior. Such

power characterization is very important especially for dynamic power and thermal man-

agement, providing a direct relation between dynamic workload execution and its impact

on processor power consumption.

In this thesis I describe a phase analysis methodology that is targeted directly towards

characterizing workload power behavior. This approach uses the temporal similarity among

estimated component power dissipations to discern the phase patterns in workload power

behavior. The power phase characterizations acquired withthis method capture the power

variations during workload execution within 5% of actual measurements using a small set

of representative phases. These phases generally summarize overall execution with less

than 1% of the complete execution information. I develop a novel real-system frame-

work for power-oriented phase analysis that coordinates performance monitoring, power

estimations, dynamic instrumentation and real power measurements. With this evaluation

infrastructure I demonstrate the comparative benefits of different phase characterization

techniques that utilize control-flow or event-counter features of applications. This part of

my work shows that while both features reveal significant insights to power phase behav-

10

ior, event counter features further provide 33% improvements in the characterization of

workload power variations.

1.2.3 Mitigating System Induced Variability Effects on Real-System Phase Detection

One primary requirement for the application of phase-baseddynamic adaptations is the

ability to discern repetitive execution. Detecting repetitive phases in application execution

helps apply dynamic management responses proactively, thus improving their overall ef-

fectiveness. Real system experiments bring additional challenges to the detection of such

repetitive behavior due to system induced variations. Therefore, it is essential to under-

stand how these indeterministic system events alter workload phases from phase to phase

and from run to run. Consequently, for a phase detection technique to be effective on real

systems, it should be resilient to these variability effects.

This part of my work examines the phase behavior of applications running on real

systems to reliably discern and recover phase behavior in the face of application variability

stemming from real-system and time sampling effects. I discuss and classify the extent

and type of the alterations application phases experience with real-system experiments. I

propose a set of new, “transition-based” phase detection techniques. These techniques can

detect repetitive workload phase information from time-varying, real-system measurements

with less than 5% false alarm probabilities. In comparison to previous detection methods,

my transition-based techniques achieve on average 6-fold improvements in phase detection

efficiency by mitigating the system induced variability effects.

1.2.4 Runtime Phase Tracking and Phase-Driven Dynamic Power Management

One of the primary motivations for doing power management dynamically is the highly

variable phase behavior within applications at different execution regions. Dynamic man-

agement techniques highly benefit from this application phase behavior, which can help

identify workload execution regions with different characteristics, and thus can dictate dif-

ferent dynamic management responses. Most existing dynamic management techniques

11

respond to these phase changesreactively. When they observe a noticeable deviation

from previous application characteristics, these techniques adjust the underlying system

configurations dynamically, assuming this recent behaviorwill persist in future execution

[33, 41, 90, 162, 176, 186]. These approaches have difficultyhowever, when applications

change characteristics at a high rate. In such cases recognizing and predicting phases on-

the-fly provides better adaptation of the applied dynamic configurations. Therefore, it is

important to develop methods to identify and predict repetitive phases, toproactivelyapply

dynamic management responses.

My work develops online phase prediction methods that can beapplied in running

systems and demonstrates how these runtime phase predictors can effectively guide dy-

namic, on-the-fly processor power management. I describe a general-purpose phase pre-

diction framework that can be configured for different power-performance trade-offs and

can be utilized to track various application characteristics for the desired management ac-

tions. This phase predictor operates at runtime with negligible overheads and autonomously

tracks and predicts application phases. These phase predictions can be employed to guide

various management techniques. In my real-system experiments I demonstrate their ben-

efits with dynamic voltage and frequency scaling (DVFS) as anexample technique. I

implement this complete runtime phase prediction and phase-driven dynamic adaptation

infrastructure on a mobile laptop platform. Compared to existing reactive and statistical

approaches, our phase predictor significantly improves theaccuracy of the predicted work-

load behavior, reducing the misprediction rates by 2.4X forapplications with variable be-

havior. My experiments demonstrate that DVFS-based dynamic management improves the

energy-delay product of the experimental system by 27% on average, when guided by my

runtime phase predictor. Compared to prior reactive approaches, these dynamic adaptations

improve the energy-delay product of applications by 7%, while incurring less performance

degradation.

12

1.3 Literature Review

This section gives a general overview of existing work related to my thesis research. Each

of the following chapters provides more detailed discussions of prior work specific to each

of the presented studies. Here, I discuss related literature along the main areas of contribu-

tion discussed above. These are categorized under three areas: processor power modeling,

workload characterization and phase analysis, and workload-adaptive power management.

1.3.1 Processor Power Modeling

Earlier work on processor power modeling involves power measurement feedback for soft-

ware and instruction-level power models. These include instruction energy tables and inter-

instruction effects for processor and memory [113, 126, 168]. Software power models aim

to map energy consumption to program structure [51, 142]. Ingeneral, these techniques are

employed in simpler or embedded processors with minimal clock gating and power man-

agement that exhibit low temporal variations. In these cases, the power behavior largely

depends on the operating frequency and voltage [28] and simple table-based approaches

provide good approximations to processor power behavior.

Architectural and functional module-level power modelinghas also been prevalent in

power-aware computing studies. These have focused mostly on high-level abstractions of

processor components. These abstractions encompass energy consumption models driven

by functional unit complexity, profiled averages or switching activities particular to differ-

ent units [105]. Starting from simple average-case estimates [145], these power estimators

evolved into activity and lookup based power models [106, 107] that can also incorporate

inter-module interactions [125]. As more capable and detailed execution- or trace-driven

architectural simulation tools became available, accompanying cycle-accurate power mod-

eling tools have also been developed.

Among different power estimation frameworks, here I mention several of the most

commonly used models.Wattchis a processor power modeling infrastructure that relies

13

on parameterized power models for different processor building blocks such as array and

associative memory structures, logic, interconnect and clock tree [24].SimplePoweris an-

other cycle-accurate energy estimation tool that uses energy models together with switch

capacitance tables for each microarchitectural unit [175]. These approaches use analytical

energy models that rely on circuit capacitance parameters.In contrast,PowerTimeruses

an empirical energy estimation model based on circuit-level energy models derived from

low-level simulations [21]. Last,SoftWattprovides a full-system power model, including

the processor and the complete memory hierarchy [59].

More recently, there has been growing interest in runtime architectural power model-

ing on real-systems. These approaches enable power estimations for the long timescales

that are required for system-level and thermal adaptations. Since these approaches lack ex-

tensive simulation-style detail, they rely on supporting hardware or software functionality

such as performance counters to drive power estimations. Prior work demonstrates that sev-

eral performance monitoring events correlate highly with processor power dissipation [13].

These events can be configured to track and estimate processor power behavior and can be

used to infer the distribution of power to microarchitectural components [93, 95, 176]. This

runtime information is used in conjunction with analyticalmodels for detailed component-

level power estimates [18, 19, 34, 111]. Simple runtime models are also employed to track

the operating system’s contribution to power consumption [116]. While the above ap-

proaches consider fixed, static power models, adaptive, feedback-driven power estimation

models have also recently been explored [61]. As power dissipation and thermal limitations

become pressing issues in large-scale systems, such runtime models are also emerging in

the server and cluster domains to enable efficient monitoring and dynamic management of

large-scale systems [45, 63].

In runtime power modeling, my work is one of the first studies that provides micro-

architecture-level power estimations on real systems for ahigh-end, highly speculative

processor. I develop power estimation models that track thepower consumption of microar-

14

chitectural units in all execution regions with high or low processor utilization. Moreover,

my work presents a complete power modeling and validation framework including remote

runtime monitoring and real-time power measurement feedback.

1.3.2 Workload Characterization and Phase Analysis

There is a large body of existing work related to workload characterization and the anal-

ysis of application phase behavior. These studies can be classified under various themes

such as online and offline approaches, simulation-based andreal-system characterization,

characterizations with different workload features and for different endgoals.

One set of existing research employs different characterization techniques to summa-

rize execution with representative regions or phases. Someof these techniques use simu-

lations to classify workload execution based on programmatical information (such as exe-

cuted instruction addresses and visited basic blocks) [32,40, 72, 151, 152] or performance

characteristics [35, 46, 101]. Another line of phase characterization research focuses on

real-system studies that track hardware events or dynamic program flow [6, 29, 108, 128,

131, 132, 169]. Several of these studies employ a wide range of similarity measures and

clustering methods such as k-means, regression trees, principal or independent component

analysis for online or offline classification of execution into self similar regions.

A major area of research focuses on monitoring and detectingworkload phase behavior

for dynamic adaptations [68]. These studies use various workload features and evalua-

tion techniques in their analyses. Part of these studies focus on different indicators of

dynamic program flow to monitor varying workload characteristics such as branch counts

[90], working set signatures [41], traversed basic blocks [109, 153] and visited subroutines

[75]. These approaches track patterns in execution flow to trigger suited dynamic man-

agement responses that employ various architectural reconfigurations. In addition to the

above simulation-oriented studies, some real-system studies consider detecting specific ap-

plication behavior for dynamic responses. These works track application phases to control

management schemes readily available in current systems such as voltage and frequency

15

scaling [176, 179], to detect changes in execution space andto drive dynamic optimization

strategies in runtime systems [38, 100, 120].

Application phase monitoring and detection guides dynamicadaptations to react to the

changes in observed characteristics. Once the new behavioris detected, corresponding re-

sponses in tune with the demands of the new phase can be activated. However,predicting

this change in application characteristics can provide additional benefits by initiating man-

agement proactively. This is especially important in the case of quickly varying application

behavior, where the fundamental frequency at which the application phases change is close

to the sampling rate of the tracked characteristics. Existing research has employed differ-

ent strategies to predict varying workload characteristics. Compiler- and application-level

techniques develop static, analytical models based on program structure to predict changes

in workload characteristics such as memory access patterns[52, 54]. Several prediction

schemes that dynamically update their decisions during workload runtime have been pro-

posed at the systems and architecture levels. At the system level, both statistical and table-

based approaches that predict specific workload characteristics based on previous history

have been proposed [44]. In addition, memory related runtime phase predictors based on

memory reuse distance patterns [150], as well as dynamic code region based phase predic-

tions [99] have been studied in prior related work. In architectural studies, the ability to

propose hardware support has led to more elaborate phase prediction mechanisms. Run-

length and control-flow based phase predictors have been developed with hardware support

to predict phases in the dynamic execution space of applications [153]. In addition to

predictors of future workload phases, alternative schemesthat predict phase changes and

durations have also been employed in architectural implementations [109]. Overall, these

works demonstrate effective prediction techniques acrossa wide range of granularities,

with variety of workload features spanning both hardware and software mechanisms.

My research contributes to the existing body of phase analysis work in characteriza-

tion, detection and prediction of application phases with aprimary focus on real-system

16

phase analysis methods. While most of the existing phase characterization work focuses on

performance behavior of workloads, my thesis presents new techniques to identify power

phase behavior of applications using hardware performancemonitoring features. It devel-

ops novel strategies to detect repetitive application phases on real systems in spite of the

system-induced perturbations on workload characteristics. Last, my work demonstrates

a fully-autonomous, real-system phase prediction infrastructure that predicts future phase

behavior of applications at runtime by leveraging the pattern behavior in execution phases.

1.3.3 Workload-Adaptive Power Management

Earlier in this chapter, I have discussed the extensive range of research broadly in the area of

dynamic management, spanning from circuits to systems and applications. Here I review

some of these approaches that particularly aim to tune system execution to the dynamic

changes in the workload characteristics. I discuss relatedwork in workload-adaptive power

management under three abstractions: compiler- and application-level techniques, system-

level management and architectural adaptations.

High-level workload adaptations involving compilers and applications give high-level

software more responsibility for power management. Typically, these approaches can op-

erate in two opposite directions. First, part of the existing work has developed strategies

to adapt the workloads themselves for varying power constraints by providing different de-

grees of quality of service. These adaptations include application features with different

qualities or optional application steps that are activatedonly at high energy settings. Some

techniques also involve choosing between local and remote program or data components

based on their power-performance trade-offs [50, 102, 143]. This first direction deliber-

ately induces changes in workload characteristics to respond to energy constraints, and can

be referred to as power-driven workload adaptations.

In the second direction, several techniques have considered employing special direc-

tives within applications to guide lower-level power management. Such directives are intro-

duced via compiler support or specialized application programming interfaces to perform

17

bookkeeping operations about application characteristics [1, 7], to insert offline profiling

information for code regions at different power managementstates [71, 122, 154] and to

inform the underlying system layers about different application operations such as I/O in-

tensive regions [65, 177].

System-level power management techniques are applied in two different manners. First,

some studies have considered performing operating system tasks such as scheduling and

memory management in a power-aware manner. Second, additional studies make use of

the operating system to assist lower-level management functionalities in their management

decisions. In these applications, the operating system is extended with monitoring and

control interfaces that track workload characteristics and provide control directives to the

underlying management schemes such as frequency scaling and disk power management.

In the first direction, prior studies have considered energy-aware scheduling of workloads

with different characteristics to balance power consumption, to reduce power density and to

control energy dissipation rate in both single and multiprocessor systems [14, 67, 127, 184].

Other workload-adaptive system research has discussed power-aware memory management

[135, 186] and page allocation [110]. Some recent studies have also presented methods for

power-efficient distribution of parallel, multithreaded applications into multiple homoge-

neous or heterogeneous processing components [5, 37]. In the second direction, previous

studies have discussed system-level adaptations for disk power management [60], control-

ling network interfaces and managing other input/output devices [174]. In addition, there

has been a growing body of work in system-level management for dynamic voltage and fre-

quency scaling [33, 49, 176]. More recently, there has also been interest in machine learn-

ing techniques for power management across multiple platform components [167], as well

as dynamic compilation support for workload-adaptive power management [73, 172, 179].

At the architecture level, existing work has proposed several strategies that track vary-

ing workload characteristics to perform architectural adaptations. Tracking methods differ

significantly in their approaches. These can be simple occupancy or usage based models

18

[3, 139], metrics that characterize varying workload performance [8, 26] access frequency

monitoring [48, 96], inconsistency checks [47] or more detailed hardware structures that

aim to discern varying application phases [41, 90, 153]. In general, architectural man-

agement approaches focus on modulating the effective size or speed of different hardware

units. Among different architectural components, memory hierarchy is one of the most

investigated structures. Different studies have proposedadaptively disabling or reducing

supply voltages for different cache ways and unused blocks [48, 96, 140]. Some work has

proposed dynamically configurable caches based on varying working set size information

and changes in control flow [9, 41, 153]. Architectural management schemes for higher

levels of memory hierarchy, including main memory and diskshave also been explored

[117, 186]. Besides the memory hierarchy, several studies have focused on other archi-

tectural adaptations, such as adaptive issue queues [8, 26,139]. These approaches have

considered monitoring changes in application performance(i.e. rate of executed instruc-

tions) and changes in the occupancy of queue structures to tune their configurations to the

changes in workload characteristics. Other management schemes have also been proposed

for adaptive pipeline scaling and dynamic configurations ofother architectural components

such as reorder buffers and register files [3, 90]. These techniques have also employed

some amount of architectural support (for example, the branch behavior buffer and power

profiling units) to track dynamically-varying workload demands and to effectively match

the dynamic configurations to different application phases.

My thesis in particular discusses workload-adaptive powermanagement techniques that

operate at the architecture and system boundary. It leverages architectural execution infor-

mation to guide system-level adaptations. Most of the existing system adaptations either

function reactively by responding to recent execution behavior or rely on prior profiling in-

formation. My work, however, describes a predictive and completely on-the-fly adaptation

strategy that utilizes runtime phase predictions to managedynamic adaptations, without

effecting the execution or the structure of workloads.

19

1.4 Thesis Contributions

My thesis makes four main contributions to the existing literature. First, I describe a

generic approach to microarchitecture-level power modeling using processor hardware per-

formance monitoring features. I demonstrate a detailed, yet practical runtime power mon-

itoring and estimation approach with simultaneous measurement support for runtime vali-

dation feedback. Overall, this framework paves the way for many following runtime power

and thermal management studies that can benefit from insighton live processor power dis-

sipation.

Second, I provide two important contributions to the general body of workload char-

acterization and phase analysis research. I demonstrate practical real-system methods for

identifying application phases at runtime. These techniques can be readily employed in

system-level dynamic power and thermal management studies. Moreover, my work de-

fines phases targeted directly to discern varying power characteristics of workloads, using

event-counter-based power estimations at the basis of its similarity analysis.

Third, this thesis presents a complete flow of methods that mitigate the negative impacts

of system-induced variability and sampling effects on the detection of repetitive applica-

tion behavior. My work describes a taxonomy of phase transformations due to variability

and sampling effects. I introduce a new, transition-based phase characterization, which is

shown to be more resilient for repetitive phase detection under the influence of these trans-

formations. This work provides a quantitative evaluation of phase detection techniques and

quantifies their effectiveness in recognizing recurrent execution.

Last, in this thesis I demonstrate a complete real-system framework for runtime phase

prediction and its application to workload-adaptive powermanagement. I describe a config-

urable runtime phase prediction methodology that seamlessly operates on a real mobile sys-

tem with negligible overheads. I depict the immediate benefits of runtime phase prediction

for on-the-fly, phase-driven dynamic power management. Although the examples shown

in this thesis use certain phase definitions for specific power management techniques, the

20

developed approaches represent a general-purpose phase monitoring and prediction frame-

work. My infrastructure can be employed for monitoring and predicting different workload

characteristics that can guide a range of dynamic management techniques.

1.5 Thesis Outline

The following chapters of this dissertation present the main accomplishments of my re-

search in more detail. I present this in a progressive manner, starting with the experimen-

tation basics and the power analysis framework, followed byphase analysis basics, phase

detection and prediction methods and finally their application to dynamic power manage-

ment. In particular, Chapter 2 presents the fundamentals of my real-system experimentation

framework and develops runtime processor power monitoringand estimation techniques.

Chapter 3 discusses different phase analysis strategies anddemonstrates their effective ap-

plication for power-oriented workload phase characterization. Chapter 4 focuses on the

interesting challenges of phase detection in real-system experiments and develops an effec-

tive phase detection framework, which is resilient to system-induced variations in observed

workload characteristics. Chapter 5 introduces an efficientreal-system phase prediction

method and outlines a complete infrastructure that is driven by runtime phase predictions

for workload-adaptive power management. This chapter meshes the different aspects of my

research together and demonstrates the concrete benefits ofphase-based dynamic power

management for power-aware computing systems. Last, Chapter 6 presents the final re-

marks and discusses avenues of future research.

21

Chapter 2

Power and Performance Measurement on Real Sys-

tems: Methods and Basics

With power dissipation becoming an increasingly vexing problem across many classes of

computer systems, measuring power dissipation of real, running systems has become cru-

cial for hardware and software system research and design. Live power measurements are

imperative for studies requiring execution times too long for simulation, such as thermal

analysis [14, 112, 155]. Furthermore, researchers often need the ability to measure live,

running systems and to correlate measured results with overall system hardware and soft-

ware behavior. Live measurements allow a complete view of operating system effects, I/O,

and many other aspects of “real-world” behavior, often omitted from simulation.

To enable such complete view of system behavior, many processors provide hardware

performance counters that help give unit-by-unit views of processor events [16, 25, 77,

159, 160]. While these event counters are designed to reflect performance, they can also be

used to derive energy estimates for the underlying processor components [18, 85, 93, 95,

116]. Most of the research described in this thesis is based on real-system experimentation

and real-measurement-based validations. We develop a runtime performance monitoring

framework and devise event-counter-based power estimations. We use real power mea-

surements to validate power estimations as well as to evaluate our characterization and

dynamic management techniques in the chapters that follow.

22

This chapter presents an overview of our performance monitoring and counter-based

power estimation framework. This framework lays out the general experimental principals

used in the subsequent chapters, while each of the latter studies have unique experimental

features that we discuss in the corresponding chapters. Theprimary contributions of this

chapter are threefold. First, it presents a complete real-system experimentation framework

for power oriented systems research, including performance monitoring, real power mea-

surement and estimation, and runtime validation. Second, it describes a detailed methodol-

ogy for gathering live, per-unit power estimates based on hardware performance counters in

complicated and aggressively-clock-gated microprocessors. Third, it presents architecture-

level power characterizations for several SPEC and other common desktop applications,

which are validated with real measurements.

2.1 Experimental Setup Overview

Figure 2.1 shows a high-level overview of the real-system experimentation flow that is

used in various studies in this thesis. This figure also summarizes some of the primary

functionalities of the different experimental framework components. In general, the overall

experimentation framework consists of the experimental computer system, external power

measurement components and a monitoring system that performs data collection and addi-

tional analyses. The experimental system includes the applications that are tested, software

monitoring and control mechanisms that are implemented in the operating system (OS),

and hardware structures within the processor that perform performance monitoring and

that configure processor operating modes. The paragraphs below elaborate on the main

features of these components.

Experimental System Hardware: Most of today’s processors include some dedicated

hardware performance counters for debugging and measurement. In general, performance

counter hardware includes event signals generated by CPU functional units, event detec-

tors detecting these signals and triggering the counters, and hardware counters configured

23

Hardware

Performance
Counters

Mode Setting
Registers

Operating System

• Performance Monitoring
• Phase Prediction
• Dynamic Adaptations

Application

Experimental System

Power Measurement

Monitoring System

• Runtime Power Monitoring
• Counter-based Power Estimation
• Phase Analysis
• Evaluation of Dynamic Adaptations

Figure 2.1: High-level view of general real-system experimentation framework.

to increment according to the triggers [79, 81, 159]. We relyon hardware performance

counters to track architectural characteristics. In dynamic adaptation studies we also utilize

other specialized registers within the processor to tune system execution to the workload

demands, such as dynamically adjusting the voltage and frequency settings.

Experimental System OS:The operating system provides the necessary interface between

the processor hardware and the monitoring and control mechanisms used in this research.

We implement several functionalities inside the operatingsystem as kernel modules or

interrupt handlers for multiple purposes in different studies. These include (i) runtime

performance monitoring, (ii) dynamic phase predictions and (iii) dynamic management

actions.

Power Measurement:An important aspect of real-system experimentation for power ori-

ented research is real power measurements for modeling and evaluation. Processor power

dissipation can be measured in various ways. These include using serial sense resistors

[93, 148, 168] or current probes [5, 19, 85] over the processor power lines, which are then

fed into a digital multimeter, oscilloscope or a data acquisition system [34, 70, 72, 83, 179].

More recently, as the benefits of such power dissipation information are appreciated we

also see designs for high-end systems emerging with on-chippower monitoring features

24

[124, 138], as well as new standards for platform-level power monitoring, such as the

Power Supply Management Interface (PSMI) [149].

In this thesis research, real-system power measurements provide runtime processor

power dissipation feedback. This information is used to validate power estimations and

to evaluate phase characterization and dynamic power management techniques in differ-

ent studies. We track processor power consumption with power measurements via current

probes or data acquisition systems. These power measurements are either fed back to the

experimental machine or are sent to a separate monitoring machine.

Monitoring System: The monitoring machine also performs a variety of tasks in different

studies, such as: (i) monitoring the runtime power behaviorof applications, (ii) estimating

runtime power dissipation of processor units based on monitored performance counters,

(iii) characterizing power phase behavior of applicationsand detecting repetitive applica-

tion execution, and (iv) evaluating the benefits of employeddynamic power management

techniques. In some of our studies, the monitoring system also communicates with the

experimental machine to track performance behavior at runtime.

Overall, Figure 2.1 depicts the governing experimental flowthat is employed in this the-

sis. The subsequent chapters discuss the specific implementation details of the individual

studies and expand upon the above mentioned functionalities.

2.2 Using Performance Counters for Power Estimation

This section discusses a specific aspect of our thesis research related to real-system power

monitoring: runtime power estimation using hardware performance counters. While total

power measurements for long-running programs are already useful, it is also important to

estimate how power subdivides among different hardware units within a processor. For

this purpose, this work uses power estimates based on performance counter readings to

produce per-unit power breakdowns of total processor powerdissipation. From a Pentium

4 die layout, we break the processor into sub-units such as L1cache, branch prediction

25

hardware, and others. For each component, we develop a powerestimation model based on

combinations of events available to Pentium 4 hardware counters as well as heuristics that

translate event counts into approximate access rates for each component. We use real power

measurements obtained from a current probe to provide a runtime comparison between the

measured and estimated total power measures.

The machine used in these experiments is a 1.4GHz Pentium 4 (P4) processor, 0.18µ

Willamette core. The CPU operating voltage is 1.7V and published typical and maximum

power values are 52W and 71W, respectively [80]. The NetBurstmicroarchitecture of P4

is based on a 20-stage misprediction pipeline with a trace cache to remove instruction de-

coding from the main pipeline. In addition to a front-end branch prediction unit (BPU), a

second smaller BPU is used to predict branches for Uops (micro-ops) within traces. It has

two double-pumped ALUs for simple integer operations. The L1 cache is accessed in 2

cycles for integer loads, while the L2 cache is accessed in 7 cycles [69]. The processor im-

plements extremely aggressive power management, clock gating, and thermal monitoring.

Almost every processor unit is involved in power reduction and almost every functional

block contains clock gating logic, summing up to 350 unique clock gating conditions. This

aggressive clock gating provides up to approximately 20W power savings on typical appli-

cations and produces high amounts of power variation withinand across workloads [15].

Prior work has developed counter-based or profile-based estimates for much simpler

processors [13, 93, 113, 168]. In our approach, we estimate physical component pow-

ers using counter-based measures, and also generate accurate total power estimates. This

modeling technique is distinct from prior work in the following ways. We estimate power

for a much more complicated modern processor, with extremely aggressive clock gating

and high power variability. Second, we consider strictly physical components from the

die layout. Finally, we estimate power for all levels of processor utilization for arbitrarily

long periods of time, rather than restricting our techniqueonly to power variations at high

processor utilization. The latter two are particularly important for thermal studies as ther-

26

mal variations show significant spatial distributions among physical processor components

and are observed in long timescales on the order of seconds [155]. The remainder of this

section describes our power estimation methodology and discusses the particulars of the

underlying experimental framework.

2.2.1 Defining Components for Power Breakdowns

There are two primary factors that drive the way we determinethe processor components

for which the power breakdowns are generated. First, we desire microarchitecture-level

granularity in the power decompositions. Second, we choosecomponents that provide

a direct mapping to the physical layout. Both of these decisions also help enable future

studies for architecture-level processor thermal modeling and hotspot analysis [112].

Based on an annotated P4 die photo we define 22 physical components: Bus control,

L1 cache, L2 cache, L1 BPU, L2 BPU, instruction TLB & fetch, memory order buffer,

memory control, data TLB, integer execution, floating point execution, integer register file,

floating point register file, instruction decoder, trace cache, microcode ROM, allocation,

rename, instruction queue1, instruction queue2, schedule, and retirement logic.

2.2.2 Selecting Performance Monitoring Events for Power Estimation

For each of the 22 components, we need a performance counter event or a combination of

events that can approximate the access count of that component. The finalized set of heuris-

tics that define these access counts involve 24 event metricscomposed in various ways for

the 22 defined processor components [86]. As an example for the access rate heuristics, the

access rate for the trace cache component can be approximated by configuring the “Uop

queue writes” event to count all speculative Uops written tothe small in-order Uop queue

in front of the out-of-order engine. These come from either trace cache build mode, trace

cache deliver mode or microcode ROM.

As another example, the access rates for the bus control logic component are obtained

by counting the allocations into the I/O queue (via IOQ Allocations) and by tracking the

27

activity on the front side bus (via FSB Data Activity). IOQ Allocations count all bus trans-

actions (all reads, writes and prefetches) that are allocated in the IO Queue (between the

L2 cache and bus sequence queue). FSB Data Activity is configured to track the events that

occur on the front side bus when processor or other agents drive, read or reserve the bus.

The bus ratio (3.5 in our implementation) is the ratio of processor clock (1400MHz) to bus

clock (400MHz), and converts the counts in reference to processor clock cycles. Equation

2.1 shows the resulting access rate relation for the memory controller unit.

Access Rate(Bus Control) =
IOQ Allocation

∆Cycles
+

Bus Ratio·FSB Data Activity
∆Cycles

(2.1)

To account for all component accesses, we use 15 counters with 4 rotations. The P4

events and counter assignments minimize the counter switches required to measure all the

metrics needed. At least four rotations are unavoidable. This is because floating point

metrics involve 8 different events, of which only two at a time can be counted due to the

limitations of P4 counter configurations.

2.2.3 Counter-based Component Power Estimation

We use the component access rates—either given directly by aperformance counter or ap-

proximated indirectly by one or more performance counters—to weight component power

numbers. In particular, we use the access rates as weightingfactors to multiply against each

component’s maximum power value. This product is further multiplied with a scaling factor

that is based on microarchitectural and structural properties. In general, all the component

power estimations are based on Equation 2.2, where maximum power and conditional clock

power are estimated empirically during implementation. TheCi in the equation represent

the 22 hardware components.

Power(Ci) = AccessRate(Ci) ·ArchitecturalScaling(Ci) ·MaxPower(Ci)+NonGatedClockPower(Ci) (2.2)

28

As an example of our overall technique, consider the trace cache component. It delivers

three Uops/cycle when a trace is executed and builds one Uop/cycle when instructions are

decoded into a trace. Therefore, the access rate approximation in deliver mode is scaled by

1/3, while the access rate from instruction decoder is scaled with 1. These rates are then

used as the weighting factors for the estimated maximum trace cache power.

Equation 2.3 constructs the total power as the sum of 22 component powers calcu-

lated as above, along with a fixed idle power of 8W obtained from actual power measure-

ments. Hence, this fixed 8W base includes some portion of globally non-gated clock power,

whereas the conditionally-gated portion of clock power is distributed into component power

estimations.

Total Power=
22

∑
i=1

Power(Ci)+ Idle Power (2.3)

For initial estimates of each component’s “maxpower” value, MaxPower(Ci) in Equa-

tion 2.2, we used physical areas on the die. In many cases, these areas serve as good

proportional estimates. To further tune these maximum power estimates, we developed a

small set of training benchmarks that exercise the CPU in particular ways. By measuring

total power with a multimeter, we could compare true total power over time to the total

power estimated by summing our component estimates. After several experiments with the

training benchmarks, we arrived at a final set of maxpower andnon-gated clock power val-

ues for each of the components. These are hard-coded as the P4specific weighting factors

in the final implementation of our power estimation setup.

While this section describes our overall event-counter-based power estimation strategy

for a specific platform, there are certain design aspects that could help further improve the

accuracy of power estimations with future performance monitoring hardware implemen-

tations [82]. First and foremost, as power and thermal estimations correspond directly to

physical units located on die, counters that individually track accesses to each unit sep-

arately are extremely desirable. This set of counters should provide high parallelism in

29

concurrent counting to minimize the need for counter rotations. Such information, together

with the documentation of maximum utilizations and maximumpower per unit allows for

easier and more accurate tracking of component activity. Second, additional structures

to track bitline activity and one/zero population counts are imperative for good power esti-

mates. Third, depending on circuit implementation, certain queues at the in-order processor

front-end and out-of-order engine schedulers dissipate power in proportion to their occu-

pancy. Specifically for these units, metrics that gauge the occupancy ratio lead to better

power approximations. Furthermore, in lower-power embedded processors power con-

sumption of support logic outside the core can significantlycontribute to processor power

consumption. Adding counter support for external core components (off-chip memory ac-

cesses, DMA unit activity, etc.) can increase the fidelity ofcounter-based power estimation,

providing greater opportunities for power behavior monitoring and control.

2.3 Implementation Details for Counter-based Power Estimation

The complete event-counter-based power estimation framework is conceptually based on

the generic experimental flow described in Section 2.1. Runtime performance monitoring

lies at the center of this power estimation methodology. Direct validation of the power

estimations is performed with runtime real power measurements. The overall experimental

setup combines these two components into the final infrastructure that performs runtime

power estimation with real measurement feedback. This section first discusses the im-

plementation details for performance monitoring and powermeasurement. Afterwards, it

presents the complete power estimation infrastructure.

2.3.1 Hardware Performance Monitoring

To access the hardware performance counters, there are a number of pre-written counter

libraries available [16, 78, 158, 25]. For efficiency and ease-of-use, we have written our

own Linux loadable kernel modules (LKMs) to access the counters. Our LKM-based im-

plementation offers a mechanism with sufficient flexibilityand portability, while incurring

30

negligible power and performance overhead so that we can continuously collect counter in-

formation at runtime and generate runtime power statistics. In order to use the performance

counters, we implement two LKMs. The first LKM,CPUinfo, is simply used to read infor-

mation about the processor chip installed in the system being measured. This helps the tool

identify architecture specifications and discern the availability of performance monitoring

features. The second LKM,PerformanceReader, implements six system calls to specify

the events to be monitored, and to read and manipulate counters. The system calls are:

(i) select events:Updates the event selection control register (ESCR) and counter con-

figuration control register (CCCR) fields as specified by the user to define the events,

masks, and counting schemes.

(ii) reset event counter:Resets specified counters.

(iii) start event counter: Enables specified counter’s control register to begin counting

(iv) stop event counter:Disables specified counter’s control register to end counting

(v) get event counts:Copies the current counter values and time stamp to user space

(vi) set replay MSRs: updates special model specific registers (MSRs) required for“re-

play tagging” [79].

With this simple and lightweight interface, we can completely control and update coun-

ters easily from within any application.

2.3.2 Real Power Measurements

In this work, real power measurements provide the time-varying processor power dissipa-

tion information to validate the counter-based power estimations. We use a current probe

with a digital multimeter to track current flow in the Pentium4 desktop platform.

Figure 2.2 shows the details of our power measurement setup.Here CPU power is

measured with a clamp ammeter (current probe). The main power lines for the CPU operate

at 12V, and then are fed to the voltage regulator module, which converts this voltage to the

31

1mV/Adc
conversion

Clamp ammeter around
12V lines on measured CPU

Voltage readings
via RS232 to

logging machine

Convert to Power
vs. time window

DMM reading
clamp voltages

Logger Machine
collecting power data

Power
Monitor

Figure 2.2: Processor power measurement setup.

actual processor operating voltage and provides tight control on voltage variations [185].

Therefore, we use our current probe to measure the total current through the 12V lines. We

use a Fluke i410 current probe connected to an Agilent 34401 digital multimeter (DMM).

The current probe converts current readings to voltages with a 1mV/A conversion rate.

The DMM sends the voltage readings to a second logging machine via the serial port.

The logger machine converts these values into processor power dissipation with the power

relation:P=V·I = 12·(VoltageSample[V])·1000. It displays the measured runtime power

in our developedpower monitorwith a sliding time window, while also logging time vs.

voltage information.

The DMM samples 1000 current readings per second with 41
2 digit resolution, which

corresponds to 0.12W power resolution. However, it can transfer around 55 samples per

second over RS232, so we collect the data in the logger machineat 20ms intervals, while

finer granularity sampling is possible with a General Purpose Interface Bus (GPIB). The

logging machine then computes a moving average within a longer second sampling pe-

riod that is used to update the on-screen power monitor and the data log. These coarser

granularity samples are used in validating the counter-based power estimations.

2.3.3 Overall Implementation

In the final implementation, the performance reader provides the system with the required

counter information. The monitoring machine collects all the counter and measurement

information to generate the runtime component power estimations. We verify power es-

timates against total power measurements by measuring actual power and by feeding this

information simultaneously to the monitoring machine. Figure 2.3 depicts the overall ex-

32

Power

Server

Power

Client

Experimental
Platform

Logger
Platform

DMM
Measurements

Total
Power
Monitor

Component
Power
Breakdown
Monitor

Voltage Readings
over RS232

Performance Counter Information over Ethernet

Estimated and
Measured
Total Power

Estimated
Component
Power
Breakdowns

Figure 2.3: Overall runtime power measurement and performance-counter-based power
estimation setup.

perimental setup for this final implementation.

Measured processor current is sent by the DMM to the logger machine via RS232 and

the logger machine converts the current information to power. On the experimental ma-

chine, thePowerServercollects counter information every 100 ms, for the P4 eventscho-

sen to approximate component access rates. Every 400ms, thePowerServer sends collected

information to the logging machine over the Ethernet. While this perturbs system behav-

ior slightly, it is done infrequently to minimize the disturbance. On the logger machine,

thePowerClientcollects measured ammeter data from the serial port, and rawcounter in-

formation from Ethernet. Combining the two, it applies the access rate and power model

heuristics, and generates component power estimates for the defined components. After

synchronizing the modeled and measured power over a 100 second time window, the Pow-

erClient generates a runtimecomponent power breakdown monitoras well as runtimetotal

power monitorfor both measured and counter estimated power.

2.4 Power Estimation Results

This section provides the results for our power estimation framework for some microbench-

marks with well-defined characteristics, for the full runtimes of SPEC benchmarks, and for

some common desktop applications. The benchmarks are compiled using gcc-2.96 and

with compiler flags of “-O3 -fomit-frame-pointer”. For SPECworkloads, we use the refer-

ence inputs with a single iteration of run. In order to demonstrate our ability to model power

closely even at low CPU utilizations, we also experimented with practical desktop tools:

33

0

4

8

12

16

20

24

28

32

36

40

44

48

52

������ ��������� 	���� ���������
��
� �� ����� 	���� ���������
��
� �� ������ ���
� �� ����� 	���� ���������
��
� �� � ���������C
o

m
p

o
n

en
t P

ow
er

s
[W

at
ts

]

RETIRE
Schedule
Inst Queue2
Inst Queue1
Rename
Allocation
Ucode ROM
1st Level BPU
Trace Cache
Inst Dec
FP Regfile
INT Regfile
FP Exec
INT Exec
Data TLB
MEM control
MOB
L1 cache
ITLB & Fetch
2nd Level BPU
L2 Cache
Bus Control
IDLE

Figure 2.4: Power breakdowns for branch and cache benchmarks.

AbiWordfor text editing,Mozilla for web browsing andGnumericfor numerical analysis.

All these benchmarks share the common property of producinglow CPU utilization with

only intermittent power bursts.

2.4.1 Microbenchmark Results

Figure 2.4 shows component power breakdowns for two microbenchmarks. Thebranch

benchmark creates different branch misprediction rates and different ratios of taken branches.

This is a very small program that is expected to reside mostlyin the trace cache and that

is mostly L1 bound. This microbenchmark is a high Uops per cycle (UPC), high-power

integer program. Thecache benchmark creates variable L1 and L2 cache hit rates by

performing a linked list traversal in a pseudorandom sequence.

The leftmost bar of Figure 2.4 shows the estimated power breakdowns for our branch

exercise microbenchmark. The breakdowns show high issue, execution and branch predic-

tion logic power. In contrast, because the application dataset mainly fits in the L1 cache,

the L2 cache and bus for main memory dissipate lower power.

The second bar of Figure 2.4 shows breakdowns for cache exercise microbenchmark

34

with an almost perfect L1 hit rate. Once again, the componentbreakdowns track our in-

tuition well. The breakdowns show high L1 power consumptionand relatively high issue

and execution power as we do not stall due to L1 miss and memoryordering/replay issues.

Both L2 and bus power are relatively low.

In the third bar of Figure 2.4, we configure the cache microbenchmark to generate high

L1 misses, while hitting almost perfectly in L2. The power distribution of L2 cache is seen

to increase significantly, while execution and issue cores slow down due to replay stalls.

Moreover memory order buffer power shows a slight increase due to increasing memory

load and store port replay issues.

Finally, in the rightmost bar of Figure 2.4 the workload alsogenerates high L2 misses

and therefore bus power climbs up, while the execution core slows down even further due

to higher main memory penalties. Although total L2 accessesactually increase, due to

significantly longer program duration, access rates related to L2 drop and aggregate L2

power decreases.

Overall, this sequence of microbenchmarks, while simple, builds confidence that the

counter-based power estimates show meaningful insights toarchitecture-level power dissi-

pation and do not violate intuition in their estimates. The sections that follow present more

large-scale, long-running experiments on SPEC and desktopapplications.

2.4.2 SPEC Results

Figure 2.5 first shows our power estimation results for the SPECgcc benchmark to demon-

strate the capability of our power estimation framework. Inthis figure, we show the total

estimated and measured power behavior ofgcc for its complete execution time over its

five data sets.Gcc is one of the most highly varying benchmarks in the SPEC CPU2000

suite, as observed with the measured power timeline. Our power estimations closely track

actualgcc power behavior, at all regions of execution. This shows our event-counter-based

power estimations provide a very good proxy to application power behavior, regardless of

the range of power consumption.

35

0
10
20
30
40
50
60

0 50 100 150 200 250
Time (s)

P
o

w
er

 [
W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

Figure 2.5: Measured and estimated power behavior for thegcc benchmark with a 400ms
sample granularity.

In addition togcc, Figures 2.6–2.9 also show the power estimations and detailed com-

ponent breakdowns for the SPECint applicationvpr, andequake from SPECfp. For refer-

ence inputs, thevpr benchmark actually consists of two separate program runs. The first

run uses architecture and netlist descriptions to generatea placement file, while the sec-

ond run uses the newly-generated placement file to generate arouting descriptor file [166].

Although the total average power for the two runs is quite similar, Figure 2.6 shows a no-

ticeable phase change at around 300s when the second run begins. Figure 2.7 demonstrates

even more clearly how distinct the power behavior in the second phase is. Although the

first run, the placement algorithm, dissipates very stable power, the second phase’s routing

algorithm has a much more variable and periodic power behavior. As discussed in prior

work [101], the initial placement phase produces higher miss rates than the routing part.

This is because routing benefits from the fact that placementbrings much of the dataset

into memory. The per-component power breakdowns corroborate this with the increased

L2 power in second phase.

As an example of floating point benchmarks, Figures 2.8 and 2.9 show theequake

benchmark.Equake models ground motion by numerical wave propagation equation solu-

tions [10]. The algorithm consists of mesh generation and partitioning for the initialization,

and mesh computation phases. In Figure 2.8, we can already clearly identify the initial-

ization phase and computation phase. Figure 2.9 demonstrates the high microcode ROM

36

0

10

20

30

40

50

0 100 200 300 400 500

Time (s)

P
ow

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

Figure 2.6: Total measured and modeled runtime power forvpr.

0

1

2

3

4

5

6

0 100 200 300 400 500
Time (s)

P
o

w
er

 [
W

at
ts

] L2 Cache

L1 cache

MOB

INT Exec

FP Exec

Ucode ROM

Figure 2.7: Estimated power breakdowns forvpr.

power as the initialization phase uses complex IA32 instructions extensively. The mesh

computation phase, then exhibits the floating point intensive computations.

In addition togcc, vpr andequake, we have generated similar power traces for sev-

eral other SPEC2000 benchmarks. Figures 2.10 (a) and (b), present statistical measures

that confirm the accuracy of our modeling framework, for the larger set of the SPEC2000

benchmarks.

Figure 2.10 shows the average power computed from real powermeasurements and

counter estimated total power, for both the whole runtime ofthe benchmarks and for the

actual execution phases, excluding idle periods. Hence, the idle-inclusive measures cannot

be considered as standard results, as the idle periods vary in each experiment. They are

of value, however, for comparing counter-based totals to measured totals, because one

of our aims is to be able to characterize low utilization power with reasonable accuracy

as well. For the estimated average power, the average difference between estimated and

37

0

10

20

30

40

50

60

0 50 100 150 200 250
Time (s)

P
ow

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

Figure 2.8: Total measured and modeled runtime power forequake.

0

1

2

3

4

5

0 50 100 150 200 250
Time (s)

P
o

w
er

 [
W

at
ts

] L1 cache

Data TLB

FP Exec

Inst Dec

Ucode ROM

RETIRE

Figure 2.9: Estimated power breakdowns forequake.

measured power is around 3 Watts, with the worst case beingequake (Figure 2.8), with

a 5.8W difference. For the standard deviation, the average difference between estimated

and measured power is around 2 Watts, with the worst case being vortex, with a standard

deviation difference of 3.5W.

2.4.3 Desktop Applications

In addition to SPEC applications, we investigated three Linux desktop applications as well.

These help demonstrate our power model’s ability to estimate power behavior of practical

desktop programs. Because of their interactive nature, these applications typically present

periods of low power punctuated by intermittent bursts of higher power. The three appli-

cations, shown in Figure 2.11, are AbiWord for text editing,Mozilla for web browsing and

Gnumeric for numerical analysis.

In the web browsing experiment in Figure 2.11(a), the power traces represent opening

the browser, connecting to a web page, downloading a streaming video and closing the

38

0

10

20

30

40

50

Gzip Vpr
Gcc

Cra
fty

Pars
er

Gap

Vor te
x

Bzip
2

Twolf
Mesa Art

EquakeA
ve

ra
g

e
P

o
w

er
 [

W
at

ts
] Overall (Measured)

Overall (Model)

Non-Idle
(Measured)

Non-Idle (Model)

(a) Average power

0

5

10

15

20

Gzip Vpr
Gcc

Cra
fty

Pars
er

Gap

Vor te
x

Bzip
2

Twolf
Mesa Art

EquakeP
o

w
er

 S
td

 D
ev

 [
W

at
ts

] Overall (Measured)

Overall (Model)

Non-Idle
(Measured)

Non-Idle (Model)

(b) Power standard deviation

Figure 2.10: Average (top) and standard deviation (bottom)of measured and counter esti-
mated power for the SPEC2000 benchmarks. For each benchmark,the first set of power
values represents averaging and standard deviation over the whole runtime of the program.
The second set represents averaging and standard deviationonly over non-idle periods.

browser. In the text editing experiment in Figure 2.11(b), the power traces represent open-

ing the editor, writing a short text, saving the file and closing the editor. In the Gnumeric

example in Figure 2.11(c), the power traces represent opening the program, importing a

large data set, performing statistics on the data, saving the file and closing the program.

The power traces reveal the bursty nature of the total power timeline for these benchmarks.

Overall, the long idle periods mean that the benchmarks havelow average power dissi-

pation. The power traces for the desktop applications also reveal that our counter-based

power model follows even very low power trends with reasonable accuracy. Together with

the SPEC results, this demonstrates that our counter-basedpower estimates can perform

reasonably accurate estimations independent of the range of power variations produced by

39

5

10

15

20

25

30

35

40

45

50

55

0 40 80 120Time (s)

P
ow

er
 [W

at
ts

]

(a) Mozilla

5

10

15

20

25

30

35

40

45

50

55

135 160 185 210Time (s)

P
ow

er
 [W

at
ts

]

(b) AbiWord

5

10

15

20

25

30

35

40

45

50

55

220 270 320 370Time (s)

P
ow

er
 [W

at
ts

]

(c) Gnumeric

Figure 2.11: Total measured (light) and counter estimated (dark) runtime power for 3 desk-
top applications.

different applications, without any realistic bounds on the observed timescale.

2.5 Related Work

While there has been significant work on processor power estimations, much has been

based only on simulations. Our approach, in contrast, uses live performance counter mea-

40

surements as the foundation for an estimation technique.

One category of prior work involves live measurements of total power. While these are

numerous, we touch on a few key examples here. In early work, Tiwari et al. developed

software power models for an Intel 486DX2 processor and DRAM and verified total power

with real measurements [168]. This work developed instruction energy cost tables and

demonstrated inter-instruction effects. Russell and Jacome presented a software power

model for i960 embedded processors, validated using current measurements [142]. Flinn

et al. developed the PowerScope tool, which maps consumed energy to program structure

at procedural level [51]. More recently, Lee et al. used energy measurements based on

charge transfer to derive instruction energy consumption models for a RISC ARM7TDMI

processor [113]. This study used linear regressions to fit the model equations to measured

energy at each clock cycle. These techniques are aimed at very simple processors with

almost no clock gating, and therefore need to track and modelonly minimal temporal

power variations.

As a first example of Pentium 4 power measurement studies, Seng and Tullsen inves-

tigated the effect of compiler optimizations on average program power [148]. They use

real measurements to track the processor power. However, they do not present total and

component-level power estimations.

Another category of prior work is on performance counters and power metrics. For ex-

ample, Bellosa uses performance counters to identify correlations between processor events

for an Intel Pentium II processor [13]. This counter-based energy accounting scheme is

used as a feedback mechanism for OS directed power management such as thread time ex-

tension and clock throttling. Likewise, the Castle tool, developed by Joseph and Martonosi

[93], uses performance counters to model component powers for a Pentium Pro processor.

It provides comparisons between estimated and measured total processor power. Our work

makes significant extensions in both infrastructure and approach in order to apply counter-

based techniques to a processor as complex as the P4. Kadayifet al. use performance

41

counter information to estimate memory system energy consumption for an UltraSPARC

processor [95]. They collect memory related event statistics which are applied to an analyt-

ical memory energy model. Last, Haid et al. [62], propose a coprocessor for runtime energy

estimation for system-on-a-chip designs. Essentially, the goal of this work is to design a

set of event counters specifically for power measurement.

2.6 Summary

This chapter presented an overview of our real-system powerand performance monitoring

methods. It has described a complete view of our real-systemexperimentation framework

for our power-oriented research. It has discussed the general experimentation principals of

runtime performance monitoring, power measurement and estimation. As such, this chap-

ter provides the high-level view of our general research andevaluation methods, applied

throughout this thesis.

Following from the overview of the experimentation basics,this chapter has also pre-

sented our runtime power estimation methodology based on hardware performance coun-

ters for a modern processor with highly variable power behavior. This framework performs

power estimations for both the overall processor power consumption and for the individ-

ual architectural units within the processor. The resulting power estimations are validated

against real power measurements at runtime. The experimental results showed that our

power estimations track even very fine trends in program power behavior closely, and can

accurately estimate processor power consumption at all levels of CPU utilization.

There are several key contributions of this chapter. First,it lays out a general experi-

mentation approach carried out in the following chapters ofthis thesis. The measurement

and estimation framework offers an alternative to purely simulation-oriented power re-

search. Our runtime power estimations demonstrate a promising and practical methodology

for tracking architectural power behavior in real-system power and thermal management

techniques. The component power breakdowns offer architecture-level detail to runtime

42

workload power characteristics, which is useful for both characterization and adaptation

purposes. Starting with the next chapter, we build upon thismonitoring and estimation

framework for several research goals. We use the generated component power estimates

to characterize power phase behavior of applications and toidentify repetitive application

execution. We use real-system power and performance monitoring to accurately predict

future application behavior and to guide workload-adaptive dynamic power management.

43

Chapter 3

Power Oriented Phase Analysis

Most workloads exhibit considerable variations in execution behavior during their life-

times. These different execution characteristics that areobserved during workload execu-

tion are commonly referred to asphasesof a workload. Due to large loops at program scale,

and procedure-based execution nature, these phases also generally show certain repetitive

patterns. While this workload phase behavior has long been observed [39], in recent years

application phase behavior has seen growing interest with two main goals. Some seek to

identify program phases in order to select representative points within a run to study or

simulate [6, 72, 109, 137, 151, 152]. Others seek to recognize phase shifts on-the-fly in

order to perform optimizations such as dynamic adaptationsin cache organization, volt-

age/frequency scaling, thermal management, or even dynamic compiler optimizations of

hotcode regions [11, 14, 41, 76, 90, 155].

While most of the prior phase analysis studies focus on performance characteristics of

applications, runtime power behavior also exhibits significant phase behavior. Moreover,

this power phase behavior gets emphasized with emerging processor generations due to

increasingly aggressive power management techniques [15,185]. Different programs with

similar average power can show significantly different power variations. Likewise, a single

program with stable total power can have distinctively different power behavior—in terms

of the decomposition of power to the architectural units—indifferent execution phases.

44

This chapter demonstrates a phase analysis method which relates directly to power.

Our analyses use estimated power dissipations of processorcomponents—such as cache

and integer ALU—to identify the phases a program goes through during its execution. We

consider these component power estimates, orpower vectors, as characteristic features of

application power behavior. After describing our phase characterization methodology, this

work also evaluates how these features perform in comparison to features used in prior

studies for power phase characterization [41, 90, 152]. Themost important aspect of this

work is that it uses power signatures of programs and therefore, presents a direct and ac-

cessible way to analyze power phase behavior. The power vectors used in our analyses

are acquired at runtime. Therefore, they are directly applicable to runtime, phase-driven

dynamic adaptation techniques.

The power phase analysis described in this chapter offers three primary contributions to

the existing research. First, this work demonstrates the advantage of using event-counter-

based power vectors for power phase characterization. Second, representative power vec-

tors, generated as part of similarity analysis, can be used as program power signatures in

power oriented studies. Third, as this analysis is based on areal system, it can directly

be utilized in power aware research for runtime phase identification. With the ability to

identify recurring phases over large scales of execution, our technique can also be used for

system-level dynamic management [17, 30, 63, 64, 74, 130, 176, 184].

3.1 Characterizing Workload Power Behavior with Power Vectors

Applications exhibit phases at various time granularitiesand with different characteristics.

For example, benchmarks can exhibit different phases with different datasets even though

the observed total power may remain similar. On the other hand, within a single dataset a

benchmark may go through different phases such as initialization, computation and report-

ing [6, 85, 88, 108, 151, 169]. Figures 3.1 and 3.2 show two benchmarks, SPEC2000gap

andgzip, wheregap shows distinct phases for a single dataset andgzip shows periodic

45

0

10

20

30

40

50

60

0 50 100 150 200 250

Time (s)

P
ow

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

(a) Gap total power

0

1

2

3

4

5

6

0 50 100 150 200 250
Time (s)

P
ow

er
 [W

at
ts

]

L2 Cache

L1 cache

INT Exec

Ucode ROM

Schedule

(b) Gap component power breakdowns

0

1

2

3

4

5

6

0 50 100 150 200 250
Time (s)

P
ow

er
 [W

at
ts

]

10 per. Mov. Avg.
(L2 Cache)

10 per. Mov. Avg.
(L1 cache)

10 per. Mov. Avg.
(INT Exec)

10 per. Mov. Avg.
(Ucode ROM)

10 per. Mov. Avg.
(Schedule)

(c) Filteredgap power breakdowns

Figure 3.1: Total and component-wise power traces forgap.

phases within a dataset as well as recurring phases across its 5 datasets. The sampling

period used in these measurements is 400ms. The figures also include plots for power

breakdown traces filtered with a 10 point moving average so that we filter down higher fre-

quency phase components and look at distinct phases at the larger whole execution scale.

The power traces shown in Figures 3.1 and 3.2 demonstrate twoimportant observations.

First, program power behavior exhibits phase behavior, similar to performance metrics such

as IPC and miss rates. Additionally these phases may not be visible intotal power observa-

46

0

10

20

30

40

50

60

44 94 144 194 244 294 344 394 444

Time (s)

P
ow

er
 [W

at
ts

]

MEASURED POWER COUNTER ESTIMATED POWER

(a) Gzip total power

0

1

2

3

4

5

6

44 144 244 344 444
Time (s)

P
ow

er
 [W

at
ts

]

L2 Cache

L1 cache

INT Exec

Ucode ROM

Schedule

(b) Gzip component power breakdowns

0

1

2

3

4

5

6

44 144 244 344 444
Time (s)

P
ow

er
 [W

at
ts

]

10 per. Mov. Avg.
(L2 Cache)

10 per. Mov. Avg.
(L1 cache)

10 per. Mov. Avg.
(INT Exec)

10 per. Mov. Avg.
(Ucode ROM)

10 per. Mov. Avg.
(Schedule)

(c) Filteredgzip power breakdowns

Figure 3.2: Total and component-wise power traces forgzip.

tions, but can be hidden in the variations of power vectors. Second, the runtime technique

observes large scale phase behavior in the order of tens of seconds. For most workloads,

executing the first few billions of instructions, which correspond to a few seconds of actual

execution, can produce a misleading view of program power behavior [35]. Thus, these

two observations set the fundamental principals of our power phase analysis research: to

focus on large-scale power behavior of whole programs and toidentify regions that can

accurately represent program power behavior.

Our power phase analysis considers power vectors as points in the positive quadrant of

47

the power space spanned by the 22 dimensions of these vectors. As each power vector cor-

responds to a specific execution time sample in the program trace, we evaluate the power

behavior similarity of execution regions by measuring the spatial closeness of the points

specified by the corresponding power vectors. We use the Manhattan—L1—distance be-

tween two vectors as our measure of closeness; it is defined asthe absolute difference of

vector elements summed over all vector components.

We record the Manhattan distances for all vector pairs in an upper diagonalsimilarity

matrix in execution order. Matrix entry(r,c) shows the Manhattan distance between the

power vectors corresponding torth andcth execution time samples. Only the upper diagonal

needs to be constructed, as distance from therth vector to thecth is identical to distance

from thecth vector to therth. The matrix entries are nonnegative real numbers. A “0” at

entry(r,c) represents a perfect similarity between execution samplesr and c, while higher

values represent higher dissimilarity. The execution timeflow is along the matrix diagonal.

For an execution pointr, entries in the upper column(r i < r, r) represent its similarity with

respect to previous samples, while the entries in the right row (r,ci > r) represent similarity

with respect to samples in the forward path.

We visually demonstrate the power similarity matrices in terms ofmatrix plotsthat are

aligned with the execution timeline along the diagonal, where the top left corner represents

the start of the timeline and the lower right corner represents the end of the timeline. The

matrix entries are presented as greyscale pixels, where theshading is scaled from white,

for maximum dissimilarity, to black, for perfect similarity. Figure 3.3 shows a simplified

example of our similarity analysis. In this figure we consider four time samples, each

as five dimensional vectors. The diagonal-symmetric, 4 by 4 similarity matrix stores the

Manhattan distances between vector pairs, which is then represented in the matrix plot.

48























1

1

3

5

2

010810

10066

8608

10680

010810

10066

8608

10680

0 1 2 3 0 1 2 3 0 1 2 3

0

1

2

3

0

1

2

3

0

1

2

3





















3

1

2

3

5























1

2

3

2

4























3

5

3

4

1

Figure 3.3: Similarity analysis example with four time samples represented as five dimen-
sional vectors.

3.2 Similarity Metrics

While the initial similarity measure provides satisfactoryresults for vectors with similar

norms, it inherently considers vectors with small magnitudes similar regardless of the dis-

tribution of power. The initial absolute vectors distinguish regions with high power well.

However, they cannot discern low-power regions with different power distributions as their

absolute similarity distance remains relatively small. Onthe other hand, considering nor-

malized vectors helps distinguish small-magnitude vectors with different compositions eas-

ily as normalized vectors focus primarily on how power is distributed among vector com-

ponents. However, normalized vectors cannot differentiate between vectors with different

norms and similar component ratios. In refining our similarity analysis, we use a more

restrictive approach in order to distinguish cases where vector magnitudes or component

ratios are different, even for vectors of smaller magnitudes. Therefore, we use normalized

vector distances in conjunction with the original absolutevectors.

We first construct the similarity matrix based on the absolute power vectors from Man-

hattan distances of all vector combination pairs. A single matrix entry,AM(r,c) for this

absolute metric, is computed as shown in Equation 3.1, wherePVr,c represent the sample

power vectors andi ∈ {1,2, . . . ,22} correspond to vector component indices.

AM(r,c) =
22

∑
i=1

|PVr(i)−PVc(i)| (3.1)

In a similar fashion, we construct the similarity matrix based on only normalized power

49

vectors from the Manhattan distances of all the combinationpairs of normalized power

vectors. We compute a single matrix entryNM(r,c) as shown in Equation 3.2, where

NPVr,c represent the sample normalized power vectors.

NM(r,c) =
22

∑
i=1

|NPVr(i)−NPVc(i)| (3.2)

The reason behind normalization is to emphasize the differences between the distri-

bution of power into the vector components. In other words, the similarity metric demon-

strated here is based on the relative ratios of component powers independent of vector mag-

nitudes. Consequently, the similarity matrix discriminates small magnitude power vectors

better than the original approach.

Both normalized and non-normalized techniques tend to disregard certain types of dis-

similarities. Therefore, in order to restrict ourselves tosimilarities that satisfy both cases,

we developed an intersection of the above two matrices so that two vectors are considered

similar only if they are similar under both measures. We perform this by adding the two

matrices after normalizing each to unity in order to weight both measures equally. We then

limit the resultant matrix elements to a maximum value of 1. That is, 1 is representative

of maximum dissimilarity and 0 corresponds to perfect similarity. We perform a limiting

operation, rather than normalization, after adding the twomatrices in order to achieve a

final similarity metric which emphasizes dissimilarities.In other words, we want a simi-

larity and a dissimilarity to result in dissimilarity. Consequently, the final similarity matrix

is constructed from the two previous similarity matrices asshown in Equation 3.3, where

SM, AM and NM represent final, original and normalized similarity matrices respectively.

SM(r,c) = min





AM(r,c)

max
r ′,c′

(

AM(r ′,c′)
) +

NM(r,c)

max
r ′,c′

(

NM(r ′,c′)
) ,1



 (3.3)

The matrix plot representing this final similarity metric isshown in Figure 3.4(a) for

thegzip benchmark. This final plot identifies both ratio based and magnitude based dis-

50

44

88

132

176

220

264

308

352

396

440

Tim
e [s]

(a) Similarity based on power vectors

44

88

132

176

220

264

308

352

396

440

Tim
e [s]

(b) Similarity based on total power

Figure 3.4: Similarity matrices based on power vectors and total power.

similarities relatively well. Moreover, the emphasis on dissimilar regions also provides

much sharper distinction between the degrees of similarities. To provide a comparison, we

also show the observed similarity information by considering solely total power in Figure

3.4(b). Here, the similarity information is calculated by considering total power as a single

dimensional power vector. Therefore, the similarity matrix directly corresponds to the vari-

ation of absolute total power difference among execution points. Each matrix entry(r,c)

is computed as|Pr −Pc|, wherePr,c represent the total power samples at execution pointsr

andc. In comparison to Figure 3.4(b), the final similarity matrixplot reveals significantly

higher information regarding program power phases, both atlower power and higher power

execution regions.

This final similarity metric demonstrates that power vectorbased phase analysis pro-

vides detailed insight into workload power behavior, whichcannot be directly observed

from total power. It identifies several regions with distinct power characteristics, which are

considered to have similar behavior from total power observations. In the rest of this chap-

ter, we utilize this similarity metric to identify program phases and to characterize program

power behavior.

51

3.3 Representing Execution with Signature Vectors

One primary aim of power phase analysis is to achieve a small characteristic set of exe-

cution phases that capture most of the workload’s power behavior. This set of phases are

useful for representative evaluations of workload characteristics by monitoring a small por-

tion of the overall application. Moreover, the sequence of the observed phases can guide

phase-driven, runtime adaptations. Our methodology is best described as “representative

sampling” [169], where we identify a small set ofexecution pointsthat are representative

of the overall power traces of programs. Second, we also define a set ofrepresentative

power vectors, which are not directly associated with execution points. Instead, they define

a program “signature” based on their component powers and their ordering in the timeline.

These signature vectors can be used in program identification and phase prediction.

For both of these problems, we use various clustering algorithms to group execution

points. Here, we demonstrate our results with a simple runtime thresholdingor first pivot

method. Later we consider more elaborate clustering methods. In the thresholding method,

we specify a threshold as a percentage of maximum dissimilarity between sample pairs.

Then, as the execution moves forward in time, we identify samples that lie within the

threshold criterion. The thresholding algorithm performsthis similarity grouping to gener-

ate agrouping matrix. Similar to the initial similarity matrix, the grouping matrix illustrates

which other points are similar to each execution point for a given threshold. To divide ex-

ecution into sets of phases, we consider each new execution sampler that does not fall

into a prior phase category as apivot. In the forward execution path, we identify the points

(r,ci > r) that lie within a threshold distance ofr and tag the corresponding execution points

ci as the same group.

There are three primary components of our workload power behavior characterization

technique:(i) generating representative vectors,(ii) selecting execution points, and(iii)

reconstructing power traces using these representative samples. We describe the basics of

each of these steps here.

52

Generating Representative Vectors:To represent workload power behavior with a small

set of signature vectors, we define a representative vector for each phase group, which is the

set of all vector instances belonging to that phase. Consequently, the number of phases is

equal to the number of representative vectors for a given trace. Each representative vector

is the component-wise arithmetic average of all the vectorsbelonging to the corresponding

group.

Selecting Execution Points:Unlike representative vectors, the execution points referto

actual regions in workload execution. These points identify characteristic regions with

specific power behavior that can be used for more detailed exploration of power behavior,

in a similar fashion as proposed in simulation studies [27].In our approach, we choose the

earliest occurring member of each group—the pivot—as the selected execution point for

that group. Thus, as the distance between the startpoint of agroup and all other members

of the group is always bounded by the given threshold, we can always formally specify an

upper bound on the amount of difference between the originally estimated power and our

power approximation based on the selected set of power vectors.

Reconstructing Power Traces:The definitions of representative vectors and selected ex-

ecution points can characterize overall execution with a small set of vectors. For each

sample, the representative vector for the corresponding phase the sample belongs to is that

sample’s power vector. Thus, we reconstruct the whole powertrace with only the represen-

tative vectors. Similarly, with the selected execution points, we identify the corresponding

power vectors and construct the power trace based on the selected execution point vectors.

These approaches closely approximate original application power behavior with minimal

information.

3.3.1 Representation Accuracy with Power Phases

Here, we quantify our approximation error with respect to the actual application power.

Figure 3.5 shows the reconstructed power traces together with the actual power behavior

53

5

15

25

35

45

55

0 100 200 300 400 500
Time (s)

P
o

w
er

 [
W

]

MEASURED_POWER RECONSTRUCTED_POWER

0%

2%

4%

6%

8%

10%

0 100 200 300 400 500

Time (s)

E
rr

o
r

(a) Error for representative vectors

5

15

25

35

45

55

0 100 200 300 400 500
Time (s)

P
o

w
er

 [
W

]

MEASURED_POWER RECONSTRUCTED_POWER

0%

2%

4%

6%

8%

10%

0 100 200 300 400 500

Time (s)

E
rr

o
r

(b) Error for selected execution points

Figure 3.5: Reconstructed power behavior and absolute errorin total power estimates for
gzip reconstructed from representative vectors and selected execution points.

for both representative vectors and selected execution points for thegzip benchmark. In

the lower plots, the figure also shows the absolute error in reconstructed total power for

54

both cases. In this example, we classifygzip execution into approximately 7 phases per

dataset with the first pivot method using a 10% similarity threshold. Thus, the reconstructed

power traces rely on around 1% of the actual execution information to capturegzip’s power

behavior.

The errors for representative vectors and vectors based on selected execution points

differ in one major aspect. Since the startpoints of groups are the selected execution points,

the sum of absolute errors for components is always within the specified threshold for

selected execution points while the errors for representative vectors are not necessarily

bounded with the same threshold. However, as the representative vectors are the averages

of each group, they have a lower average error over the whole timeline. For representative

vectors, the RMS error is 2.31W (4.9%), while for execution points, the RMS error is

3.08W (6.6%).

Finally, Figure 3.6 shows a summary of the experiments with different applications.

This figure shows the average variation between actual and reconstructed power for dif-

ferent numbers of phases. In addition, it shows the maximum and minimum observed

variation among the tested applications. For a specific phase number, the whole power

behavior is characterized with the same number of representative vectors. The variations

are averaged over all applications. As the number of phases increase, the characterization

accuracy improves and reconstructed power behavior converges to the actual power with

increasing number of phases.

The important observation in Figure 3.6 is that a small number of power phases can

capture the most of the application power behavior. For mostapplications around 10 dif-

ferent phases can represent overall power variation of applications within 5% of the actual

power. This typically corresponds to less than 1% of the whole execution.

Overall, these results demonstrate that power phase analysis with event-counter-based

power vectors and the composite similarity metric can effectively capture varying workload

power behavior. The following sections evaluate our phase characterization in more detail,

55

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0 10 20 30 40 50
Number of Phases

P
o

w
er

 V
ar

ia
ti

o
n

Figure 3.6: Average variation from actual power for the SPECapplications with different
number of phases together with the maximum and minimum variation bands for different
applications.

employing comparative studies with other existing representation features.

3.4 Comparing Event-Counter-Based Phases to Control-Flow-Based

Phases

While the previous sections have focused on event-counter-based program characteriza-

tions with power vectors, various prior studies have demonstrated that phase behavior can

be observed via different features of applications. The rest of this chapter compares how our

phase characterizations perform relative to the existing phase analysis approaches. Most

of these approaches fall into two main categories: In the first category, application phases

are determined from the control flow of the applications or the program counter (PC) sig-

natures of the executed instructions [41, 72, 90, 109, 137, 151, 152, 153]. In the second

category, phases are determined based on the performance characteristics of the applica-

tions [14, 35, 44, 84, 169, 176].

Although there have been some previous efforts to compare orevaluate phase charac-

terization techniques [6, 40, 108], they do not perform a direct comparison of the two main

approaches, namely control-flow-based and event-counter-based phases. Moreover, there

is generally a missing link between phase characterizations and the ability to use them to

represent power behavior, especially on real systems. Suchpower characterization is very

56

important for real systems, as a primary goal of phase characterization is dynamic power

management of running systems.

This study primarily evaluates these techniques for accurate power behavior character-

ization on a real system. We compare these with respect to theactual, measured runtime

power dissipation behavior of applications. Specifically,we look at phase analysis based on

basic block vector (BBV) features of an application [152] to determine regions of similar

power behavior. We compare this to phases determined by a particular set of performance

monitoring counter (PMC) events that are chosen to reflect power dissipation [85]. We test

the power characterization accuracy of these methods on 21 benchmarks from SPEC2000

suite and 9 other benchmarks derived from commonly used desktop and multimedia ap-

plications. In general, tracking performance metrics performs better than tracking control

flow in identifying power phase behavior of applications. Additionally, specific examples

from real applications demonstrate cases where power phasebehavior cannot be deduced

from code signatures.

3.5 Dynamic Instrumentation Framework

To collect synchronous control flow, event counter and powerinformation during an ap-

plication’s execution, we use dynamic instrumentation viaPin [121]. Pin provides several

flexible methods to dynamically instrument the binary at different granularities. This first

step,instrumentation, simply decides where in the native code the additional procedures

to analyze the application behavior should be inserted. Afterwards, whenever one of these

instrumentation checkpoints is reached, Pin gains controlof the application and injects

corresponding analysis routines. During execution, each time the instrumented locations

are visited, their injected analysis routines also execute, providing the dynamic applica-

tion information. This second phase of operation is calledanalysis. Pin utilizes a single

executable,Pintool, to perform instrumentation and analysis on an application.

Figure 3.7 presents an overview of the experimental setup for power phase analysis with

57

Analysis Instrumentation

Application Binary

Instrument
trace heads

Sample
trace head
addresses

Pintool

Performance
Counter

Hardware

Collect performance
event rates /
reset counters

start / stop
counters

OS serial
device file

Read / flush
device file

detach / attach
device file to
serial port device
counters

Machine
Under Test

External Power

Measurement via
Current Probe

Figure 3.7: Experimental setup for power phase analysis with Pin.

Pin. The Pintool uses trace-level instrumentation to keep track of executed code traces.

The analysis routine consists of three levels of hierarchy.The first level simply provides an

account of executed instructions. This is implemented as aninlined conditional at the trace

level to improve performance and to avoid perturbing power behavior. The instrumented

traces include multiple basic blocks consisting of around 50 instructions. The second level

samples one PC address approximately every 1 million instructions. The highest level

analysis is invoked every 100 million instructions. This routine generates one BBV from

the 100 PC samples, reads performance statistics from PMCs and logs the measured power

history from the serial device file. These three sources of data collection are shown with

the three incoming arrows to the analysis routine of the Pintool.

It is important to isolate application behavior from Pin operation. Pin provides control

flow information about the application on its own. However, performance monitoring and

power measurements are out of Pin’s control. Therefore, Pinroutines disable data logging

for power and performance at routine entries, and reenable data logging at routine exits.

Under Pin execution, instrumentation and analysis are temporally intermixed. Therefore,

we use these handles during both instrumentation and analysis.

External, live power measurements provide real power information to compare with

the power phase characterizations. Power measurements areperformed by measuring the

current flow into the processor with a current probe. This measurement information is then

58

fed back to the measurement system over the serial port interface.

To isolate the application power behavior from Pin analysisand instrumentation, we

use certain controls within the instrumentation and analysis routines of our Pintool. These

handles detach/attach the serial device driver from the device file at routine entries/exits

via termios flags. This approach preserves previous application power history, while pre-

venting further logging while inside an instrumentation oranalysis routine. At the end of

a 100 million instruction sampling period, the highest level analysis routine halts logging

and reads the logged power history for the past sampling period. This history is then av-

eraged and is assigned as the observed power for the past sampling quantum. Afterwards,

the buffer is flushed and reenabled for logging at the start ofthe next sampling interval.

Similar to the power measurement method, several handles control PMC monitoring

from within the Pintool. Pintool initialization first configures the events to be monitored.

This is the most heavyweight operation, but it only occurs once, before the application ex-

ecution commences. We selectively halt/start performancemonitoring at instrumentation

and analysis routine entries/exits. This is used to avoid polluting the PMC information with

Pin execution. Although we provide the start/stop handles to all routines, after our initial

experiments we do not invoke them for instrumentation and the second level analysis rou-

tines, as their costs are comparable. This trade-off only affects PMC information without

any effect on control flow information and power measurements. The highest level analy-

sis routine reads the past PMC statistics and resets the counters for the following sampling

period.

3.5.1 Program Counter Sampling and BBV Generation

To track control-flow-based application phases, we use the BBVapproach [152]. BBVs

summarize application execution by tracking both which basic blocks of the application

are touched and how many times each basic block is visited during a sampling interval.

BBVs represent application execution behavior by providing both working set information

and execution frequencies for different basic blocks [40].BBVs are constructed from exe-

59

cution flow by mapping executed PC addresses to the basic blocks of an application binary.

Originally, each component of a BBV is a specific basic block, and the magnitude of the

component represents how often the corresponding basic block has been executed for a

past sampling period. For practical purposes, BBVs are generally mapped into smaller di-

mensional vectors via random projection/hashing, component analysis, or the elimination

of the least significant dimensions [6, 46, 152, 153, 182, 183].

Our implementation uses Pin to sample the PC addresses at trace heads. As each trace

head is also a basic block start address, each sampled PC actually corresponds to a specific

basic block. For sampling periods, we sample one PC every 1 million instructions similar

to prior work [6] and construct a BBV at every 100 million instructions. Thus, each BBV

has anL1-norm—sum of vector components—of 100. To apply dimensionreduction, we

choose 32 buckets based on previous work [153]. We use a variation of Jenkins’ 32 bit

integer hash function [91] to reduce the large and variable BBVdimensions into common

32 dimensional vectors. As has been discussed in previous studies [108], sampling al-

ways incurs some amount of information loss. Therefore, we compare full-blown BBVs,

constructed from complete PC information, to our sampled BBVswith similarity matrices

[152]. Both methods reflect the major phase content in terms ofexecution flow similarity

and lead to similar phases for small numbers of target phase clusters.

3.5.2 Using Performance Counters to Generate PMC Vectors

The original power vectors are 22-dimensional vectors thatrequire four counter rotations to

collect. To use this information in the dynamic instrumentation framework without incur-

ring too much reconfiguration overhead, we reduce this original event counter set to a final

set of 15 PMC events that can be monitored simultaneously without conflicts. Therefore, no

PMC configuration is required except at the initial Pintool startup. Factor analysis [42] is

used to choose the reduced set of event counters. This process works by eliminating highly

correlated dimensions. We call these reduced dimension vectorsPMC vectors. While the

original 22-dimensional vectors were developed to providea one-to-one mapping between

60

the physical processor components and the estimated power breakdowns, such a mapping

is not directly required for tracking power phases. The reduced set of PMC vectors per-

form almost identically to the original power vectors in identifying phases. The complete

list of chosen performance counters are shown in Table 3.1 together with the applied mask

configurations that define the particular event subsets we choose to track.

PMC Event Mask Description
IOQ_allocation 0x0EFE1 I/O Queue and Bus Sequence Queue

allocations from all agents
BSQ_cache_ref 0x0507 L2 cache read and write accesses
FSB_data_activity 0x03F Front Side Bus utilization for reading,

driving or reserving the bus.
ITLB_reference 0x07 ITLB translations performed
uop_queue_writes 0x07 All �ops written to the �op queue
TC_deliver_mode 0x038 Number of cycles the processor is

buiding traces from instruction decode
uop_queue_writes 0x04 �ops written to the �op queue by

microcode ROM
x87_FP_uop 0x08000 All x87 floating point �ops executed
LD_port_replay 0x02 Number of replays at the load port
x87_SIMD_moves 0x018 Executed x87, MMX, SSE and SSE2

load, store and register move �ops
ST_port_replay 0x02 Number of replays at the store port
branch_retired 0x0F All branches retired
uops_retired 0x03 Number of �ops retired
front_end_event 0x03 Number of loads and stores retired
uop_type 0x06 Tags load and stores (Does not count)

Table 3.1: The set of chosen performance counter events and mask configurations.

Every 100 million instructions, we collect the performanceevent counts and cycle count

for the past sampling period. We then convert these event counts into per-cycle rates. These

15 event rates are then used to construct the 15 dimensionalPMC vector, which gauges the

similarity of execution samples in a similar manner as BBVs.

3.6 Phase Classification

We cluster BBV and PMC vector samples into phases with multipleclustering algorithms.

First, a runtimeFirst Pivot Clusteringmethod assigns samples to phases as they are ob-

served. We also experiment with a more detailed method, namely Agglomerative Cluster-

ing [42]. There are two variations of this method:complete linkageandaverage linkage.

The original first pivot method provides an upper bound to thedistance within each

61

phase, but it does not guarantee a fixed number of phases. We change this to an iterative

process, where the threshold is changed dynamically based on the acquired number of

phases. With this modification, we classify both BBVs and PMC vectors into 5 final phases

after a few iterations.

Agglomerative clustering is a tedious bottom-up approach for clustering samples into

phases. In this approach, the clustering algorithm starts with an initial solution ofN clus-

ters, whereN is the number of samples. At each iteration, the algorithm compares all pair-

wise combinations of the current set of clusters and finds thebest candidate pair of clusters

to combine into a single cluster. The pairs are compared based on alinkagecriterion, which

determines the best candidates. We experiment with two types of linkages, complete and

average linkage. Average linkage compares the average distance between all sample pairs

belonging to two different clusters. For two clusters withi and j samples respectively, it

computes the distance between all thei · j pairs and finds the average distance between the

clusters. It chooses to combine two clusters with the minimum average distance. This leads

to clusters with similar ranges in all dimensions. Complete linkage compares the maximum

pairwise sample-distance among clusters. It combines the clusters with the least maximum

distance among all their pairs. Consequently, the final set ofclusters have similar ranges

among most of their samples, although the range across each dimension can be different.

3.6.1 Evaluating Phase Classifications

We evaluate the quality of generated phase clusters by comparing the measured power at

each sample to the aggregate power for the whole cluster the sample belongs to. For a

benchmark withN samples, each samplei (i = 1, . . . ,N) is an element of one of the final

phase setsPj (j = 1, . . . ,5). Each sample has a corresponding set of data[bbvi, pmci, pwri],

wherebbvi andpmci are the corresponding BBV and PMC vectors used during phase clus-

terings, andpwri is the measured power value during samplei’s execution. For each phase

Pj , we compute a “representative power”,Rj , as the arithmetic average of the power values

for the totalNj samples belonging to that phase. Then, for each samplei, we compute the

62

squared difference between the sample’s actual power valuepwri and the representative

powerRj for its owner phasePj . We denoteRj values corresponding to each samplei with

RSi. For example, for a samplek that belongs to phaseP2, RSk = R2. The rooted average of

the squared differences over all samples is the final RMS errorfigureERMS. Equation 3.4

summarizes this error computation.

Rj =

∑
i∈Pj

pwri

Nj
(j = 1, . . . ,5)

ERMS=

√

√

√

√

√

N

∑
i=1

(pwri −RSi)
2

N (3.4)

To gauge the ability of the phase classification techniques to discern application power

behavior, we also provide the error boundaries that can be achieved with perfect knowledge

of power information—a lower bound—as well as without any knowledge of application

behavior—an upper bound. To compute lower error bounds, we look directly at the mea-

sured power. We apply all three clustering algorithms to each benchmark’s power infor-

mation and for each case choose the smallest error value achieved. This “gold standard”

measure is thebaseline errorin our results. For the upper error bounds, a separate cluster-

ing method assigns each sample to any of the final target phases randomly, without using

any application behavior information. We refer to the results of this “uninformed” phase

characterization asrandom error.

Our experiments use 11 SPECint benchmarks—all exceptperlbmk due to compilation

problems—and 10 SPECfp benchmarks—excluded are F90 benchmarks. We experiment

with all reference datasets for the 21 SPEC benchmarks leading to a total of 37 different

experiments. In addition to SPEC, we also use 9 other benchmarks from previous studies

and derived from well-known applications. These benchmarks areghostscript, dvips,

gimp, lame, cjpeg, djpeg, mesh, stream andmdbnch. For some cases, we alter the dataset

63

0
1
2
3
4
5
6
7
8
9

10

gz
ip

_g
ra

ph
ic

gz
ip

_l
og

gz
ip

_p
ro

gr
am

gz
ip

_r
an

do
m

gz
ip

_s
ou

rc
e

vp
r_

pl
ac

e

vp
r_

ro
ut

e

gc
c_

16
6

gc
c_

20
0

gc
c_

ex
pr

gc
c_

in
te

gr
at

e

gc
c_

sc
ila

b

m
cf

_i
np

cr
af

ty
_i

n

pa
rs

er
_r

ef

eo
n_

co
ok

eo
n_

ka
jiy

a

eo
n_

ru
sh

m
ei

er

ga
p_

re
f

vo
rt

ex
_l

en
di

an
1

vo
rt

ex
_l

en
di

an
2

vo
rt

ex
_l

en
di

an
3

bz
ip

2_
gr

ap
hi

c

bz
ip

2_
pr

og
ra

m

bz
ip

2_
so

ur
ce

tw
ol

f_
re

f

A
V

E
 (

S
P

E
C

IN
T

)

R
M

S
 E

rr
o

r
[W

]

Random
BBV

PMC
Baseline

(a) SPECint benchmarks

0
1
2
3
4
5
6
7
8
9

10

w
up

w
is

e_
re

f

sw
im

_i
n

m
gr

id
_i

n

ap
pl

u_
in

m
es

a_
re

f

ar
t_

re
f1

ar
t_

re
f2

eq
ua

ke
_i

n

am
m

p_
in

si
xt

ra
ck

_i
n

ap
si

_r
ef

A
V

E
 (

S
P

E
C

F
P

)

d
vi

p
s

g
h

o
st

sc
ri

p
t

g
im

p

la
m

e

cj
p

eg

d
jp

eg

m
d

b
n

ch

m
es

h

st
re

am

A
V

E
 (

O
T

H
E

R
)

R
M

S
 E

rr
o

r
[W

]

Random
BBV

PMC
Baseline

(b) SPECfp and other benchmarks

Figure 3.8: Power characterization errors for BBV and PMC phases with agglomerative
clustering and complete linkage.

or iterations for the benchmarks to achieve longer execution times [88].

3.7 Phase Characterization Results

Although we perform our experiments for all clustering approaches, the observed results

are consistent regardless of clustering approach [88]. Therefore here Figure 3.8 shows

the overall results for only agglomerative clustering withcomplete linkage. Figure 3.8(a)

shows the results for the SPECint applications and Figure 3.8(b) shows the results for

SPECfp and other applications. The figures show the upper (random) and lower (base-

line) error bounds for each application and the achieved errors with BBV and PMC based

approaches. They also show the average accuracies for the SPECint, SPECfp and other

experimented benchmarks.

Comparing among the three sets of applications, SPECfp applications lead to relatively

low errors even with random phase clustering for some cases.This is due to the generic

flat power behavior of these benchmarks (applu, art, sixtrack, wupwise). In some other

cases, benchmarks go through specific initialization (i.e.equake) or periodic phases (i.e.

64

ammp) with significant changes in all control flow, performance and power features. In

these cases, both BBVs and PMCs achieve very good power characterizations approaching

baseline errors.

SPECint shows significantly higher errors for all approachesdue to higher variations

in behavior. In many cases, BBVs and PMCs have significant improvement over random

clustering. This shows the benefit of phase tracking for power behavior characterization.

Most of the other experimented benchmarks show significantly higher error ranges due

to their high power variability based on input data characteristics and functional behavior.

In these cases, applying phase analysis, especially with PMCs, proves to be very useful in

identifying similar power behavior.

Overall, for the three benchmark sets, BBVs achieve errors that are on average 48%

less than random clustering errors for benchmarks with non-flat power behavior. PMC

phases lead to 66% less error than random clustering. For thePMC based approach, power

characterization accuracies are 2-6X better than random clustering. Performing the same

comparisons with respect to baseline errors, BBVs achieve 2.9X higher error on average

compared to baseline, while PMC error is 1.8X of the baselinefigure. These comparisons

show that BBV and PMC phase analyses have significant benefit in characterizing power

behavior. However, there still exist opportunities to improve power phase behavior charac-

terization of applications.

As the above measures also indicate, in almost all experimented cases, our PMC based

phase analysis represents power behavior better than a BBV based approach. PMCs lead

to 2.2% and 1.4% errors for SPECint and SPECfp, while BBVs achieve3.4% and 1.5%

errors. For the other benchmarks, PMCs and BBVs have 7.1% and 14.7% average errors

respectively. For most of the benchmarks PMCs achieve 30-40%less errors than BBVs

with an average of 33%. Thus, although both techniques provide useful features to identify

power phase behavior, in general PMCs perform better.

Thus far, all analyses have used a fixed target number of 5 phases to enable meaningful

65

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

AVE RMS Error (BBV)
AVE RMS Error (PMC)

(a) Average error.

0

2

4

6

8

10

0 20 40 60 80 100

AVE MAX Error (BBV)
AVE MAX Error (PMC)

(b) Max error.

Figure 3.9: Variation of errors with respect to number of final phases.

averaging across benchmarks. However, we have also experimented with different numbers

of target phases to verify the reliability of our results. Figure 3.9 shows the achieved errors

as both RMS and maximum observed values. For each benchmark, we compute the RMS

and maximum error figure for each target phase count. Afterwards, we average these values

over all benchmarks to reach a single error figure for each target phase count.

Intuitively, for a single final phase, both BBVs and PMCs will reach the same error,

equivalent to the standard deviation of all the power samples of the benchmark. As the

number of phases increases, errors for both methods will decrease with different slopes.

As number of target final phases grows towards infinity, both error curves will converge to

0, i.e. where each phase is a singleton sample. Figure 3.9 shows the behavior up to 100

phases. As phase counts grow beyond 100, both curves approach 0. PMC based phases

perform consistently better, independent of the number of final phase clusters.

3.8 What Control Flow Information Does Not Show

There are multiple aspects of application behavior that cancause the control flow and per-

formance based approaches to reach different phase characterization conclusions.Dynamic

change in data localityduring an application’s execution can cause the power behavior to

significantly change. While this change can be easily recovered from memory performance

metrics, code signatures cannot reflect this as execution footprints are not altered.Effec-

tively same executionrepresents the converse of the above effect. In various applications,

multiple procedures or code segments perform similar processes, leading to practically

66

identical power behavior. These are considered as fairly different phases in terms of control

flow, which may result in many different phase clusters that do not reflect actual changes

in program power. Typical examples for these are scientific or other iterative processing

applications performing different tasks on an input with similar power/performance impli-

cations [68]. Operand dependent behaviormay result in similar effects as the first case,

where power and latency of a unit depends on the input operands, despite the same control

flow. Typical cases for these are overflow handling and scaling of execution based on the

input operand values or widths [22].

This section demonstrates two of these effects, operand dependent behavior and effec-

tively same execution based on observations from actual applications.

3.8.1 Operand Dependent Behavior

The stream benchmark shows a simple example of operand dependent behavior and its

implications on power.Stream performs four repetitive operations with simple vector

kernels. It operates on three vectors,a, b andc. The four operations arecopy(c[j] = a[j]),

scale(b[j] = scalar∗ c[j]), add (c[j] = a[j] + b[j]) and triad (a[j] = b[j] + scalar∗ c[j]).

It targets at measuring sustainable memory bandwidth with vectors larger than cache sizes

and by avoiding data reuse. There exists a positive feedbackbetween each iteration of

the four described operations. This causes the the FP operations to overflow at iteration

261, where the first vectora overflows attriad. This is then propagated to vectorsb andc

in the next iteration. This overflow causes the three FP kernels to experience a slowdown

larger than 10X, while thecopyoperation is not significantly effected. Consequently, power

dissipation experiences a drastic phase change, while the execution path is still conserved.

Figure 3.10, shows the resulting behavior in terms of power,BBV signatures and PMC

signatures. Figure 3.10(a) shows the power (top) and BBV signatures (bottom) with re-

spect to executed instructions. It shows the BBV signatures asstacked vector sample bars,

where the magnitude of each vector component adds on top of the stack. Here, we see the

repetitive BBV vector patterns throughout the execution, corresponding to the 4 different

67

2.5 13.7 24.8 36.0 47.1 58.2 69.4 80.5 91.7

Instructions (Billions)

0

10

20

30

40

50

P
o

w
er

 [
W

]

Overflow at iteration 261

(a) Stream power behavior and BBV patterns.

0

10

20

30

40

50

60

0 40 80 120 160 200

Cycles (Billions)

P
o

w
er

 [
W

]

0

0.5

1

1.5

2

E
ve

n
ts

 p
er

 C
yc

le

Overflow at iteration 261

PWR

PWR
IPC
MEM
L2

(b) Stream power behavior and PMC patterns.

Figure 3.10: Power phase change at overflow condition for thestream benchmark. Upper
plot (a) shows BBV signatures, unable to detect the phase change. Lower plot (b) shows
PMCs detecting the change. Lower plot is drawn with respect toelapsed cycles to show
the actual time behavior.

operations repeated 275 times. As the control flow is repetitive, the sudden power drop

goes undetected with BBVs. Figure 3.10(b) shows the same execution with power (top)

and some of the PMC vector samples (bottom). Shown PMC metrics represent instructions

per cycle (IPC), L2 cache access rates (L2) and memory access rates (MEM). This figure

shows the execution with respect to cycles to emphasize the actual effect of overflow on

elapsed time in different power phases. While the lower powerphase occupies less than 6%

of the executed instructions, the time spent in this phase ismore than half of the total exe-

cution. Tracking PMCs easily identifies this power phase change, resulting from operand

dependent behavior ofstream.

68

2 0 0 73 5 0 0 8 0 0 0 0
2 0 0 79 2 0 0 5 0 0 0 0
0 0 0 81 3 0 0 6 0 0 0 0
0 0 0 79 4 0 0 6 0 0 0 0
1 0 0 77 2 0 0 8 0 0 0 0
3 0 0 78 5 0 0 3 0 0 0 0
3 0 0 78 1 0 0 8 0 0 0 0
2 0 0 75 6 0 0 6 0 0 0 0
2 0 0 77 4 0 0 7 0 0 0 0
0 0 0 81 4 0 0 6 0 0 0 0
3 0 0 78 4 0 0 6 0 0 0 0
1 0 0 75 5 0 0 7 0 0 0 0
2 0 0 78 1 0 0 7 0 0 0 0
0 0 0 81 7 0 0 5 0 0 0 0
0 0 0 81 1 0 0 6 0 0 0 0
1 0 0 74 7 0 0 8 0 0 0 0
2 0 0 79 3 0 0 4 0 0 0 0
1 0 0 80 4 0 0 7 0 0 0 0
2 0 0 79 4 0 0 4 0 0 0 0
2 0 0 73 5 0 0 9 0 0 0 0
3 0 0 78 3 0 0 6 0 0 0 0
3 0 0 78 4 0 0 5 0 0 0 0
0 0 0 80 5 0 0 6 0 0 0 0
1 0 0 76 2 0 0 9 0 0 0 0
2 0 0 79 6 0 0 4 0 0 0 0
2 0 0 79 1 0 0 7 0 0 0 0
2 0 0 75 7 0 0 6 0 0 0 0
1 0 0 78 4 0 0 7 0 0 0 0
1 1 0 80 4 0 0 5 0 0 0 0
2 0 0 79 3 0 0 5 0 0 0 0
1 0 0 75 6 0 0 8 0 0 0 0
0 0 0 80 1 0 0 6 0 0 0 0
2 0 0 79 6 0 0 5 0 0 0 0
4 0 0 77 1 0 0 5 0 0 0 0
3 0 0 72 6 0 0 9 0 0 0 0
0 0 0 82 3 0 0 4 0 0 0 0
0 0 0 81 4 0 0 7 0 0 0 0
1 0 0 79 4 0 0 3 0 0 0 0
1 0 0 74 4 0 0 9 0 0 0 0
1 0 0 80 2 0 0 7 0 0 0 0
2 0 0 80 3 0 0 5 0 0 0 0
3 0 0 76 6 0 0 5 0 0 0 0

1 51 101 151 201 251 301
10

20

30

40

50

60

P
o

w
er

 [
W

] H L M

0

1

2

3

4

5

6

4 12 30 51 73 94 115

P
h

as
e

N
o

 BBV Phases (N=5)
 PMC Phases (N=5)

-1

0

1

2

3

4

4 12 30 51 73 94 115

Instructions (Billions)

P
h

as
e

N
o

 BBV Phases (N=3)
 PMC Phases (N=3)

Figure 3.11:Mesh power and BBV signatures (top) and generated PMC and BBV phases
with target cluster numbers of 5 (middle) and 3 (bottom). Multiple control flow phases
with effectively same power characteristics disguise actual power phases in BBV based
classification. Actual power phases are labeled asH, L andM, for high, low and medium
power dissipation regions.

3.8.2 Effectively Same Execution

Figure 3.11 demonstrates another example of the discussed effects with themesh bench-

mark. This example shows how PMC vectors and control flow can reach different phase

characterizations due to effectively same execution.

The top graph of Figure 3.11 shows the measured power behavior. We can easily sepa-

ratemesh execution into three power phases by observing the power trace. These “actual”

power phases are labeled asH, L andM on the power trace, representing phases with high,

69

low and medium power consumption. Underneath the power trace, the figure shows the

corresponding 32-dimensional BBV vector patterns for each sample. Several distinct con-

trol flow phases are observable from the BBV patterns. Verticaldotted lines separate each

of these distinct regions. These regions correlate well with mesh tasks. The first high power

phase corresponds to the sorting task after reading nodes and initialization. This task sorts

nodes based on their types. It operates mainly in L1 cache andis computation intensive.

The following low power phase results fromSetBoundaryDatatask which sets the values

for boundary nodes. This task mostly accesses L2 and has low overlapping computation,

which leads to less power. After this task,mesh repetitively operates on three computa-

tion tasks, namely,ComputeForces(), ComputeVelocityChange()andSmoothenVelocity().

These constitute the medium power phase ofmesh. All of these tasks also make significant

L2 accesses. However, their overlapping FP computations lead to relatively higher power.

The lower two plots of Figure 3.11 show the phase classifications performed by BBVs

and PMCs. In these plots, the y axis shows different phases ranging from 1 to 5 for the first

case and 1 to 3 for the second. For each sample, we add a tick mark above the horizontal

line corresponding to its phase assigned by BBV classification. We also add a tick mark

below the horizontal line that corresponds to each sample’sPMC phase. These marks then

form the bands of phases seen in these plots. For example, forthe case with 5 phases, low

power phase ofmesh is classified into phase “1” by BBVs and phase “3” by PMCs.

These plots show the impact of effectively same execution inphase classification. For

N = 5, PMCs correctly identify the three actual power phases. BBVs on the other hand,

collapse the high and low power phases into a single phase. This is because BBVs identify

several different large-scale control flow phases. Clustering starts to overlap these based

on theirL1-distances, and these result in combining the high and low phases of power. The

three repetitive control flow phases with effectively same power behavior are seen as the

more different phases by BBVs. ForN = 3, BBV phases still show more sensitivity to the

three repetitive tasks of medium power phase and assign themto three different phases. In

70

this case, all high, low and parts of medium power phases are assigned to same phase (“1”)

by BBVs. In contrast, PMCs show very good fidelity. They successfully identify three

power regions and assign them to different phases.

This example demonstrates the clear impact of effectively same execution on control-

flow-based phase characterization. Overall, both BBV and PMC phases provide a good

account of application power phase behavior. PMCs usually show a better mapping to

power behavior due to both their proximity to the actual flow of power in the processor, as

well as due to these discussed sources of disagreement between power and code signatures.

3.9 Related Work

A number of previous works investigated program phase behavior including simulation-

based [35, 41, 101, 151, 152, 153] and runtime [128, 132, 131,169] program profiling

techniques to identify phase behavior. These works span diverse areas such as identifying

representative simulation point samples, predicting phases, generating reduced datasets,

and managing configurable hardware with program signatures. Most of these research

studies focus on either control flow or performance characteristics of applications. Iyer and

Marculescu [90], Dhodapkar and Smith [41], Sherwood et al. [152, 153], Huang et al. [75],

and Lau et al. [109] analyze control flow behavior of applications via different features

such as subroutines, working sets and basic block profiles. These studies use simulation

based methods to identify application phases for summarizing performance and architec-

tural studies. Patil et al. also look at control flow phases with real-system experiments

[137].

Cook et al. show the repetitive performance phase characteristics of different applica-

tions using simulations [35]. Todi [169], Weissel and Bellosa [176], and Duesterwald et al.

[44] utilize performance counters to identify performancebased phases. They use perfor-

mance statistics to guide dynamic optimizations and metricpredictions. These works do

not consider the power behavior of applications. Chang et al.apply process power profiling

71

to determine software power breakdowns [29]. Hu et al. describe a compile time methodol-

ogy to find basic block phases at runtime for power studies [72]. This study looks at control

flow information from a compiler perspective.

There are also previous studies that compare or evaluate phase characterization tech-

niques. Dhodapkar and Smith perform a comparison between different control flow tech-

niques [40]. Annavaram et al. sample the program counter as aproxy to control flow and

show the correlations between code signatures and application performance [6]. Lau et al.

also look at control flow and performance of applications by linking program counter to

procedures and loops of applications via profiling [108]. Incomparison, our work looks

at the direct comparison of two phase characterization features, BBVs and PMCs, with

runtime measurement feedback for real power evaluation on areal system.

3.10 Summary

This chapter presented a power phase analysis methodology for characterizing program

power behavior based on power vectors sampled at program runtime with hardware perfor-

mance counters. We used performance-counter-based vectors to identify execution regions

with similar power behavior. Based on this similarity information, we could represent ap-

plication power behavior with a small set of power phases that are acquired via different

clustering approaches. Our experiments demonstrated thatthese sets of power phases cap-

ture workload power variations within 5% of actual behavior. We have developed an exper-

imental framework for comparing both control-flow-based and performance-monitoring-

based phase techniques. Our results showed that both control-flow and performance fea-

tures provide useful hints to power phase behavior. However, in general, performance-

counter-based phase tracking leads to approximately 33% less power characterization er-

rors than code signatures.

Overall, the results presented here show a roadmap to effective power phase analysis

in real systems. As our power phase analysis is based on a realsystem, it can readily be

72

used in architecture and systems research, and can provide significant insights for dynamic

management and workload characterization techniques.

73

Chapter 4

Detecting Repetitive Phase Patterns with Real-System

Variability

The previous chapters have focused on the characterizationof workload phases, and how

we can use these phases to efficiently represent applicationpower behavior. In particular,

Chapter 2 demonstrated that performance monitoring events provide useful information

about the power consumption of processors. Chapter 3 showed that similarity analysis

methods that are applied to these events characterize the phase behavior in the power con-

sumption of computing systems. However, to be able to employthis phase information

in real-system dynamic management studies, it is also important to develop methods that

identify the repetitive phase behavior of applications. While prior chapters have focused

on characterization of this phase behavior, this chapter specifically focuses on methods for

detecting repetitive phases in application execution on real systems. It describes and evalu-

ates a new framework that helps extract the recurrent information in phase behavior despite

system-induced variability effects.

Most of the recent phase tracking work has focused on simulation studies. There the

largely repeatable and deterministic behavior means that phases can stand out quite clearly.

In order to move towards using on-the-fly phase analysis broadly in real systems, it is

important to understand how system effects manifest themselves in the observed phases.

Recent work shows the degree of time and space variability visible in real systems that is

74

generally not captured in simulations [2, 116]. This variability can stem from changes in

system state that can alter cache, TLB and I/O behavior, system calls or interrupts, result-

ing in noticeably different timing and power/performance behavior. This work discusses

the repeatability of phase extraction experiments from runto run on a real system, and

demonstrates the extent and type of alterations an application can experience in different

experiments. It categorizes these alterations astime shifts, time dilations, andphase muta-

tions, as well as transitionalglitchesandgradients. This work proposes a transition-based

phase characterization scheme and then develops and evaluates effective methods for recog-

nizing phases under these alterations. A step-by-step phase recognition system tests these

proposed techniques on several SPEC2000 benchmarks and common desktop applications.

There are four primary contributions of this work. First, this chapter presents a tax-

onomy of real system effects on phase behavior based on our application measurements.

Second, it proposes a transition-based phase characterization that proves to be more effec-

tive in phase detection under variability. Third, it presents a complete flow of methods to

recognize phases that are resilient to variability and sampling effects. Fourth, it provides

a quantitative evaluation of these techniques on a variety of benchmarks and demonstrates

their effectiveness in phase recognition.

4.1 Real-System Variability

In order for a phase technique to be applicable on a real system, the phase characterizations

of applications should lead to similar classifications across different runs. In most cases,

we expect that the phases of two runs of the same application should be much more similar

than that of two different applications. This section presents the extent of system-induced

variability in real, measured application behavior and shows how this variability is reflected

in the corresponding phase sequences.

75

4.1.1 Variability Effects on Application Behavior

Applications exhibit two types of variability on a real system across multiple runs. First,

they show slightly different instantaneous behaviors in their characteristic metrics, such as

IPC, miss rates and power dissipation. Therefore, at any specific time instance, these values

deviate between runs. Second, following from this, the applications show different timing

behavior. This results in deviations in both total runtime and in the duration of each phase.

To quantify these two forms of variability, we collect data related to characteristic met-

rics and timing behavior of applications for five different runs on the same system. In all

the experiments, the benchmarks are run to completion with reference datasets. After data

collection, we align the traces of five runs such that all havethe same first transition from

idle to active phase. The first form of variability is observed in the individual measured

metrics at each time sample. To show the second form of variability—different timing

behavior—we specify 3 execution checkpoints for each application. We measure how long

each run required to reach these points, starting from the idle-to-active transition common

reference.

Figure 4.1 demonstrates an example of the observed variability for thegcc benchmark.

The leftmost graph shows the measured power variability. Each time sample includes the

average power observed across all runs as well as the range ofobserved power values in all

five runs. The rightmost graph shows the application’s time variability at the three check-

points. Each checkpoint shows the average time, and the maximum and minimum time

elapsed until the checkpoint over the five runs. It also showsthe average power behavior at

these regions for reference.

All benchmarks exhibit some level of both metric and time variability. The benchmarks

exhibit time variabilities on the order of few seconds. Thisvariability is a fundamental as-

pect of real-system behavior, and is neither a side-effect of our phase analysis methodology,

nor can it be diminished with finer data sampling. Moreover, as computing systems move

towards higher layers of control with hypervisors and virtual machines, managed code, and

76

0

10

20

30

40

50

60

70

0 50 100 150 200

Time [s]

P
o

w
er

 [
W

]

(a) Metric variability

221.32218.24

215 220

averages
max
min

44.5641.36

0

10

20

30

40

50

60

70

38 43

P
ow

er
 [

W
] 126.28124.52

120 125
Time [s]

(b) Time variability (dilation effects)

Figure 4.1: Measured time and metric variability in thegcc benchmark.

runtime systems more sources of system variability are introduced into application execu-

tion. In general, all applications result in visually similar power and performance behavior

across different runs. However, some variability always exists in both characteristic metrics

and runtime.

4.1.2 Variability Effects on Observed Phase Patterns

Phase analysis is inherently about gauging similarity and dissimilarity of sampled data over

time. To gauge the similarity of two vector datapoints gathered by runtime PMC sampling,

we use the composite similarity metric given in Equation 3.3. Our starting point in this

work is a value-based phase clustering method that we had used in previous chapters. In

this method, we apply a set of thresholds to this similarity metric to cluster sampled data

into phases. We label encountered phases alphanumerically, starting from ‘A’ in each case.

We call this phase representationValue-Based Phases(VBPs), where different observed

phases are given different labels (phase IDs).

Although the qualitative visual behavior of a benchmark is often preserved across mul-

tiple real-system runs, differences in phase assignments occur due to inter-run variability.

Even small variations can lead to the different interpretation of a phase change, thus chang-

ing the phase assignments and sequence information that follows. In addition, the durations

of an application’s observable phases are not identical, which also impedes exact runtime-

based phase tracking techniques.

Figure 4.2 gives examples of how variability affects phases. Here, we usejoint his-

77

0

5

10

15

20

25

30

35A C E G I K M O Q S U
A

C

E

G

I

K

M

O

Q

S

U

(a) No variability

0

5

10

15

20

25

30

35A C E G I K M O Q S U
A

C

E

G

I

K

M

O

Q

S

U

(b) Actual

Figure 4.2: Joint histograms of phase distributions for twoseparate runs of thegcc bench-
mark. (a) An example histogram in the case of no variability (i.e., repeatable simulations).
(b) The actual variability in phase behavior observed in real system runs. The letters at the
top and left-hand side of the matrix plots are the phase labels.

togramsto illustrate these effects. Again with thegcc benchmark as an example, we use

the value-based approach to split differentgcc runs intoVBPs. We then time-align these

runs with respect to the first phase transition. The joint histogramh of two phase sequences

is a matrix, where entryh(X,Y) shows how many times run1 was assigned to phaseX when

run2 was assigned to phaseY for the same data sample. The plots show the intensity of this

matrix, where brighter regions correspond to higher numberof matches and darker regions

show poor matches. The x and y axes on the plots show the phase labels of the two runs.

Figure 4.2(a) shows the ideal matching in the case of perfectrepeatability (i.e., a sim-

ulation environment). In this case,h is only a diagonal matrix, where the diagonal values

differ depending on how often each phase is encountered during application runtime. If

run1 is in phase ‘C’ at timet, then run2 is also in phase ‘C’ att. Figure 4.2(b) shows the

joint histograms resulting from real-system runs ofgcc. In these cases, the phase assign-

ments are far from ideal. The phase assignments show a large spread, indicating significant

mismatches.

In summary, the observable across-run variability seen in application power and time

behavior also exists in the value-based phase characterizations of applications. This vari-

ability causes different runs of the same applications to becharacterized by different phase

78

sequences; this conceals the underlying recurrent phase behavior.

4.1.3 Taxonomy of Phase Transformations

Figure 4.2 highlights the fact that direct, brute force comparisons of phase traces are inef-

fective in conveying repetitive behavior. Before discussing the proposed methods, Figure

4.3 first presents a taxonomy of the effects of variability onphases. The figure illustrates

these effects and resulting phase transformations. It shows their cumulative effect on a hy-

pothetical phase distribution, shown as the phase sequence“A,B,C,B” where the length of

each labeled block indicates the duration of the corresponding phase. The first effect—time

shiftsin phase sequences—will always occur, as the processor power trace can be consid-

ered as a stream of data with no specific beginning and end. Thestartpoint merely depends

on where we start logging the sampled power information. Thesecond effect,time dila-

tions, inevitably results from indeterministic system effects.The length of a specific task

depends on the state of the machine, the available locality,number of page faults, and load

of the system.Glitchesoccur when brief snippets of isolated behavior occur in some, but

not all, runs. Finally,mutationsare cases where a different phase name is seen in a run;

this can be either due simply to labeling issues or it can be due to variable behavior in the

application during different runs.

A B C B

A B C B

Ideal

Shift

A B C B Time Dilation

A B D B Glitch B C

A B D E Mutation B C

Figure 4.3: Effects of real system behavior variability on application phase distribution.

The following sections tackle each alteration in this taxonomy and propose a series of

techniques for recovering the phase behavior such that the repeated runs of an application

are recognized as similar.

79

4.2 Transition-Oriented Phases

This Section proposes a representation for application phase behavior that is an alternative

to the prior value-based phase (VBP) approach. The goal of this representation is to be

more resilient to real-system variations. We suggest tracking phase transitions, instead of

tracking phases themselves, and show that transitions are more effective in detecting recur-

rent workload behavior. We identify phase transitions at runtime by comparing the current

and the previous sample vector, and by evaluating their similarity based on Equation 3.3.

This transition-based representation of phase behavior, in comparison to the originalVBP

representation, is much more successful in identifying a program from its phase signature

and in rejecting other application signatures based on the tested features.

One way to evaluate our claim—that tracking transitions instead of values is more suc-

cessful in detecting recurrent behavior—is by computing correlations. If two phase traces

vary together, they have a high correlation coefficient. Therefore, one would expect high

correlations between two runs of the same application, and much lower correlations among

different applications.

To perform this comparison, we enumerateVBPsequences with positive integers, where

phase numbers are assigned to encountered different phasesin increasing order. This cor-

responds to the original value-based representation. For the same stream, we can also rep-

resent the transition information as a binary stream, assigning 1 to phase transitions and 0

to stable regions. This is our initial proposed transition-based phase (TBP) representation.

We call these binary sequencesInitial Transitions(TBPinit).

Figure 4.4 presents the resulting correlation coefficientsfor two different cases. In

both plots, the lighter lines plot the correlation coefficients for the originalVBP traces.

The darker lines show the results for the transition (TBPinit) traces. Figure 4.4(a) shows

the “matching” case for two separate runs ofgcc. Here, since we are correlating phase

sequences for two runs of the same program, a good phase assignment will show a high

correlation spike when the two runs are properly time-aligned. Figure 4.4(b) shows the

80

0

0.1

0.2

0.3

0.4

0.5

0.6

-15 -10 -5 0 5 10 15
sample shift

Correlation Coefficient for Phase Distribution Information
Correlation Coefficient for Phase Change (Transition) Information

(a) Correlation of twogcc runs.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-15 -10 -5 0 5 10 15
sample shift

Correlation Coefficient for Phase Distribution Information
Correlation Coefficient for Phase Change (Transition) Information

(b) Correlation ofgcc andequake.

Figure 4.4: Correlation coefficients for a range of shifts between twodifferentgcc runs (a)
and separategcc andequake runs (b) (y axis shows the computed correlation coefficient
values).

“mismatch” case withgcc and equake. Here, we are correlating two unrelated phase

sequences, so we do not expect a high spike.

In the correlation plots, we show the results for a range of time shifts to consider the

probable lag between two runs. For instance, if two traces are identical, one would expect

a peak (1) insample shi f t= 0. If there is only a lag ofx samples between traces, the peak

will move to+x or−x.

Figure 4.4 reveals that correlating value-based phase sequences does not produce a good

discrimination among benchmark signatures. In comparison, transitions provide much

more useful results. Notably, we can distinctly see a peak intheTBPinit gcc vs. gcc case

with a time-shift of 6 samples, while there is no observable peak fromVBPcorrelations.

Furthermore, correlating the transition traces ofgcc andequake gives very low correla-

tions as expected. TheVBPcorrelations are also lower than theirgcc-gcc counterpart, but

transitions perform observably better, with roughly 0 correlation.

This distinguishable peak in the correlation trace for the transition-basedTBPinit repre-

sentation proves to be very useful in identifying benchmarks from their signatures. Starting

with the next section, we look into these initial transitions in more detail, demonstrating

how we can further improve and use this information to match application signatures in the

face of real workload variability.

81

4.3 Techniques for Detecting Repetitive Phases with Variability

4.3.1 Removing Sampling Effects on Transitions with Glitch and Gradient Filtering

Our starting point for defining phase transitions was to say that they are sample points

where the next interval’s phase is different from the current phase. These transitions can

be identified on-the-fly by evaluating the similarity metricin Equation 3.3 for the current

and previous power vector and comparing against a similarity threshold. While Figure 4.4

illustrates that thisTBPinit approach is already useful for phase detection, we improve on it

here. In particular, we note that sampling and stability effects impede the effectiveness of

transitions for representing phase behavior.

We characterize these effects asglitchesandgradients(Figure 4.5). Section 4.1.3 has

provided a specific example of how glitches impact phase behavior. Following the stability

definitions of Dhodapkar and Smith [40], we define aglitch as one or more consecutive

unstable sampling intervals, where thebeforeandafter of the glitch belong to the same

stable phase. Because glitches are short and unstable, theirsingle sample phase information

is not likely to be useful for dynamic management techniques. A gradientis one or more

consecutive unstable samples, where thebeforeandafterof the gradient belong to different

stable phases. These regions correspond to an actual phase transition. However, some

phase transitions do not happen instantaneously in a singlesampling interval, but instead

can actually have multiple samples along the transition gradients.

In the context of our work, glitches are false transitions and gradients are duplicated

transitions. To remove these spurious effects, we propose amore intelligent transition anal-

ysis that works to filter the transitions deemed to be glitches and gradients. InGlitch/Gra-

dient Filtering, extraneous transitions corresponding to glitches are discarded. Single or

multi-cycle gradients en route to a new phase are converted into a single stable phase

change.

Figure 4.5 shows the generic scenarios for the glitches and gradients. The upper rows

82

� ���� �� �
� �	
��
� �

� �� �� ���� �� ��� ��� � � � � �� �� �	
�
� �� �� � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �� ��� ��� � � � � �� ���� �� �� ���� �
Figure 4.5: Initial transitions,TBPinit , with different types of glitches and gradients, and
refined transitions,TBPgg, after glitch/gradient filtering.

depict the initialTBPinit traces. (’1’ denotes a transition and ’0’ denotes stability.) The

lower rows denote the refined transition traces after we apply our glitch/gradient filtering.

We refer to these transitions with glitch/gradient removalasrefined transitionsor TBPgg.

Our filter implementation identifies each initial transition by monitoring the phase

stream, and forms the initial binary representationTBPinit . From theTBPinit stream, we

constructTBPgg in the following manner. A variable-size window keeps trackof the first

transition in a burst of transitions. After the burst ends with a last transition to a stable re-

gion, the filter compares the stable regions before the first transition and after the last one.

Then, it identifies the bursts as either glitches—if the execution regions before and after

the burst are similar—or gradients—if the two regions have different characteristics. Each

burst of transitions is replaced by either no transitions—if they are glitches—or a single

transition—if they form a gradient. We do not allow multipleconsecutive transitions in the

refinedTBPgg signature and all gradients have a prior transition adjacent to them.

Figure 4.6 shows the application of glitch/gradient filtering to thegcc benchmark. The

figure shows the refined transitions, as well as the regions identified as glitches and gra-

dients, for a zoomed-in execution region. Forgcc, the initial 212 transitions reduce to 82

once glitch/gradient filtering is applied.

83

16.28 20.68 25.08 29.48 33.88 38.28
Time [s]

P
o

w
er

 [
W

]

5

15

25

35

45

55

65
Glitches Gradients Power Transitions

Figure 4.6: Transitions, glitches and gradients forgcc after glitch/gradient filtering.

4.3.2 Discerning Phase Behavior with Time Shifts

Initially we have quantitatively shown the quality of matching with transitions using com-

puted correlation coefficients for a range of shifts. However, this method is computationally

expensive and not suitable for runtime use. As the generatedtransition features now con-

tain simple binary information, a simpler metric to use is cross-correlation. Correlators can

be easily implemented in hardware and can be applied continuously to the incoming data

stream online.

Figures 4.7 and 4.8 demonstrate again the “matching” and “mismatch” cases. In the

first case, we show how well a newgcc run can be matched to a previousgcc signature.

In the second case, we runequake and examine the severity of a false alarm. We show the

results for refined (TBPgg) and initial (TBPinit) transitions in both cases.

For the twogcc runs, refined transitions show a significant peak, proving a good match

between the two signatures for a shift of 13 samples. Forgcc andequake, the cross cor-

relation of transitions produces no significant peak, whichsuggests the signatures do not

match. Thus, we can see the spike behavior in case of signature match is retained with

refined transitions and with the application of cross correlations.

4.3.3 Handling Time Dilations with Near-Neighbor Blurring

In addition to glitches and gradients, time dilation between runs is a common problem.

Recognizing the similarity of an original phase trace with a time-dilated one is a problem

84

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

180

200

MAX @ 12= 132

shift

cr
o

ss
 c

o
rr

el
at

io
n

(a) Cross-corr. of initial transitions.

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

MAX @ 13= 30

shift

cr
o

ss
 c

o
rr

el
at

io
n

(b) Cross-corr. of refined trans-ns.

Figure 4.7: Matching of transition signatures for twogcc runs.

−600 −400 −200 0 200 400 600
0

20

40

60

80

100

120

140

160

180

200

MAX @ 176= 63

shift

cr
o

ss
 c

o
rr

el
at

io
n

(a) Cross-corr. of initial transitions.

−600 −400 −200 0 200 400 600
0

5

10

15

20

25

30

35

40

45

50

MAX @ 228= 12

shift

cr
o

ss
 c

o
rr

el
at

io
n

(b) Cross-corr. of refined trans-ns.

Figure 4.8: Matching ofequake transition signatures togcc.

with similarities to many other research domains. Examplesinclude matching a warped

image in image recognition or pitch tracking in humming recognition [163]. These high-

level methods can afford high complexity and they can store vast libraries of training data.

In contrast, our goal is to implement an approach with simplecorrelators and table lookup

on a small set of recent signatures.

Table 4.1 demonstrates the potential problems that time dilations pose on the transition

guided phase detection scheme. Table 4.1(a) shows the high matching of processed transi-

tion information (lower trace) to a previous baseline signature (upper trace) in the absence

85

a. No Dilation b. With Dilation
0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0√

(match) × (mismatch)

Table 4.1: Effect of time dilations in detecting recurrent behavior.

of time dilations. In Table 4.1(b) the lower transition trace is dilated, which shows the

negative effect of time dilations on detecting recurrent behavior.

This matching problem results from considering transitioninformation to be sharply

associated with a particular deterministic sample point, while the actual transition times

in each run are instead probabilistic with a modest distribution around an average. (See

Figure 4.1(b) for examples.) To remedy this problem, we propose anear-neighbor blurring

solution, which is fundamentally similar to blurring imageedges for image matching. With

near-neighbor blurring, we consider transitions as distributions along the time axis centered

at their encountered locations. With this probabilistic approach, subtle time dilations are

not penalized altogether, but instead are scaled accordingto their proximity to the exact

location.

Tolerance:We use this metric to define the “spread” of the distribution we assume around

an encountered transition time point. We define this in termsof samples. For example,

a tolerance ofx samples means that a transition at time samplet is considered to have a

distribution in the sample range of[t −x, t +x].

In our implementation, we choose a relatively primitive model, where we scale the near

neighbors of transitions linearly from 1 to 0, based on the chosen sample tolerance. Further

research could investigate other suitable distributions to characterize phase transitions. To

apply near-neighbor blurring, the baseline refined signature (TBPgg) is altered from its

raw form to generate the distributions. In our evaluations we experiment with a range of

tolerances from 0 to 10 samples. The second liveTBPgg stream, on the other hand, is not

altered to avoid the runtime cost. Table 4.2 shows how the example of Table 4.1 is altered

for a tolerance of 4 samples. With near-neighbor blurring, the previous mismatch due to

86

Baseline (refined): 0 0 1 0 0 1 0 1 0 0 0 0 1 0
Baseline (near-neighbor): 0.6 0.8 1.0 0.8 0.8 1.0 0.8 1.0 0.8 0.6 0.6 0.8 1.0 0.8
New run with time dilation: 0 1 0 1 0 0 0 0 0 0 0 0 1 0

 � (match)

Table 4.2: Detection with near-neighbor blurring under time dilation.

time dilations is now correctly detected as a strong match.

Applying near-neighbor blurring toTBPgg results in similar cross correlations as in

Figures 4.7 and 4.8. For the remainder of this chapter, we refer toTBPgg augmented with

near-neighbor blurring asTBPggN. In the following section, we quantify these results for

our overall algorithm, using a quality metric we refer to as thematching score.

4.3.4 Quantifying Signature Matching with Matching Score

Matching Score:In order to quantify the success of a matching, we define thematching

scoremetric,m, which provides a measure for the strength of matching between two sig-

natures. Our goodness measure is the strength of the cross-correlation peak at the best

alignment. Therefore, we definem as the ratio of best match value to the average of its

closest 10 best matchings. As this value will always be greater than 1, we subtract 1 from

the final value to remove this offset.

For our previous experiments with twogcc runs—thematchingcase—the matching

scores for initial transitionsTBPinit , refined transitionsTBPgg and near-neighborsTBPggN

are 0.22, 0.55 and 0.32 respectively. Corresponding values for thegcc vs.equake compa-

rison—themismatchcase—are 0.054, 0.16 and 0.036. Therefore,TBPgg performs best for

signature matching as it produces the highest matching score between the two runs ofgcc.

On the other hand,TBPggN performs significantly superior for signature rejection asit has

a much lower matching score for the signatures ofgcc andequake.

4.3.5 Summary of Methods

Before presenting the general quantitative results of our transition-guided recurrent phase

detection method, Figure 4.9 provides a brief summary of theapplied techniques. First, we

87

��������� �	�
 ����
�� ���� �� �� �� ��� ����� ����������� �	�
������ � �� ����
� ����� ��� � ���� �� �� �� ����� � �� ����
�� ��� �!
 � "

�� # �����$# ��� ���� � ���� ���# � ��� �!
�� ��%%
 � � ��%%
�"

�� ��� �&�� �# �'� � ' �	����#� ��%%(
 � �����) ���� �� '��� � ��# ������ �������) *� �'�� ���'��
���"

�� � ���� �� ��� ��� �� �
Figure 4.9: Flow of our methods.

sample PMCs during application runtime and represent benchmark execution as a stream

of vectors. Then, evaluating the similarity between each current and previous vector sam-

ple, we identify initial transitions. This process converts the application execution into

the binary streamTBPinit (Section 4.2). Next, we apply glitch/gradient filtering toTBPinit

streams and convert them into refined transitions,TBPgg (Section 4.3.1). In addition, for

the first run, we apply near-neighbor blurring toTBPgg and generate the baseline signa-

ture TBPggN (Section 4.3.3). After this point, any newly observedTBPgg trace is cross-

correlated with this baselineTBPggN to detect a signature match (Section 4.3.2). A match

is determined based on the strength of an observed peak in thecross-correlation sequence,

which we quantify with our matching score metric (Section 4.3.4).

4.4 Phase Detection Results

This section presents the phase detection results for a spectrum of benchmarks that include

SPEC and other mainstream applications. We choose a subset of SPEC benchmarks that

88

 bzip2 (1) equake (2) gap (1) gcc (3) gzip (1) mcf (0) vortex (1) convert (7) lame (2)
bzip2 0.44 0.05 0.07 0.05 0.15 0.18 0.08 0.09 0.15

equake 0.15 0.39 0.28 0.06 0.26 0.25 0.09 0.04 0.08

gap 0.20 0.22 0.79 0.07 0.10 0.33 0.04 0.05 0.12

gcc 0.05 0.04 0.05 0.19 0.03 0.05 0.16 0.04 0.12

gzip 0.10 0.10 0.19 0.05 1.08 0.16 0.10 0.03 0.07

mcf 0.18 0.18 0.23 0.04 0.16 6.14 0.17 0.08 0.08

vortex 0.23 0.10 0.12 0.01 0.11 0.08 1.93 0.03 0.05

convert 0.21 0.17 0.26 0.06 0.14 0.25 0.09 0.22 0.13

lame 0.12 0.11 0.12 0.04 0.13 0.20 0.06 0.02 0.21

Table 4.3: Matching scores for different applications. Benchmarks in each column repre-
sent the base signatures to which we apply near-neighbor blurring. The matching scores
represent how well the refined phase transition signatures of the row benchmarks match
to these base signatures. The superscripts in parentheses next to benchmarks show the
optimum tolerance.

exhibit distinct phases in terms of power and performance metric behavior. Most of these

benchmarks have high metric variability with varying transitions across different runs. Ad-

ditional non-SPEC applications offer interesting phase characteristics.Convert is a general

file conversion program that converts a large postscript fileinto pdf. Convert shows sig-

nificant phases depending on the contents of the input file. Weuse thelame MP3 encoder

to encode a wave file under varying quality settings. The power levels increase with finer

recurrent phases at higher quality settings.

In our experiments, we run each application twice on our measurement setup. During

the first run, we collect the phase transition information and apply glitch/gradient removal

as they are identified. In our analysis, we consider a range ofnear-neighbor tolerances as

well as the refined transition signatures—i.e., the outputsof glitch/gradient filtering without

near-neighbor blurring. In the second run, we only generaterefined transitions without any

blurring.

Table 4.3 presents the matching scores for the experimentedapplication pairs. The

diagonal entries show the matching scores for the two runs ofthe same application—the

matchingcases. The non-diagonal entries show the matching scores between two different

applications—themismatchcases. The baseline signatures correspond to the columns of

89

Table 4.3. The transitions for the second runs are represented in the rows of the table.

Therefore, the matching scores read along a column show how well a baseline signature

can characterize a repeatable application phase behavior.Table 4.3 presents the matching

scores corresponding to the tolerances that maximize the matching score ratio to the highest

mismatch score.

As an example, forgzip, the baseline signature has near-neighbor blurring with a tol-

erance of 1 samples as indicated by the value in parentheses.Reading thegzip column

shows that a second run ofgzip produces a matching score of 1.08 to the baselinegzip

signature. However, the same baseline signature produces much lower matching scores for

the runs of other benchmarks, with an average of 0.13. Among these other benchmarks,

equake is the closest match togzip with a matching score of 0.26. This is significantly

lower, however, thangzip’s matching score of 1.08. Thus, our transition-based scheme

successfully detects the second run ofgzip from its transition signature, while strongly

rejecting signatures of the other benchmarks. In general, for all the benchmarks, we see the

same trends. In all cases, the highest matching scores correspond to the second runs of the

same application (diagonal entries), while the matching scores for different applications

(non-diagonal entries) are significantly lower.

Most benchmarks achieve their best matching scores with a few levels of tolerance (1-3

samples) due to their small dilation magnitudes. The only exception isconvert with an

optimal tolerance of 7. Asconvert has only 17 transitions in its signature, each extra hit in

the spread has greater relative impact, thus favoring higher tolerances. The zero tolerance

case is equivalent to theTBPgg signatures, without any blurring. Only formcf is the best

matching condition achieved byTBPgg.

In general, the outcomes of our detection method are very useful. We can detect spe-

cific recurrent phase sequences under different kinds of variability, with a moderately sim-

ple technique that can be implemented at runtime with negligible overhead. In most cases,

considering transitions as distributions via near-neighbor blurring improves our results fur-

90

ther, with the choice of small tolerance levels.

4.4.1 Receiver Operating Characteristics

As with any detection scheme, our matching scores are also prone tomissesand false

alarmsfor a particulardetection threshold. That is, for all applications, a matching score

above this single detection threshold is categorized as a ‘hit’. For instance, for the runtime

detection scheme of Table 4.3, if we use a threshold of 0.19, we would be able to identify

all the hits. However, out of the 72 possible mismatches, we would have also detected 11 of

them as hits. Thus, this scenario would have a hit detection probability of 1. However, this

would also incur afalse alarmprobability of 11/72≈ 15.3%. If we increase the detection

threshold, the probability of false alarms diminish, whilethis, in turn means some hits are

missed. It is common practice in pattern classification to demonstrate this effect in terms

of Receiver Operator Characteristic(ROC) curves. The detection function is graphed as

the hit probability as a function of the false alarm rate [42]. Figure 4.10 shows the ROC

curves for our detection technique. To present the probabilities, the axes are shown from

0 to 1. However, for absolute measures, 1 on thehit axis represents 9 detected hits for the

9 benchmarks; and 1 in thefalse alarmaxis represents 72 falsely detected hits for the 72

possible different benchmark combinations. The intermediate values are linearly scaled for

both axes. Each ROC curve in the figure corresponds to aTBPggN with a specific tolerance.

For each curve we first compute the matching score matrix, similar to Table 4.3, across all

the benchmarks for the current tolerance value. We then compute the hit and false alarm

probabilities for several detection thresholds with step sizes of 0.05 for the whole matching

score range 0-6.15.

In the ROC curves, we see that our detection scheme achieves high hit probabilities

with small false alarm rates. Among the applied tolerance levels, TBPggN with a sample

tolerance of 1 performs best, which is followed by tolerances of 2 and 3. The zero tolerance

case, which corresponds toTBPgg, with no distribution, performs distinctly worse for signal

rejection. This proves the effectiveness of our near-neighbor blurring technique. Our best

91

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm

H
it

tolerance:0
tolerance:1
tolerance:2
tolerance:3
tolerance:4
tolerance:6
tolerance:8
tolerance:10

Figure 4.10: Receiver Operating Characteristic (ROC) curves for TBPggN with 0-10 range
of tolerances.

detection method achieves 100% hit detection with less than5% false alarms.

4.4.2 Comparison of Transition-Guided Approach to Value-Based Phases

Figure 4.11 provides a final comparison of detection successbetween the original value-

based phase representation (VBPs), refined transitions (TBPgg), and final near-neighbor

blurred transitions (TBPggN). For this comparison, the figure shows the ratio of the match-

ing score between two runs of the same application (matchingcase) to the highest matching

score among all the different applications (worst mismatchcase) for the same application

(i.e., vortex for bzip2). Consequently, this quantifies how well each representation de-

tects a matching signature, while rejecting other unmatching signatures. The figure shows

the individual results and the average for the experimentedbenchmarks. Below the “break-

even” line atratio = 1, a technique finds another application signature as a “better match”

for the current benchmark. Ratios significantly higher than 1represent accurate signature

92

10.818.4 18.4 11.3

0

1

2

3

4

5

bzip2 equake gap gcc gzip mcf vortex convert lame AVE

M
at

ch
in

g
 S

co
re

 /
H

ig
h

es
t

M
is

m
at

ch

Value-Based Phases
Refined Trans-ns
Near-Nbr Blurred Trans-ns

Break-even
value

(VBPs)
(TBPgg)

(TBPggN)

Figure 4.11: Improvement in phase detection efficiency withtransition-based approach.

detection.

In all cases, transition based methods perform much better thanVBPs. In all cases

exceptmcf, TBPggN shows significant improvement overTBPgg. For mcf, both transition

techniques perform equally well, as the best tolerance formcf is 0. On average, our tran-

sition based, near-neighbor blurring technique provides a6-fold improvement in recurrent

behavior detection under variability, over the original value-based phases.

4.5 Related Work

Prior phase detection work operates at various domains and granularities using a variety of

characteristic metrics to track phases. Dhodapkar and Smith [41], Sherwood et al. [152,

153], Lau et al. [109], Iyer and Marculescu [90], and Huang etal. [75] track the executed

code characteristics such as basic blocks and subroutine IDs to detect phases. All these

works are based on cycle-level simulations and, although useful for guiding representative

simulation and architectural studies, they do not reflect the available real-system variability.

Some recent research also looks at executed code characteristics with real-system ex-

periments. Patil et al. [137] and Lau et al. [108] use dynamicinstrumentation to identify

basic block based phases. Hu et al. [72] discuss compile timeinstrumentation to find basic

block phases at runtime for power studies. Annavaram et al. [6] apply program counter

sampling to find similar execution paths and investigate performance behavior similarity in

these regions. These approaches also account for real-system variability. However, they do

93

not consider detection of recurrent phase sequence signatures.

Another line of research explores performance behavior forphase tracking, using met-

rics such as IPC and memory references. Cook et al. [35] identify execution phases based

on deterministic simulations. Todi [169] and Weissel and Bellosa [176] use runtime per-

formance counter information on different platforms for workload characterization and re-

active dynamic optimizations. Chang et al. [29] use a power profiling method triggered

by consumed energy quanta to attribute software energy to processes. Duesterwald et al.

[44] also use performance counters to predict metrics such as IPC and L1 misses. Their

work uses previous short-term sample history to predict behavior in the next sampling pe-

riod. These run-time techniques also analyze application behavior under variability, but

they do not aim to detect large-scale recurrent phase sequences. Shen et al. [150] also look

at detecting recurrent phases by observing reuse distance patterns. They use detailed pro-

gram profiling and instrumentation to detect phases, while our work tries to identify phase

transitions from runtime power vectors.

4.6 Summary

This chapter presented a novel approach to phase behavior detection that is resilient to

real-system variability effects. Based on real-system measurements, we categorized the

variability effects and provided methods to address these distortions of phase behavior.

We proposed atransition-orientedphase representation and demonstrated its robustness

against phase mutations and shifts with correlations. We developedglitch/gradient filtering

to refine phase transitions from sampling effects and usednear-neighbor blurringto handle

observed moderate time dilations. By carefully discriminating these variability effects and

application specific phase information, we were able to detect recurrent phase sequences

prone to several real world transformations.

Overall, the results of this chapter show that this fully-automatable flow of techniques

can detect recurrent application phase signatures with good accuracy for SPEC and other

94

benchmarks. Our best detection scheme, near-neighbor blurring with a tolerance of 1 sam-

ple, was able to detect all signatures with a false alarm probability less than 5%. In compar-

ison to original value-based phase representation, transitions with near-neighbor blurring

performed on average 6X better in detecting recurrent application signatures, while reject-

ing unmatching signatures.

This research has importance both in characterizing real-system variability effects and

in addressing phase detection despite this variability. Asphase-adaptive management tech-

niques become available in the emerging architectures and systems, such variation-resilient

phase detection techniques are essential for real-system dynamic management.

95

Chapter 5

Runtime Phase Tracking and Phase-Driven Dy-

namic Management

The increasing complexity and power demand of processors mandate aggressive dynamic

power management techniques that can adaptively tune processor execution to the needs

of running applications. As the previous chapters have discussed, these techniques ben-

efit extensively from application phase information that can pinpoint execution regions

with different characteristics. Recognizing these phases on-the-fly enables various dy-

namic optimizations such as hardware reconfigurations, dynamic voltage and frequency

scaling (DVFS), thermal management and dynamic hotcode optimizations [3, 11, 14, 41,

76, 90, 155, 179]. In recent years, studies have demonstrated various approaches to char-

acterize and detect application phase behavior [6, 41, 87, 90, 176]. Some of these stud-

ies have also discussed methods to predict future application execution characteristics

[44, 89, 150, 153, 186]. However, to be able to utilize phase information effectively on

a running system, a general dynamic phase prediction framework must seamlessly operate

on-the-fly during workload execution. Moreover, it is essential to provide a useful and clear

binding between application phase monitoring and prediction, and dynamic management

opportunities, especially on real-system implementations.

This chapter brings together the phase monitoring and detection techniques discussed in

previous chapters and extends these to a a complete runtime dynamic power management

96

framework that is controlled by phase monitoring and prediction. Overall, the runtime

power and performance monitoring techniques discussed in Chapter 2 provide the foun-

dation of the deployed real-system infrastructure. The phase analysis methods of Chapter

3 are utilized as the generic baseline phase monitoring technique. The impact of system

induced variations in workload behavior that are discussedin Chapter 4 guide the phase

definitions and prediction methodology presented in this chapter.

In particular, this chapter describes a fully-automated, dynamic phase prediction in-

frastructure deployed on a running mobile platform. It shows that aGlobal Phase History

Table(GPHT) predictor, inspired by a common branch predictor technique, achieves su-

perior prediction accuracies compared to other approaches. The GPHT predictor performs

accurate on-the-fly phase predictions for running applications without any offline profiling

or any static or dynamic modifications to application execution flow, and with negligible

overhead. This runtime phase prediction method can effectively guide dynamic, on-the-fly

processor power management using DVFS as the underlying example dynamic power man-

agement technique [55]. Our dynamic phase predictor efficiently cooperates with a DVFS

interface to adjust processor execution on-the-fly for improved power/performance effi-

ciency. This GPHT-based dynamic power management improvesthe energy-delay product

(EDP) in our deployed experimental system by more than 15%. This methodology can be

used with different phase definitions that can be aimed at serving different purposes such as

bounding execution with performance degradation limits. We evaluate our methods on the

SPEC CPU2000 benchmark suite, with runtime monitoring usingperformance monitoring

counters (PMCs), and real power measurements with a data acquisition (DAQ) unit.

There are three primary contributions of this chapter. First, it presents and evaluates a

live, runtime phase prediction methodology that can seamlessly operate on a real system

with no observable overheads. Second, it describes a complete real-system implementa-

tion on a deployed system. This implementation can autonomously function during native

operation of the processor, without any profiling or static instrumentation of applications.

97

Third, it demonstrates the application of the phase prediction infrastructure to dynamic

power management using DVFS as an example technique. Although this work discusses

specific phase definitions and power management techniques,our runtime phase prediction

is a general framework. It can be applied to any feasible definition of application phases

and to other dynamic management techniques, such as dynamicthermal management or

bounding power consumption.

5.1 Phases for Dynamic Management

The key motivation of this work is to develop a phase prediction technique that can be

accurately applied at runtime application execution to guide dynamic power management.

This section explains our phase classification methodology, which is later used in the evalu-

ations. The fundamental purpose of phase characterizationis to classify application execu-

tion into similar regions of operation. This classificationcan be done via various features,

depending on the ease of monitoring and the goal of the applied phase analysis. Simi-

larly, how the observed features are classified into different phases depends on the target

application. The previous chapters have defined phases thatrepresent different power char-

acteristics of workloads. While these phases are useful for general power characterization,

they are not directly tied to a specific management action. Onthe other hand, this chapter

considers DVFS as the underlying management application and defines phases that reflect

the potential of different execution regions to be improvedby DVFS.

We rely on hardware performance monitoring counters (PMCs) to track application

behavior. These counters can be configured to monitor execution without disrupting ex-

ecution flow. While Chapter 3 demonstrated that control flow information is also useful

for tracking application phases, fine-grain runtime monitoring of control flow incurs sig-

nificant overheads for system-level management. Therefore, we rely only on PMC events

to monitor application characteristics. For system-leveldynamic management, we define

relatively coarse grained phases, on the order of millions of instructions. This guarantees

98

that monitoring of application behavior—and dynamic management responses—does not

lead to any observable overheads.

The phase classifications are constrained by two factors. First, our experimental plat-

form, described in greater detail in Section 5.5, supports simultaneous monitoring of 2

PMCs. Therefore, our classifications of application behavior can only be based on two

configured counters. This leads to somewhat more restrictive phase definitions than prior

chapters, where the experimental platform supported monitoring of 18 simultaneous events.

The primary reason for this different experimental platform is that the previously used

experimental systems do not support DVFS. Second, we monitor PMCs from within a

performance monitoring interrupt (PMI) routine. Therefore, we need a simple classifica-

tion method to avoid violating interrupt timing constraints as well as to have negligible

performance overheads. In addition, one of the counters hasto be dedicated to monitor

micro-ops (Uops) retired, to trigger the PMI at specified instruction granularities.This

instruction-based phase tracking is motivated by the variability observations presented in

Chapter 4. While this approach induces significant restrictions to performance monitoring,

it diminishes the impact of timing variations in observed behavior.

We draw from prior work for our choice of monitored PMC events. Wu et al. [179]

make use of event counter information to assign applicationroutines to different DVFS set-

tings under a dynamic instrumentation framework [121]. They define the ratio ofmemory

bus transactionsto Uops retiredas the measure of the “memory-boundedness” of an execu-

tion region, and use the ratio ofUops retiredto instructions retiredas a proxy to represent

available “concurrent execution” in the same region. Thesetwo metrics then determine the

available “CPU slack” in the application, which guides different DVFS settings. For our

experiments, we configure the remaining independent counter to track memory bus transac-

tions. Thus, the ratio of the memory bus transactions to our Uop granularity represents the

memory-boundedness of each observed phase. This measure isreferred to as “Mem/Uop”

in this chapter.

99

In addition to Mem/Uop, the two counters, together with the time stamp counter (TSC),

also enable simultaneous monitoring of Uops per cycle (UPC),which can provide addi-

tional information on application behavior. These two metrics have already been used

cooperatively in other previous studies to guide dynamic power management [176]. How-

ever, for phase prediction to perform reliably, dynamic management actions should not

alter the workload characteristics they are tracking. Otherwise, recorded phase histories

will become obsolete at each change in the management actions. As Section 5.4 demon-

strates, while Mem/Uop behavior is virtually invariant to the responses of our dynamic

management technique, UPC can fluctuate strongly. Therefore, for a simple, yet robust

phase classification that is largely invariant under dynamic power management, we use

Mem/Uop to define application phases.

We classify Mem/Uop into different phases by observing how different Mem/Uop rates

are assigned to different DVFS settings in prior work [179].That work examines memory

access rates and concurrency of different applications on asimilar experimental platform.

Then, it calculates the DVFS settings for different application regions based on a perfor-

mance loss formulation. For our phase definitions, we convert these measures to Mem/Uop

rates and available concurrency ranges for each DVFS setting. As we do not have the

concurrency measure available for our runtime monitoring and prediction, we base our

phase classifications on the derived Mem/Uop ranges for the common lowest observed

concurrency—i.e.,Uops retired/instructions retired≈ 1. Based on this classification, Ta-

ble 5.1 defines 6 phase categories. Conceptually, Category 1 corresponds to a highly CPU-

bound execution pattern that should be run as fast as possible, and Category 6 corresponds

to a highly memory-bound phase, where the application can besignificantly slowed down

to exploit available slack.

100

Mem/Uop Phase #

< 0.005 1 (highly cpu-bound)

[0.005,0.010) 2

[0.010,0.015) 3

[0.015,0.020) 4

[0.020,0.030) 5

> 0.030 6 (highly memory-bound)

Table 5.1: Definition of phases based on Mem/Uop rates.

5.2 Predictability and Power Saving Potential Characteristics of Work-

loads

To assess the quality of a phase prediction scheme, it is imperative to first understand

the predictability characteristics of different applications. Consider, for example, a very

stable application with very few changes in its phase behavior. Here, a simple predictor

that assumes the last observed behavior will continue, willbe highly accurate. However,

on benchmarks with high variability, where the observed phases change rapidly, such an

approach will experience many mispredictions. Therefore,before evaluating our phase pre-

diction method, this section discusses the intrinsic predictability of different benchmarks.

Figure 5.1 shows the characteristics of different benchmarks in two dimensions. They

dimension shows the variability of benchmarks, based on theobserved variation in Mem/Uop.

We represent this as the percentage of time Mem/Uop changes more than 0.005 between

two samples for a 100 million instruction sampling granularity. Thus, this dimension shows

how “unstable” the benchmark is. Benchmarks higher along they axis represent cases with

temporally varying behavior, which cannot be predicted in astraightforward manner sim-

ply by assuming the benchmark will preserve its last observed behavior. On the other hand,

benchmarks close to the x axis show almost completely “flat” execution behavior, where

the application rarely changes its execution properties. In these cases, simply assuming

the previous observed characteristics will prevail performs as well as any other method. In

101

applu_in
equake_in

ammp

apsi

bzip2_graphic

bzip2_program

bzip2_source

gap

gcc_166

gcc_expr

mgrid_in

parser

swim_intwolf_ref

wupwise

0

10

20

30

40

50

60

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Power Savings Potential

S
am

p
le

 V
ar

ia
ti

o
n

 (
%

)

0.100 0.110 0.120

mcf_inp

Q4

Q1 Q2

Q3

Figure 5.1: Benchmark categories based on stability (in terms of Mem/Uop variation be-
tween samples) and power saving potential (based on averageMem/Uop rates).

addition to these variability characteristics, thex dimension of the figure shows the average

Mem/Uop rate for our applications. This shows how much potential exists to slow down

the CPU frequency for each application. Thus, benchmarks further to the right exhibit

higher power savings potential. There are a cluster of applications that lie very close to the

origin, showing small variations and power saving opportunities. We do not label these in

the figure to avoid cluttering the image.

Based on these observed properties we categorize the benchmarks into four quadrants.

Q1 benchmarks, which include many of the SPEC applications, are very stable and show

little power saving opportunities.Q2 benchmarks show higher power saving potential and

little variability. These two categories are easily predictable with simple phase predictors.

Q3 benchmarksapplu, equake andmgrid are the most interesting applications for our

research. These have both highly varying phase behavior andhigh power saving poten-

102

tial. Q4 benchmarks also show high variability, but show relatively smaller power saving

opportunities. Because of their high variability,Q3 andQ4 applications are not expected

to perform well under a simple phase prediction strategy that assumes that the next phase

behavior will match the previously observed one.

5.3 Phase Prediction

This section first discusses different prediction options and describes our chosen technique.

Afterwards, it presents our evaluations for phase prediction accuracy. For a phase predic-

tion technique that can perform well on all corners of benchmark behavior, we propose a

Global Phase History Table(GPHT) predictor. There exist other prior history-based predic-

tors that also seek to estimate application performance characteristics [44, 89]. However,

predictors that simply rely on the statistical measures of past behavior, such as averages

or population counts, cannot perform well for highly variable benchmarks. To demon-

strate this comparatively, we also consider some of the simple statistical predictors in our

evaluations.

The simplest statistical predictor is thelast valuepredictor. In this predictor, the next

sample behavior of an application is assumed to be identicalto its last seen behavior. In this

case, predicted phase in the next interval can be expressed asPhase[t +1] = Phase[t]. This

predictor can be extended to encompass longer past histories by considering afixed history

windowpredictor, where the predictions are based on the lastwindow sizeobservations. In

this case, the next phase prediction can be phrased asPhase[t +1] = f (Phase[t],Phase[t −

1], ...,Phase[t − (winsize−1)]). The function f () can be a simple averaging function, an

exponential moving average or a selector based on population counts. Another approach,

similar to fixed history window is avariable history windowpredictor. In this case, the

history can be shrunk in case of a phase transition, where previous history becomes obsolete

for the subsequent phase predictions. The next phase prediction method for this predictor

is similar to the fixed history window predictor. However, the window size is also a varying

103

parameter based on the last account of observed phase transitions.

5.3.1 Global Phase History Table Predictor

In contrast with the statistical predictors, ourGlobal Phase History Table(GPHT) predictor

observes thepatternsfrom previous samples to deduce the next phase behavior. In such an

approach, it relies on the well-known repetitive executionbehavior of applications. Struc-

turally, the GPHT predictor, depicted in Figure 5.2, is similar to a fully-associative global

branch history predictor [181]. Unlike hardware branch predictors, however, the GPHT is

a software technique, implemented in the operating system for high-level, dynamic phase

prediction.

Pt Pt-1 Pt-2 … … Pt-N … … Pt’’ Pt’’-1 Pt’’-2 … … Pt’’-N … …

Pt’ Pt’-1 Pt’-2 … … Pt’-N … …

: : : : : : : :

: : : : : : : :

: : : : : : : :

P0

P0

P0

… … P0

… …

Pt’’+1

Pt’+1

:

:

:

P0

15

20

:

:

:

-1

Pt

Last observed
phase from
performance
counters

GPHR

PHT PHT Tags PHT
Pred-n

Age /
Invalid

GPHR depth

GPHR depth

P
H

T
 entries

Figure 5.2: GPHT predictor structure.

Similar to a global branch predictor, a GPHT predictor consists of a global shift reg-

ister, called theGlobal Phase History Register(GPHR), that tracks the last few observed

phases. The length of the history is specified byGPHR depth. At each sampling period,

the GPHR is updated with the last seen phase, as observed fromthe PMCs. This updated

GPHR content is used to index aPattern History Table(PHT). The PHT holds several pre-

viously observed phase patterns, with their corresponding“next phase” predictions based

on previous experience. These phase predictions are shown as thePHT Pred-nvector in the

PHT. The GPHR index is associatively compared to the stored valid PHT tags. If a match

is found, the corresponding PHT prediction is used as the final prediction. A per-entryAge

104

/ Invalid value tracks the ages of different PHT tags and allows for a least recently used

(LRU) replacement policy when the PHT is full. A−1 entry denotes the corresponding tag

contents and prediction are not valid. The number of entriesin the PHT is specified byPHT

entries. In the case of amismatchbetween the GPHR and the PHT tags, the last observed

phase, stored in GPHR[0], is predicted as the next phase. After a mismatch, the current

GPHR contents are added to the PHT by either replacing the oldest entry or by occupying

an available invalid entry. In the case of a match, a PHT prediction entry is updated in the

next sampling period based on the actual observed phase for the corresponding tag.

By observing the phase patterns in application execution, the GPHT predictor can per-

form reliable predictions even for highly variable benchmarks. Inevitably, for a hypotheti-

cal application with no visibly recurrent behavior, no existing predictor can function accu-

rately. In such cases there is no matching pattern in the PHT and we revert to a last value

predictor, thus guaranteeing to meet the accuracy of previous methods under the worst case

scenarios. Most applications exhibit some amount of repetitive patterns, however, due to

the common loop-oriented and procedural execution style.

Figure 5.3 gives an example of how the GPHT accurately captures varying application

behavior with theapplu benchmark.Applu shows highly varying behavior with distinctive

repetitive phases throughout its execution. The figure shows the variation in Mem/Uop

for applu and its corresponding phases from a sample execution regionthat is chosen

to reflect the repetitive execution characteristics ofapplu. It shows the performed phase

predictions with both the GPHT and last value predictors. While we have experimented

with other statistical predictors (depicted in Figure 5.4), the figure only shows the last

value predictor as the best performing statistical predictor for this application. The GPHT

has a GPHR depth of 8 and 1024 PHT entries. This example shows that even for this highly

variable application, GPHT predictions almost perfectly match the actual observed phases.

In contrast, a last value prediction method mispredicts more than one-third of the phases

due toapplu’s rapidly varying phases. Figure 5.3 highlights two regions, showing the

105

0

1

2

3

4

5

6

7

8

9

10

11

12

13

28 29 30 31 32
Cycles (Billion)

P
h

as
es

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

M
em

/U
o

p
 R

at
e

Actual_Phases LastValue GPHT_8_1024 Mem/Uop

A B

Figure 5.3: Actual and predicted phases for theapplu benchmark.

repetitive phase behavior and how GPHT can easily capture this behavior. In addition, it

shows two distinct cases, where GPHT first mispredicts the next phase at point labeled“A” ,

and later can correctly predict similar behavior at point“B” by learning from the previous

pattern history. This example shows the clear strength of pattern-based phase prediction

with GPHT over statistical approaches.

5.3.2 Phase Prediction Results

Figure 5.4 shows the achieved prediction accuracies on our applications for four predic-

tion methods. In particular, it shows(i) last value prediction,(ii) fixed window prediction

with window sizes of 8 and 128,(iii) variable window with a 128-entry window and phase

transition thresholds of 0.005 and 0.030, and(iv) GPHT with a GPHR depth of 8 and 1024

PHT entries. The thresholds for the variable window predictors are chosen to achieve effec-

tive window sizes that fall between last value and fixed window predictors. We have also

experimented with different PHT and GPHR sizes. The effect of PHT size on the predic-

tion accuracy is discussed later in this section (Figure 5.6). For the GPHR depth, the near

neighborhood of eight entries performs similarly to the presented results. However, GPHR

sizes larger than 16 or smaller than 4 degrade accuracy. In Figure 5.4, the benchmarks are

106

0

20

40

60

80

100

cr
af

ty
_i

n

eo
n_

co
ok

eo
n_

ka
jiy

a

eo
n_

ru
sh

m
ei

er

m
es

a_
re

f

vo
rt

ex
_l

en
di

an
2

si
xt

ra
ck

_i
n

sw
im

_i
n

vo
rt

ex
_l

en
di

an
1

tw
ol

f_
re

f

vo
rt

ex
_l

en
di

an
3

gz
ip

_p
ro

gr
am

gz
ip

_g
ra

ph
ic

gz
ip

_r
an

do
m

gz
ip

_s
ou

rc
e

gz
ip

_l
og

m
cf

_i
np

gc
c_

20
0

gc
c_

sc
ila

b

w
up

w
is

e_
re

f

ga
p_

re
f

gc
c_

in
te

gr
at

e

gc
c_

ex
pr

am
m

p_
in

gc
c_

16
6

pa
rs

er
_r

ef

ap
si

_r
ef

bz
ip

2_
pr

og
ra

m

m
gr

id
_i

n

bz
ip

2_
so

ur
ce

bz
ip

2_
gr

ap
hi

c

ap
pl

u_
in

eq
ua

ke
_i

n

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

FixWindow_8
FixWindow_128
VarWindow_128_0.005
VarWindow_128_0.030
GPHT_8_1024
LastValue

Q1 & Q2 Q3 & Q4

Figure 5.4: Phase prediction accuracies for experimented prediction techniques.

sorted in the order of decreasing prediction accuracy with last value prediction.

For most of theQ1 andQ2 benchmarks, almost all approaches perform very well,

achieving prediction accuracies above 80%. For these mostly stable applications, last value

and GPHT perform almost equivalently. However, the benefitsof GPHT are immediately

observed with the last 6 benchmarks, which constitute theQ3 andQ4 applications. In these

more variable benchmarks, the last value, fixed window and variable window approaches

experience significant drops in prediction accuracies, while GPHT can still sustain higher

prediction accuracies by observing repetitive phase patterns. Forapplu, the last value

predictor—the best non-GPHT predictor for this application—results in more than 53%

mispredictions. In comparison, GPHT achieves less than 8% mispredictions, which im-

proves phase mispredictions by more than 6X. On average, for theQ3 andQ4 benchmarks,

our GPHT predictor leads to 2.4X fewer mispredictions than the other predictors.

The detailed results of Figure 5.4 are for the initial phase definitions described in Ta-

107

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

Number of Phases

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

GPHT

LastValue

Figure 5.5: Prediction accuracies for different phase definitions and granularities.

ble 5.1. However, it is also important to verify that our phase prediction methodology is

a consistent general framework regardless of the chosen phase definitions. Therefore, we

experiment with a wide range of phase definitions with varying number of phases as well

as with phase boundaries different from the ones in Table 5.1. Figure 5.5 shows the result-

ing prediction accuracies, summarized as averages across the experimented applications.

The benchmarks include all SPEC applications excludingcrafty, eon, mesa, vortex,

sixtrack, swim andtwolf. The excluded applications show no visible variations withless

than 1% mispredictions with all predictors. This chart onlycompares the GPHT predictor

with the last value predictor. Here, the results show that our GPHT predictor is consistently

more accurate for all practical phase definitions. Both predictors start with a 100% predic-

tion accuracy for a singleton phase and trend towards 0 with increasing phase granularities.

In all the intermediate regions, the accuracy of GPHT predictor is significantly higher than

that of the last value predictor.

This evaluation clearly demonstrates that our proposed GPHT predictor performs effec-

tively in all quadrants of the benchmark categories and for alarge set of phase definitions.

The remainder of this work builds our dynamic power management framework upon this

phase prediction methodology. However, for different implementations, storing and asso-

ciatively searching through a 1024-entry PHT may be undesirable or unnecessary. There-

108

40

50

60

70

80

90

100

gzip
_log

m
cf_

in
p

gcc
_200

gcc
_sc

ila
b

wupwise
_re

f

gap_re
f

gcc
_int egra

te

gcc
_exp

r

am
mp_in

gcc
_166

parse
r_

re
f

apsi_
r e

f

bzip
2_pro

g ra
m

m
grid

_in

bzip
2_so

u rc
e

bzip
2_gra

ph ic

applu
_in

equake
_in

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)
LastValue

PHT:1024, GPHR:8

PHT:128, GPHR:8

PHT:64, GPHR:8

PHT:1, GPHR:8

Figure 5.6: GPHT prediction accuracy for different number of PHT entries.

fore, Figure 5.6 shows how GPHT prediction accuracy changeswith different numbers of

PHT entries. As the figure shows, down to 128 entries, the GPHTpredictor performs al-

most identically to the 1024 entry predictor. However, observable degradations in accuracy

are seen with a 64 entry PHT. As the number of PHT entries is reduced to 1, the accuracy

of the GPHT predictor converges to last value, due to almost 100% tag mismatches. In

these cases, the next phase is continuously predicted as thelast encountered phase from

GPHR[0]. This shows that a 128-entry PHT is sufficient for our GPHT implementation. In

our deployed real system, described in the following sections, we use this configuration for

our final GPHT predictor implementation.

5.4 Dependence of Phases to Dynamic Management Actions

For the phase prediction methodology to be useful in a dynamic management framework,

phase patterns must not be significantly altered by the dynamic management actions that

respond to them. Action-dependent phases both conceal actual phase patterns, impairing

the predictability of application behavior, and also lead to incorrect management decisions.

Previously, Section 5.1 mentioned that the phase definitions based on memory bus transac-

tions per micro-op (Mem/Uop) are resilient to changes in processor voltage and frequency

settings. This section justifies this claim with detailed measurements.

109

The two metrics obtainable with our choice of monitored PMC events are Mem/Uop

and Uops per cycle (UPC). We profile the application set with performance counters (PMCs)

and record different observed(UPC,Mem/Uop) pairs, which constitute a two-dimensional

execution behavior space. Figure 5.7 shows the corresponding exploration space for all ac-

quired(UPC,Mem/Uop) sample pairs for all the set of applications with the lighterdata

points. These show the diverse characteristics that are covered by these applications. In

addition, a boundary is observed as the maximum achievable UPC for each Mem/Uop

level, depicted with the “SPEC Boundary” curve. This is an expected effect, as high mem-

ory latencies stall dependent execution. Consequently, more memory-bound applications

can retire fewer instructions per cycle. To evaluate how theUPC and Mem/Uop metrics

change under different DVFS settings, we develop a suite of configurable applications that

can pinpoint specific(UPC,Mem/Uop) coordinates in our two-dimensional exploration

space. These applications consist of several configurable microkernels that are tuned via

performance monitoring to achieve desired Mem/Uop and UPC characteristics. We call

these applications the“IPCxMEM suite”. The grid points, denoted as “IPCxMEM Grid”

in Figure 5.7, represent configurations of the IPCxMEM suite to cover the whole explo-

ration space. These applications evaluate the behavior of the tracked metrics at all possible

corners of execution and evaluate how these are affected by DVFS actions.

For our evaluations, we run the IPCxMEM suite in approximately 50(UPC,Mem/Uop)

configurations, uniformly sampling the exploration space grid. We run all configurations

at all the available frequency settings of our experimentalplatform. These are 1500MHz,

1400MHz, 1200MHz, 1000MHz, 800MHz and 600MHz. We monitor UPC and Mem/Uop

via PMCs in these frequency settings. Figure 5.8 illustratesthe frequency dependence of

the two metrics for a representative subset of the representative configurations. Each curve

corresponds to a specific IPCxMEM suite application—run at all frequency settings—

configured to target a specific UPC and Mem/Uop at the highest frequency. These target

values, referenced in the legend, correspond to the specificpoints of the IPCxMEM grid in

110

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

UPC

M
em

/U
op

SPEC Data Points
IPCxMEM Grid

SPEC Boundary

Figure 5.7: Observed (UPC,Mem/Uop) pairs for all experimented applications sampled
every 100 million instructions and grid of points covered byour IPCxMEM suite.

Figure 5.7. For example, the top flat UPC curve in Figure 5.8 with legend entry “UPC=1.9,

Mem/Uop=0.0000” corresponds to the rightmost grid point in Figure 5.7 at thelocation

(UPC= 1.9,Mem/Uop= 0.0).

Figure 5.8 shows the strong dependence of UPC to DVFS settings. UPC mostly has

an increasing trend with decreasing frequency. This is because memory latencies are

not scaled with DVFS, and therefore, memory accesses complete in fewer CPU cycles at

lower frequencies. The frequency dependence of UPC also varies with memory intensity.

UPC values for completely CPU-bound configurations (legend entries withMem/Uop= 0)

show no dependence to frequency. On the other hand, for highly memory-bound configu-

rations, UPC can change up to 80% across frequencies. These demonstrate the dangerous

pitfall we avoid in our phase definitions. Directly using UPCin phase classification is

not reliable for dynamic management, as the resulting phases vary with different power

111

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Frequency [MHz]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
em

/U
o

p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Frequency [MHz]

U
P

C

UPC=1.9, Mem/Uop=0.0000

UPC=1.3, Mem/Uop=0.0075

UPC=0.9, Mem/Uop=0.0125

UPC=0.9, Mem/Uop=0.0075

UPC=0.9, Mem/Uop=0.0000

UPC=0.5, Mem/Uop=0.0225

UPC=0.5, Mem/Uop=0.0025

UPC=0.5, Mem/Uop=0.0000

UPC=0.1, Mem/Uop=0.0475

UPC=0.1, Mem/Uop=0.0325

UPC=0.1, Mem/Uop=0.0000

Figure 5.8: Observed UPC and Mem/Uop behavior at six different frequencies for different
IPCxMEM grid configurations.

management settings.

Conversely, Figure 5.8 shows that the Mem/Uop parameter has virtually no dependence

on DVFS settings. It is almost constant across all frequencies. Therefore, our phase clas-

sifications based on Mem/Uop are completely “DVFS invariant” and can be reliably used

for runtime phase prediction under our target dynamic powermanagement.

5.5 Phase-Driven Dynamic Power Management: Real-System Imple-

mentation

The actual implementation of the on-the-fly phase monitoring and prediction framework

runs on a Pentium-M based, off-the-shelf laptop computer, running Linux kernel 2.6-11.

Figure 5.9 shows an overview of how this overall implementation operates on our system.

Our prototype implementation monitors application execution via performance counters

(PMCs) and performs phase predictions at fixed intervals of 100 million instructions in a

performance monitoring interrupt (PMI) handler. The runtime phase predictions guide dy-

112

A
pp

lic
at

io
n

E
xe

cu
ti

o
n

PMI Interrupt Handler:

Stop/Read performance counters

Translate counter readings to the
corresponding phase

Update phase predictor states

Predict next phase

Translate predicted phase to
corresponding DVFS setting

Same as
current setting?

Apply new DVFS setting

Clear interrupt
Reinitialize/Start performance counters

No

Yes

PMI Interrupt
triggered by
performance
counters at every
100 million
instructions

Exit to program
execution

Figure 5.9: The flow of operation for our runtime phase prediction and dynamic power
management framework.

namic voltage and frequency scaling (DVFS), readily available on the Pentium-M platform,

as the example management application. At each interrupt invocation, after performing the

next phase prediction with the GPHT predictor, the interrupt routine translates the pre-

dicted phase into a predefined DVFS setting. This setting is then applied to the processor

for the next execution interval. After the initial configuration (performed once at system

startup) all phase prediction and dynamic management actions operate autonomously, with

no observable overheads to user applications. All applications can run natively, without

any modifications or additional system or dynamic compiler support.

Figure 5.10 shows the overall prototype implementation andmeasurement setup for our

experiments. This diagram depicts different aspects of ourimplementation that correspond

to on-the-fly phase monitoring and prediction, dynamic power management via DVFS, and

additional mechanisms for evaluating runtime phase prediction and performing real power

measurements that can match each phase. The following subsections discuss the details of

each of these aspects for the prototype platform.

113

Pentium- M
Processor

Performance
counters

DVFS mode set
registers

Predictor
state

PMC and
phase log

OS kernel

PMI Interrupt

Stop/Read Counters

Initialize/Start Counters

Check DVFS mode

Set DVFS mode

Power supply

Voltage
regulator

V2

V1

I2

R2=2mΩ

I1

R1=2mΩ VCPU

Prototype
Machine

P
ar

al
le

l p
o

rt

PMI Interrupt handler
1

2

3

S
ig

n
al

 c
o

n
d

it
io

n
in

g
 u

n
it

an
d

D
at

a
A

cq
u

is
it

io
n

 S
ys

te
m

Bits 0-2

VCPU

V2

V1

Bits 0-2

VCPU

I2

I1

Logging

Machine

Real Power Measurement Units

Figure 5.10: Developed measurement and evaluation platform. Regions identified as1,
2 and3 via dashed lines correspond to different parts of implementation relevant to on-
the-fly phase monitoring and prediction (1), dynamic management with DVFS (2) and
measurement and evaluation support (3).

5.5.1 Runtime Phase Monitoring and Prediction

One of the fundamental challenges of phase detection and prediction on a real system is

the impact of system-induced variability. The previous chapter has shown that application

phases are prone to several variations at runtime, which canalter the timing and values of

observed metrics. To eliminate the effect of timing variations, we monitor phases at fixed

instruction granularities with the PMI. This is a relatively more intrusive method than the

approach described in Chapter 4 as it requires an initial recompilation of the operating sys-

tem kernel to specify the necessary bindings for interrupt handling. However, it provides a

simpler means to track our performance events with minimal disturbance due to variability

effects. We have implemented our PMI handler and supportingsystem calls as a loadable

kernel module (LKM), which can be loaded and unloaded duringsystem operation. These

system calls control the PMCs and bind the interrupt handler to the PMC hardware that

triggers the interrupt. The implemented LKM also holds the state for our predictors and

logs the PMC values and predicted and actual observed phasesfor our evaluations.

For our experiments, we configured the two available PMCs in the Pentium-M proces-

sor to monitor the retired micro-ops and memory bus accesseswith the UOPSRETIRED

114

and BUSTRAN MEM event configurations. We have experimented with variousinstruc-

tion granularities and chose to invoke the interrupt handler every 100 million instructions.

This granularity provides a safe lower bound that operates without causing significant over-

heads and operating system timing violations. After each invocation, the first PMC is reini-

tialized to overflow after 100 million retired Uops.

After every 100 million instructions, the interrupt handler stops and reads the PMCs,

updates the GPHT predictor states, and performs the next phase prediction. It also logs the

observed PMC values, actual observed phase for the past period, and the predicted phase

for the next period for our evaluations. At its exit, the handler clears the PMC overflow bit,

reinitializes the PMCs and time stamp counter (TSC), and restarts the counters.

5.5.2 Dynamic Power Management with DVFS

The on-the-fly phase prediction methodology can guide a range of dynamic management

techniques. This work considers DVFS as an example implementation. DVFS is supported

on our platform via Intel SpeedStep technology [55]. In our prototype implementation,

we use a look-up table, defined at LKM initialization, to quickly translate the predicted

phase to one of the 6 DVFS settings within the handler. Table 5.2 shows these settings for

the prototype machine and the original phase definitions, which are similar to prior work

[179]. For alternative phase definitions or management schemes, we can simply reconfigure

this table. At each sampling interval, the handler translates the predicted phase to the

corresponding DVFS setting. It then compares this to the current setting and updates the

DVFS mode registers if necessary. The 100 million instruction granularity (on the order of

100 ms) guarantees that the overheads induced by interrupt handling and DVFS application

(on the order of 10-100µs) are essentially invisible to native application execution.

5.5.3 Power Measurement

To track the power consumed by the Pentium-M processor, we measure the input voltage

and current flow to the processor. For this purpose, we use an external data acquisition

115

Mem/Uop Phase # DVFS Setting

< 0.005 1 (1500 MHz, 1484 mV)

[0.005,0.010) 2 (1400 MHz, 1452 mV)

[0.010,0.015) 3 (1200 MHz, 1356 mV)

[0.015,0.020) 4 (1000 MHz, 1228 mV)

[0.020,0.030) 5 (800 MHz, 1116 mV)

> 0.030 6 (600 MHz, 956 mV)

Table 5.2: Translation of phases to DVFS settings.

system (DAQ) that is connected to the processor board. The laptop board includes two

2 mΩ precision sense resistorsthat reside between the voltage regulator module and the

Pentium-M CPU, shown asR1 andR2 in Figure 5.10. The total current that flows through

these resistors represents the current flow into the CPU. The voltage after the resistors,

denoted asVCPU, represents the input voltage of the CPU.

In the measurement setup, we measure the three voltagesV1, V2 andVCPU, to track pro-

cessor current and voltage. These voltages—and additionalparallel port bits for evaluation

support—are first fed into a National Instruments AI05Signal Conditioning Unit. This

unit filters the noise on the measured voltage signals and calculates the voltage drop across

the two resistors. These voltage drops,(V1−VCPU) and(V2−VCPU), and the CPU voltage

VCPU are then fed into a National Instruments DAQPad 6070EData Acquisition System.

This unit then scales the voltage drops with the resistor values to compute the current flows

asI1 = (V1−VCPU)/0.002 andI2 = (V2−VCPU)/0.002. The DAQ system monitors a total

of eight signals, and has a sampling period of 40µs. The two measured currents and the

CPU voltage, together with additional parallel port signals, are sent to a separatelogging

machine, which logs the observed currents and voltages. The CPU powerconsumption for

each sample is computed on this logging machine asPowerCPU = VCPU · (I1 + I2). With

this complete measurement setup, we can accurately track CPUpower consumption. By

also utilizing parallel port signaling, described below, our measurement setup can individu-

ally compute the power consumption and performance statistics for each 100M-instruction

116

phase sample as well as for the whole execution of applications.

5.5.4 Evaluation Support

The full operation of our system requires only on-the-fly phase monitoring and predic-

tion, and dynamic power management with DVFS as highlightedin regions 1 and 2 in

Figure 5.10. However, to experimentally evaluate our methods, we develop additional in-

strumentation in our prototype system. First, we use the previously described real power

measurement setup to measure processor power consumption.In addition, for detailed

power/performance and phase prediction evaluations, we employ additional mechanisms

in our implementation; these fall into region 3 in Figure 5.10.

To evaluate runtime phase prediction accuracy and to analyze application behavior, we

use a separate kernel log in our LKM. This log keeps track of the actual observed and

predicted phases for each sample as well as memory accesses per Uop and Uops per cycle

for each phase. At each invocation, the handler records relevant information in this log.

Afterwards, a user-level tool can access this information via separate system calls.

The execution of the processor and the real power measurements are inherently two

completely independent processes. To provide a synchronizing link between the two sides

of our framework, we use parallel port bits that signal specific processor execution infor-

mation to the DAQ system. We use three parallel port bits.Bit 2 is set from the user level

via system calls at the start of an application execution andis cleared when an application

ends. This helps DAQ to measure power specifically during an application execution.Bit

1 is used to distinguish between the application and interrupt execution. This bit is set by

the handler at the entrance to the handler routine and is cleared at exit. Finally,bit 0 is used

to help the DAQ track each phase. The handler flips this bit at each sampling interval so

that the DAQ and the logging machine can distinguish each phase and compute power and

performance statistics for individual phases.

Figure 5.11 shows a detailed view of the overall operation ofour deployed system with

the applu benchmark, performing on-the-fly phase predictions with the GPHT predictor

117

0
1
2
3
4
5
6
7
8
9

10
11
12

1.5E+09 2.5E+09 3.5E+09 4.5E+09

Instructions

P
ha

se
s

-0.024
-0.020
-0.016
-0.012
-0.008
-0.004
0.000
0.004
0.008
0.012
0.016
0.020
0.024

M
em

/U
op

ACTUAL_PHASE PRED_PHASE (GPHT) Mem/Uop (Baseline) Mem/Uop (GPHT)

0

2

4

6

8

10

12

14

1.5E+09 2.5E+09 3.5E+09 4.5E+09

Instructions

P
o

w
er

 [
W

]

Power (Baseline) Power (GPHT)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

1.5E+09 2.0E+09 2.5E+09 3.0E+09 3.5E+09 4.0E+09 4.5E+09 5.0E+09

Instructions

B
IP

S

BIPS (Baseline) BIPS (GPHT)

Figure 5.11: Overall operation of our framework, shown withthe applu benchmark, in
comparison to the baseline system. Top chart shows the observed Mem/Uop, actual and
predicted phases. Middle and lower charts show achieved power savings and induced per-
formance degradation in the shaded regions.

and dynamic power management with DVFS. The figure shows the measured prediction,

power and performance results with respect to a baseline, unmanaged system. The top

chart shows the observed Mem/Uop behavior for the two runs ofapplu, with and without

the described techniques. The two curves are almost identical between the two real-system

runs. This example shows:(i) the phases defined by Mem/Uop are DVFS invariant and

can be safely used for phase prediction under dynamic management responses; and(ii) the

fixed instruction granularity phase definitions are resilient to real-system variations. The

lower part of the top chart shows the actual phases and predicted phases with the GPHT.

The predictions with the GPHT predictor significantly overlap with the actual phase be-

118

-4.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

time [s]

B
it

0
 (

S
am

p
lin

g
 P

er
io

d
)

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

5 5.05 5.1 5.15 5.2

B
it

1
(I

n
te

rr
u

p
t

T
im

e)

Bit0

Bit1

O(100ms)

O(10us)

Figure 5.12: Observed overhead with our dynamic phase monitoring and prediction plat-
form.

havior of this highly varying application. The middle chartshows the measured power

for applu without any power management (baseline) and with GPHT-based power man-

agement (GPHT). The shaded area between the two curves demonstrates power savings

achieved with our approach. The lower chart shows the observed performance as billions

of instructions per second (BIPS) for the two systems, where the shaded area demonstrates

the relatively small performance degradation induced by our framework. These latter two

charts, together with the general results presented in Section 5.6 clearly present the ad-

vantages brought by our framework for improving power/performance efficiency. By effi-

ciently adapting processor execution to varying application behavior, we achieve significant

power savings with small degradations in performance.

5.5.5 Management Overhead

To evaluate the overhead of our dynamic management framework, we need to separate

actual program execution from the phase prediction and modesetting operations. Using the

previously described parallel port signaling mechanism, we monitor the entrance and exit

of the interrupt handler, which performs all of the phase prediction, logging and dynamic

frequency setting actions. Figure 5.12 demonstrates this operation overhead. The upper

plot shows the duration of an individual phase (tracked by alternatingbit0 values) and the

lower plot shows the interrupt timing (tracked by a highbit1 value) as a short spike during

the phase change.

119

This evaluation shows more than three orders of magnitude difference between the

management overhead and phase durations. As a matter of fact, as our data acquisition

system works at a sampling period of 40µs, it cannot detect many of the overhead periods.

For example, no spike inbit1 is observed during the first phase change in the plot. This

corroborates the insignificant overhead of our runtime, phase-prediction-driven dynamic

management strategy. On average, the observed cumulative overhead due to phase moni-

toring and prediction, logging and the application of dynamic management actions is less

than 0.1%.

5.6 Phase-Driven Dynamic Power Management Results

The previous sections described our phase definitions and on-the-fly phase prediction me-

thodology. They have presented a full-fledged deployed system. This section evaluates the

final target of our complete framework, dynamic power management with DVFS, guided

by on-the-fly, GPHT-based phase predictions. It presents the overall dynamic power man-

agement results for all the experimented benchmarks with three sets of information. Fig-

ure 5.13 depicts power and performance results with our experimental system, using the

GPHT predictor, as normalized to baseline execution. The top graph of the figure shows

achieved billions of instructions per second (BIPS) as a measure of performance. The mid-

dle and bottom parts plot the power and energy-delay product(EDP) as measures of power-

performance efficiency for the baseline unmanaged system and our dynamic management

framework. The benchmarks are shown in decreasing EDP orderwith GPHT-based man-

agement.

The application categories that have been previously discussed in Section 5.2 also guide

our understanding of the dynamic power management results.Many of theQ1 benchmarks

experience little power saving and small performance degradation. They have highly sta-

ble, non-varying execution behavior with little power saving potential and close to baseline

performance under dynamic management. Some of theQ1 applications, such asapsi

120

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip

_r
an

do
m

gz
ip

_l
og

vo
rt

ex
_l

en
di

an
2

cr
af

ty
_i

n

vo
rt

ex
_l

en
di

an
1

si
xt

ra
ck

_i
n

eo
n_

ka
jiy

a

eo
n_

co
ok

m
es

a_
re

f

pa
rs

er
_r

ef

gz
ip

_p
ro

gr
am

gz
ip

_s
ou

rc
e

vo
rt

ex
_l

en
di

an
3

ap
si

_r
ef

am
m

p_
in

gc
c_

ex
pr

gc
c_

20
0

gz
ip

_g
ra

ph
ic

bz
ip

2_
pr

og
ra

m

tw
ol

f_
re

f

gc
c_

sc
ila

b

eo
n_

ru
sh

m
ei

er

bz
ip

2_
so

ur
ce

m
gr

id
_i

n

w
up

w
is

e_
re

f

ga
p_

re
f

gc
c_

in
te

gr
at

e

bz
ip

2_
gr

ap
hi

c

gc
c_

16
6

ap
pl

u_
in

eq
ua

ke
_i

n

sw
im

_i
n

m
cf

_i
np

N
o

rm
al

iz
ed

 B
IP

S

Baseline GPHT

20%

30%

40%

50%

60%

70%

80%

90%

100%

g
zi

p
_r

an
d

o
m

g
zi

p
_l

o
g

vo
rt

ex
_l

en
d

ia
n

2

cr
af

ty
_i

n

vo
rt

ex
_l

en
d

ia
n

1

si
xt

ra
ck

_i
n

eo
n

_k
aj

iy
a

eo
n

_c
o

o
k

m
es

a_
re

f

p
ar

se
r_

re
f

g
zi

p
_p

ro
g

ra
m

g
zi

p
_s

o
u

rc
e

vo
rt

ex
_l

en
d

ia
n

3

ap
si

_r
ef

am
m

p
_i

n

g
cc

_e
xp

r

g
cc

_2
00

g
zi

p
_g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m

tw
o

lf
_r

ef

g
cc

_s
ci

la
b

eo
n

_r
u

sh
m

ei
er

b
zi

p
2_

so
u

rc
e

m
g

ri
d

_i
n

w
u

p
w

is
e_

re
f

g
ap

_r
ef

g
cc

_i
n

te
g

ra
te

b
zi

p
2_

g
ra

p
h

ic

g
cc

_1
66

ap
p

lu
_i

n

eq
u

ak
e_

in

sw
im

_i
n

m
cf

_i
n

p

N
o

rm
al

iz
ed

 P
o

w
er

Baseline GPHT

20%

30%

40%

50%

60%

70%

80%

90%

100%

g
zi

p
_r

an
d

o
m

g
zi

p
_l

o
g

vo
rt

ex
_l

en
d

ia
n

2

cr
af

ty
_i

n

vo
rt

ex
_l

en
d

ia
n

1

si
xt

ra
ck

_i
n

eo
n

_k
aj

iy
a

eo
n

_c
o

o
k

m
es

a_
re

f

p
ar

se
r_

re
f

g
zi

p
_p

ro
g

ra
m

g
zi

p
_s

o
u

rc
e

vo
rt

ex
_l

en
d

ia
n

3

ap
si

_r
ef

am
m

p
_i

n

g
cc

_e
xp

r

g
cc

_2
00

g
zi

p
_g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m

tw
o

lf
_r

ef

g
cc

_s
ci

la
b

eo
n

_r
u

sh
m

ei
er

b
zi

p
2_

so
u

rc
e

m
g

ri
d

_i
n

w
u

p
w

is
e_

re
f

g
ap

_r
ef

g
cc

_i
n

te
g

ra
te

b
zi

p
2_

g
ra

p
h

ic

g
cc

_1
66

ap
p

lu
_i

n

eq
u

ak
e_

in

sw
im

_i
n

m
cf

_i
n

p

N
o

rm
al

iz
ed

 E
D

P

Baseline GPHT

Figure 5.13: Runtime phase-prediction-guided dynamic power management results. From
top to bottom, the charts show performance, power and energydelay product achieved by
our framework with respect to baseline execution.

andammp, actually achieve significant power savings due to their relatively higher vari-

ability. However, due to their lower power saving potential, these are also accompanied

by observable performance degradations. Thus, overall EDPimprovement remains less

significant. On the other hand,Q2 andQ3 applications generally demonstrate substantial

power savings as well as EDP improvements. The trivialQ2 applicationsswim andmcf

exhibit above 60% EDP improvements. Our experimental system also achieves EDP im-

provements as high as 34% for the highly variableQ3 benchmarks, such asequake. One

exception to this ismgrid. Although it shows high power savings,mgrid also experiences

comparable performance degradation. Therefore, its EDP improvement remains smaller

than the otherQ3 applications. One probable reason for this is having higher concurrent

execution at memory-bound regions. For allQ2, Q3 andQ4 applications, the average EDP

improvement is 27%, with an average performance degradation of 5%.

121

0%

10%

20%

30%

40%

50%

bzip
2_pro

gra
m

bzip
2_sourc

e

bzip
2_gra

ph ic

m
gr id

_in

applu_in

equake_in

swim
_in

m
cf_

inp

E
D

P
 Im

p
ro

ve
m

en
t

Last Value GPHT 63% 63% 66% 70%

(a) EDP improvement

0%

5%

10%

15%

20%

bzip
2_pro

gra
m

bzip
2_sourc

e

bzip
2_gra

ph ic

m
gr id

_in

applu_in

equake_in

swim
_in

m
cf_

inp

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n

Last Value GPHT

(b) Performance degradation

Figure 5.14: EDP improvement and performance degradation with GPHT and last value
prediction forQ2, Q3 andQ4 benchmarks.

5.6.1 Improvements with GPHT over Reactive Dynamic Management

Many of the previous dynamic management techniques simply respond to previously ob-

served application behavior. We refer to these as “reactive” approaches. Although these

approaches perform well for many applications, they are prone to significant misconfig-

urations for workloads with quickly-varying behavior. On the other hand, our on-the-fly,

GPHT-based dynamic management framework can respond to these variations proactively,

providing better system adaptation. Here we compare the achieved power/performance

trade-offs of our GPHT-based dynamic management frameworkto those of a reactive sys-

tem. For the reactive method, we use last-value prediction.

Figure 5.14 shows the achieved EDP improvement and performance degradation with

both dynamic management methods. It shows the results for the highly variableQ3 and

Q4 benchmarks, as well as the high-power-savings and low-variation Q2 benchmarks. For

many of theQ1 applications, the reactive approach performs similarly to our GPHT-based

approach. For these stable applications, responding to previously seen behavior is already

the near-optimal approach.

Figure 5.14 depicts the advantage of employing dynamic management guided by on-

the-fly phase predictions. The twoQ2 benchmarks behave somewhat differently. Forswim,

which has virtually no variability (lying on thex axis in Figure 5.1) both approaches achieve

almost identical results. Formcf, which shows a small amount of variability, GPHT-based

122

management achieves a slightly better EDP and less performance degradation. For the

highly-variable and memory-boundQ3 benchmarks, GPHT-based, proactive management

achieves superior EDP improvements. The performance degradations experienced by our

GPHT framework are less than or comparable to those of the last value methods. As ex-

pected, the improvements with the less memory-boundQ4 applications are usually less sig-

nificant than the other benchmarks. Nonetheless, while the reactive approach provides al-

most no benefits for these applications, GPHT-based dynamicmanagement improves their

EDP by approximately 5%. On average, GPHT-based dynamic management achieves an

EDP improvement of 27%, with a performance degradation of 5%. The last-value-based

reactive approach achieves 20% EDP improvement and 6% performance degradation for

the same set of applications. Thus, applying dynamic management under the supervi-

sion of our on-the-fly phase predictions provides a 7% EDP improvement over the reactive

method, while inducing comparable or less performance degradation. These results show

the significant benefits of runtime phase prediction and its application to dynamic power

management.

5.6.2 Alternative Phase Definitions

Section 5.5 claimed that in our real-system implementationwe can simply adjust our phase

definitions and the corresponding DVFS look-up table for alternative implementations. For

example, the observed performance degradations that are acceptable for some applications

may not be acceptable to others. In such a scenario, it might be preferable to reduce the

power savings to achieve better performance. Here, we implement such an alternative

dynamic management system that aims to limit performance degradation to 5%. For this

implementation, we redefine our phases to meet our performance goal with the help of

previousIPCxMEMexperiments described in Section 5.4. We look at the achieved BIPS

at each DVFS setting for each of the IPCxMEM grid points, and draw the DVFS domains

on our grid that satisfy our performance target. After this step, we redefine our phases to

match these DVFS settings. Based on these phase definitions, our new deployed system

123

2.1% 2.6% 2.0%
0.3%

3.2%

0%

5%

10%

15%

20%

25%

30%

35%

mcf_inp applu_in equake_in swim_in mgrid_in

Perf. Degradation Power Savings Energy Savings EDP Improvement

Figure 5.15: Power/Performance results for our conservative phase definitions that aim to
bound performance degradation by 5%.

meets the target performance with less aggressive power savings.

Figure 5.15 shows the resulting performance degradations,power and energy savings,

and EDP improvements for the five benchmarks that originallyhad more than 5% perfor-

mance degradations. With the new conservative phase definitions, all of these applications

experience performance degradations significantly lower than 5%. Thus, our new system

can successfully sustain application performances withinour specified degradation limit.

On the other hand, due to smaller power savings, the EDP improvements are also reduced

significantly to meet the performance targets.

These results show the versatility of the phase-based dynamic management framework,

which can be simply configured for different targets under different scenarios. These re-

configurations can even be performed at runtime, after system deployment, with minimal

intrusion to overall system operation. Thus, our complete real-system implementation, pre-

sented in this chapter, serves as an effective, generic power management framework, which

can be employed on a running system to support different dynamic management goals.

5.7 Related Work

Several previous studies investigate methods to monitor and utilize application phases for

architectural and system adaptations. Dhodapkar and Smithuse application working set

information to guide dynamic hardware reconfigurations [41]. Zhou et al. monitor memory

access patterns for energy-efficient memory allocation [186]. Annavaram et al. identify

124

sequential and parallel phases of parallel applications todistribute threads efficiently on an

asymmetric multiprocessor [5]. Weissel and Bellosa also monitor the memory boundedness

of applications to adapt processor execution to different phases on the fly [176]. These

works show interesting applications for different aspectsof application phase behavior.

However, they do not consider predicting future phase behavior of applications and perform

adaptive responses reactively, based on most recent behavior.

Some earlier work also considers prediction of future application behavior. Duester-

wald et al. utilize performance counters to predict certainmetric behavior such as IPC

and cache misses based on previous history [44]. They also show that table-based predic-

tors perform significantly better than statistical approaches to predict variable application

behavior. Lau et al. consider prediction of phase transitions as well as sample phase du-

rations using different predictors [109]. While these worksprovide significant insights

to predictability of application behavior, they do not evaluate the runtime applicability of

these predictions to dynamic management.

Sherwood et al. describe a microarchitectural phase predictor based on the traversed

basic blocks [153]. They apply this prediction methodologyto dynamic cache reconfigura-

tions and scaling of pipeline resources. This work describes fine-grained, microarchitecture-

level phase monitoring and dynamic management, based on architectural simulations, while

the work in this chapter describes a deployed real-system framework for on-the-fly phase

prediction of running applications and system-level management. Shen et al. detect repeti-

tive phases at runtime by monitoring reuse distance patterns with application to cache con-

figurations and memory remapping [150]. This work employs detailed program profiling

and instrumentation to detect repetitive phases. In contrast, our work identifies recurrent

execution and predicts phases seamlessly during native application execution without prior

instrumentation or profiling. Wu et al. also describe a real-system implementation of a

runtime DVFS optimizer that monitors application memory accesses [179]. That work re-

quires the applications to execute from within a dynamic instrumentation framework and

125

relies on periodic dynamic profiling of code regions, inducing additional operation over-

heads. In comparison, our deployed system operates autonomously on any running appli-

cation, without necessitating any dynamic instrumentation support or prior profiling, and

with no observable overheads to application execution.

5.8 Summary

This chapter presented a fully-automated, real-system framework for on-the-fly phase pre-

diction of running applications. These runtime phase predictions have been used to guide

dynamic voltage and frequency scaling (DVFS) as the underlying dynamic management

technique on a deployed system.

This work has experimented with different prediction methods and proposed aGlobal

Phase History Table(GPHT) predictor, leveraged from a common branch predictorarchi-

tecture. Our GPHT predictor performs accurate on-the-fly phase predictions for running

applications with no visible overheads. For highly variable applications, our GPHT pre-

dictor could reduce mispredictions by 6X, compared to the statistical approach. This phase

prediction framework efficiently cooperates with DVFS to dynamically adapt processor

execution to varying workload behavior. DVFS, guided by these phase predictions, has

improved the energy-delay product of variable workloads byas much as 34%, and on aver-

age by 27%. Compared to a reactive approach, our method has improved the energy-delay

product of applications by as much as 20% and on average by 7%.

The results of this work show the promising benefits of runtime phase prediction and

its application to dynamic management. As power managementcontinues to be an increas-

ingly pressing concern, the necessity of such workload-adaptive techniques also increases.

The fully-autonomous real-system solution presented in this chapter, with its energy-saving

potential and negligible-overhead operation, can serve asa foundation for many dynamic

management applications in current and emerging systems.

126

Chapter 6

Conclusions

The work in this thesis explores real-system techniques to characterize and predict dynami-

cally-varying workload power behavior. It develops workload-adaptive dynamic power

management methods that proactively respond to the changesin application demands. The

techniques discussed in this thesis primarily operate at the hardware-software boundary.

They utilize architecture-level information to guide system-level monitoring and control.

The overarching contributions of this work are(i) the developed real-system frameworks

for runtime power monitoring, phase analysis, and phase-driven dynamic power manage-

ment; (ii) proposed workload phase monitoring, detection and prediction techniques; and

(iii) their application to workload-adaptive power management.

In particular, this research has shown that hardware performance monitors that are

available in most architectures can effectively model the architectural power consumption

of processors. The prototype runtime power monitoring and estimation implementation

presented in this work achieved power estimations within 10% of actual processor power

dissipation. This work has demonstrated power-oriented phase analysis techniques that

utilize performance monitoring information to discern varying workload power character-

istics. The small set of phases acquired with these techniques represented overall power

characteristics of workloads on average within 5% of the actual measured behavior. It has

evaluated the efficacy of control-flow-based application features as well as performance

127

monitoring information in characterizing workload power characteristics. While both ap-

proaches proved to be useful in understanding workload power behavior, performance-

monitoring-based phases achieved on average 33% less errors. This research has proposed

phase detection techniques that are resilient to system-induced variations in tracked work-

load features. It showed that representing runtime workload execution in terms of phase

transitions improves the detection of repetitive phases by6X on average, compared to pre-

vious approaches. This thesis has also proposed a runtime global phase history table pre-

dictor that can accurately predict future application phases on a real system. This predictor

achieved 2.4X fewer average phase mispredictions than prior approaches.Last, this re-

search has demonstrated a complete implementation of a phase-driven, workload-adaptive

power management infrastructure. This infrastructure presented the significant benefits of

phase-based adaptations for power-efficient computation with 27% energy-delay product

improvements on a running system.

This thesis shows a complete flow of methods from runtime power and performance

monitoring to phase analysis and workload-adaptive power management. While this re-

search describes specific implementations and applications, the techniques proposed in this

thesis are applicable to a broad range of computing systems and dynamic management

applications that can be employed at both microarchitecture and system level. These in-

clude workload-adaptive microarchitectural resource scaling, dynamic thermal control, and

runtime management of computing systems for fault and variation tolerant execution.

6.1 Future Directions

There are several future avenues of research that are related to the techniques presented

in this work. One fundamental observation that drives theseresearch directions is that the

potential of the emerging systems is defined around meeting certain workload or platform

demands and adapting to the technology challenges in these platforms. For example, these

demands indicate when to enable cores or specialized engines in multicore architectures or

128

how to manage processing elements with varying power-performance characteristics due

to process variations and heterogeneous system implementations. Projecting and adapting

to the varying workload and platform demands is key for achieving the potential and goals

of these evolving trends.

One immediate research path for phase characterization andworkload-adaptive man-

agement is considering multiple management responses in coordination. Most of the prior

work focuses on isolated management schemes for singular constraints. However, com-

prehensive control strategies that account for the nontrivial interaction of different man-

agement responses are necessary for efficient dynamic management. This is particularly

important in emerging processor architectures that are highly limited by power and tem-

perature constraints. Efficient operation of these platforms requires runtime adaptations

that can respond to the power and thermal demands of workloads effectively. This research

direction faces two important challenges. First, elaborate phase classification methods that

can mutually express the power, thermal and other characteristics of applications must be

developed. Second, intelligent control schemes must efficiently coordinate multiple man-

agement responses that correspond to these runtime phase mappings. While this can be a

challenging process, future architectures include increasingly more adaptive components

and demand such control mechanisms.

An important trend in current architectures is the widespread adoption of chip mul-

tiprocessors as the common design choice. Very interestingnew challenges come with

this new direction, where dynamic adaptations that operateacross multiple cores become

at least as important as the management of individual cores.These multicore platforms

require hierarchical monitoring and control techniques that distinguish between local, per-

core adaptations and global, chip-level management. A holistic approach towards efficient

management of these systems is a three-tier framework that spans both architectural and

system-level responses. At the higher level, this includeslarge-scale, system-level ap-

proaches such as thread migration and parallelization techniques. Chip-level management

129

requires global monitoring and control mechanisms for closed-loop management driven by

chip power and thermal constraints. At the core level, localcore monitoring and control

tracks per-core workload phase behavior and drives open-loop actions that can be employed

without the knowledge of the workload characteristics in other cores. There are many in-

teresting open questions in this management strategy such as the scalability and implemen-

tation of such control at the hardware-software boundary, joint optimization of local and

global actions, and a generalized management solution for multiprogrammed and parallel

multithreaded workloads. The runtime workload phase analysis and adaptation techniques

presented in this thesis provide a useful foundation for thedevelopment of the hierarchical

monitoring and control required for this future research direction.

The adaptive management strategies that are discussed in this thesis are also applicable

in the embedded and real-time systems domain. An interesting direction in this domain is

extending the phase-based dynamic adaptation techniques to these application platforms.

In such a framework, mappings of phases to dynamic adaptations can be reconfigured at

runtime based on the imposed deadlines. Such adaptive mappings, together with runtime

phase predictions, can enable more efficient scheduling of the operations to the available

processing elements in real-time embedded computing platforms.

Another important future direction for this work is considering adaptive management

techniques to mitigate the emerging technology challenges. As semiconductor technolo-

gies scale down to nanometer dimensions, integrated circuits exhibit highly variable char-

acteristics and reduced functional reliability. Under these conditions, variation and defect

tolerance must become an integral component of architecture and systems design. Part of

this translates into efficient dynamic management of varying processing resources. This

research direction shares certain similarities with workload phase prediction at its basis.

In addition to projecting workload demands at runtime, it involves extending the predic-

tion models for predicting processor behavior across different operating modes. Moreover,

dynamically changing mappings between workload phases andmanagement actions are

130

required for adapting execution with varying power and temperature envelopes, as well as

with changing architectural capabilities.

Overall, this thesis provides a roadmap to effective on-the-fly phase monitoring and pre-

diction on real-systems and lays the ground work for their application to workload-adaptive

dynamic management techniques. The outcomes of my researchreveal the potential of such

workload-adaptive management for improving processor power efficiency. As adaptive and

autonomous management strategies become increasingly essential for power-efficient and

reliable computing, my research offers promising practical techniques that can be integral

components of emerging computing systems.

131

Bibliography

[1] N. AbouGhazaleh, B. Childers, D. Mosse, R. Melhem, and M.Craven. Energy Management for Real-

time Embedded Applications with Compiler Support. InProceedings of the Proceedings of the 2003

ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES),

2003.

[2] A. R. Alameldeen and D. A. Wood. Variability in Architectural Simulations of Multi-threaded Work-

loads. InProceedings of 9th International Symposium on High Performance Computer Architecture

(HPCA-9), Feb. 2003.

[3] D. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas, E. Friedman, M. Huang, V. Kursun,

G. Magklis, M. Scott, G. Semeraro, P. Bose, A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynami-

cally Tuning Processor Resources with Adaptive Processing. IEEE Computer, 36(12):43–51, 2003.

[4] M. Anis, S. Areibi, and M. Elmasry. Design and Optimization of Multi-Threshold CMOS (MTC-

MOS) Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

22(10):1324–1342, Oct. 2003.

[5] M. Annavaram, E. Grochowski, and J. Shen. Mitigating Amdahl’s Law Through EPI Throttling. In

Proceedings of the 32nd International Symposium on Computer Architecture (ISCA-32), 2005.

[6] M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. Hankins, and B. Davies. The Fuzzy Correla-

tion between Code and Performance Predictability. InProceedings of the 37th International Symp. on

Microarchitecture, 2004.

[7] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A. Nicolau. Profile-

based Dynamic Voltage Scheduling using Program Checkpoints. InProceedings of the conference on

Design, automation and test in Europe (DATE’02), Mar. 2002.

[8] R. I. Bahar and S. Manne. Power and Energy Reduction Via Pipeline Balancing. InProceedings of

the 28th International Symposium on Computer Architecture(ISCA-28), June 2001.

132

[9] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu,and S. Dwarkadas. Memory hierarchy re-

configuration for energy and performance in general-purpose processor architectures. InInternational

Symposium on Microarchitecture, pages 245–257, 2000.

[10] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O’Hallaron, J. R. Shewchuk, and J. Xu. Large-

scale Simulation of Elastic Wave Propagation in Heterogeneous Media on Parallel Computers.Com-

puter Methods in Applied Mechanics and Engineering, 152(1–2):85–102, Jan. 1998.

[11] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. mei W.Hwu. Vacuum packing: extracting

hardware-detected program phases for post-link optimization. InProceedings of the 35th International

Symp. on Microarchitecture, Nov. 2002.

[12] L. A. Barroso. The Price of Performance.ACM Queue, 3(7):48–53, Sept. 2005.

[13] F. Bellosa. The benefits of event-driven energy accounting in power-sensitive systems. InProceedings

of 9th ACM SIGOPS European Workshop, September 2000.

[14] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-Driven Energy Accounting for Dynamic

Thermal Management. InProceedings of the Workshop on Compilers and Operating Systems for Low

Power (COLP’03), New Orleans, Sept. 2003.

[15] B. Bentley. Validating the Intel Pentium 4 microprocessor. InDesign Automation Conference, pages

244–248, 2001.

[16] R. Berrendorf and B. Mohr. PCL - The Performance Counter Library: A Common Interface

to Access Hardware Performance Counters on Microprocessors (Version 2.0). http://www.kfa-

juelich.de/zam/PCL/.

[17] R. Bianchini and R. Rajamony. Power and energy management for server systems.IEEE Computer,

37(11), November 2004.

[18] W. Bircher, J. Law, M. Valluri, and L. K. John. EffectiveUse of Performance Monitoring Counters

for Run-Time Prediction of Power. Technical Report TR-041104-01, University of Texas at Austin,

Nov. 2004.

[19] W. L. Bircher, M. Valluri, J. Law, and L. K. John. Runtimeidentification of microprocessor energy

saving opportunities. InProceedings of the 2005 International Symposium on Low Power Electronics

and Design (ISLPED), 2005.

[20] B. Brock and K. Rajamani. Dynamic Power Management for Embedded Systems. InProceedings of

the IEEE International SOC Conference, Sept. 2003.

133

[21] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma, and M. G. Rosenfield. New

Methodology for Early-Stage, Microarchitecture-Level Power-Performance Analysis of Microproces-

sors.IBM J. of Research and Development, 46(5/6):653–670, 2003.

[22] D. Brooks and M. Martonosi. Dynamically exploiting narrow width operands to improve processor

power and performance. InProceedings of the 5th International Symposium on High Performance

Computer Architecture, Jan. 1999.

[23] D. Brooks and M. Martonosi. Dynamic thermal managementfor high-performance microprocessors.

In Proceedings of the Seventh International Symposium on High-Performance Computer Architecture

(HPCA-7), January 2001.

[24] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power analysis

and optimizations. InProceedings of the 27th International Symposium on Computer Architecture,

June 2000.

[25] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Programming Interface for Perfor-

mance Evaluation on Modern Processors.The International Journal of High Performance Computing

Applications, 14(3):189–204, 2000.

[26] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. W. Cook, and D. H. Albonesi. An Adap-

tive Issue Queue for Reduced Power at High Performance. InProceedings of the First International

Workshop on Power-Aware Computer Systems (PACS’00), 2001.

[27] B. Calder, T. Sherwood, E. Perelman, and G. Hamerly. SimPoint web page.

http://www.cs.ucsd.edu/simpoint/.

[28] A. P. Chandrakasan and A. Sinha. JouleTrack: A Web BasedTool for Software Energy Profiling. In

Proceedings of the38th Design Automation Conference (DAC’01), June 2001.

[29] F. Chang, K. Farkas, and P. Ranganathan. Energy driven statistical profiling: Detecting software

hotspots. InProceedings of the Proceedings of the Workshop on Computer Systems, 2002.

[30] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy and server resources

in hosting centers. InProceedings of the 18th Symposium on Operating Systems Principles (SOSP),

October 2001.

[31] M. Chin. Desktop CPU Power Survey. InSPCR Forum, 2006.

134

[32] C.-B. Cho and T. Li. Complexity-based Program Phase Analysis and Classification. InProceedings

of the International Conference on Parallel Architecturesand Compilation Techniques (PACT), Sept.

2006.

[33] K. Choi, R. Soma, and M. Pedram. Dynamic Voltage and Frequency Scaling based on Workload

Decomposition. InProceedings of International Symposium on Low Power Electronics and Design

(ISLPED), Aug. 2004.

[34] G. Contreras and M. Martonosi. Power Prediction for Intel XScale Processors Using Performance

Monitoring Unit Events. InProceedings of the 2005 International Symposium on Low Power Elec-

tronics and Design (ISLPED), 2005.

[35] J. Cook, R. L. Oliver, and E. E. Johnson. Examining performance differences in workload execution

phases. InProceedings of the IEEE International Workshop on WorkloadCharacterization (WWC-4),

2001.

[36] N. Corporation. NVIDIA GeForce 8800 GPU Architecture Overview. Technical Brief TB-02787-

001 v01, NVIDIA Corporation, Nov. 2006.

[37] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D.S. Nikolopoulos. Online Power-

Performance Adaptation of Multithreaded Programs using Event-Based Prediction. InProceedings

of the 20th ACM International Conference on Supercomputing(ICS), June 2006.

[38] A. Das, J. Lu, and W.-C. Hsu. Region Monitoring for LocalPhase Detection in Dynamic Optimiza-

tion Systems. InProceedings of the International Symposium on Code Generation and Optimization

(CGO), Mar. 2006.

[39] P. J. Denning. The working set model for program behavior. Communications of the ACM, pages

323–333, May 1968.

[40] A. Dhodapkar and J. Smith. Comparing Program Phase Detection Techniques. In 36th International

Symp. on Microarchitecture, 2003.

[41] A. Dhodapkar and J. Smith. Managing multi-configurablehardware via dynamic working set analysis.

In 29th Annual International Symposium on Computer Architecture, 2002.

[42] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Second Edition. Wiley Interscience,

New York, 2001.

135

[43] A. Dudani, F. Mueller, and Y. Zhu. Energy Conserving Feedback EDF Scheduling for Embedded

Systems with Real-time Constraints. InLCTES/SCOPES ’02: Proceedings of the joint conference on

Languages, compilers and tools for embedded systems, 2002.

[44] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and Predicting Program Behavior and

its Variability. In IEEE PACT, pages 220–231, 2003.

[45] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan. Full-system Power Analysis and Mod-

eling for Server Environments. InProceedings of the Workshop on Modeling Benchmarking and

Simulation (MOBS), June 2006.

[46] L. Eeckhout, R. Sundareswara, J. Yi, D. Lilja, and P. Schrater. Accurate Statistical Approaches for

Generating Representative Workload Compositions. InProceedings of the IEEE International Sym-

posium on Workload Characterization, Oct. 2005.

[47] D. Ernst, S. D. Nam Sung Kim, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T. Austin, and

T. Mudge. Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation. InProceedings

of the 36th International Symp. on Microarchitecture, Dec. 2003.

[48] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches: Simple Techniques

for Reducing Leakage Power. InProceedings of the 29th International Symposium on Computer

Architecture (ISCA-29), May 2002.

[49] K. Flautner and T. Mudge. Vertigo: Automatic Performance-Setting for Linux. InProceedings of the

Fifth Symposium on Operating System Design and Implementation OSDI’02, 2002.

[50] J. Flinn. Extending Mobile Computer Battery Life through Energy-Aware Adaptation. PhD thesis,

Computer Science Department, Carnegie Mellon University,Dec. 2001.

[51] J. Flinn and M. Satyanarayanan. Powerscope: a tool for profiling the energy usage of mobile applica-

tions. InSecond IEEE Workshop on Mobile Computing Systems and Applications, pages 2–10, Feb.

1999.

[52] B. B. Fraguela, R. Doallo, J. Tourino, and E. L. Zapata. ACompiler Tool to Predict Memory Hierarchy

Performance of Scientific Codes.Parallel Computing, 30(2):225–228, 2004.

[53] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr, G. Mittal, E. Chan, Y. Chan,

D. Plass, S. Chu, H. Le, L. Clark, J. Ripley, S. Taylor, J. Dilullo, and M. Lanzerotti. Design of the

POWER6 Microprocessor. InIEEE International Solid-State Circuits Conference (ISSCC 2007), Feb.

2007.

136

[54] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equations: A Compiler Framework for Ana-

lyzing and Tuning Memory Behavior.ACM Transactions on Programming Languages and Systems

(TOPLAS), 21(4):703–746, 1999.

[55] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C.

Valentine. The Intel Pentium M Processor: Microarchitecture and Performance.Intel Technology

Journal, Q2, 2003, 7(02), 2003.

[56] M. Golden, S. Arekapudi, G. Dabney, M. Haertel, S. Hale,L. Herlinger, Y. Kim, K. McGrath,

V. Palisetti, and M. Singh. A 2.6GHz Dual-Core 64b x86 Microprocessor with DDR2 Memory Sup-

port. In IEEE International Solid-State Circuits Conference (ISSCC 2006), Feb. 2006.

[57] M. Gschwind. Chip Multiprocessing and the Cell Broadband Engine. IBM Researh Report RC-23921,

IBM T. J. Watson Research Center, Feb. 2006.

[58] S. P. Gurrum, S. K. Suman, Y. K. Joshi, and A. G. Fedorov. Thermal Issues in Next-Generation

Integrated Circuits.IEEE Transactions on Device and Materials Reliability, 4(4):709–714, Dec. 2004.

[59] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M. Kandemir, T. Li, and L. K.

John. Using Complete Machine Simulation for Software PowerEstimation: The SoftWatt Approach.

In Proceedings of the 8th International Symposium on High-Performance Computer Architecture

(HPCA), Feb. 2002.

[60] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.Franke. DRPM: Dynamic Speed Control

for Power Management in Server Class Disks.Computer Architecture News, 31(2):169 – 181, May

2003.

[61] S. Gurun and C. Krintz. A Run-Time, Feedback-Based Energy Estimation Model For Embedded

Devices. InProceedings of the International Conference on Hardware-Software Codesign and System

Synthesis (CODES+ISSS), Oct. 2006.

[62] J. Haid, G. Kafer, C. Steger, R. Weiss, , W. Schogler, andM. Manninger. Run-time energy estimation

in system-on-a-chip designs. InAsia and South Pacific Design Automation Conference (ASP-DAC),

Jan. 2003.

[63] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria,and R. Bianchini. Mercury and freon: Tem-

perature emulation and management in server systems. InProceedings of the International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS), October

2006.

137

[64] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and R. Bianchini. Energy conservation in heteroge-

neous server clusters. InProceedings of the 10th Symposium on Principles and Practice of Parallel

Programming (PPoPP), 2005.

[65] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Code Transformations for Energy-

Efficient Device Management.IEEE Transactions on on Computers, 53(8):974– 987, Aug. 2004.

[66] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach. Morgan

Kaufman Publishers, 2003. Third Edition.

[67] S. Heo, K. Barr, and K. Asanovic. Reducing Power Densitythrough Activity Migration. InProceed-

ings of International Symposium on Low Power Electronics and Design (ISLPED), Seoul, Korea, Aug.

2003.

[68] M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase Shift Detection: A Problem Classification. IBM

Researh Report RC-22887, IBM T. J. Watson, Aug. 2003.

[69] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The mi-

croarchitecture of the Pentium 4 processor.Intel Technology Journal, First Quarter 2001, 2001.

http://developer.intel.com/technology/itj/.

[70] J. Hom and U. Kremer. Inter-program Compilation for Disk Energy Reduction. InWorkshop on

Power-Aware Computer Systems (PACS’03), 2003.

[71] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of a compiler algorithm for

CPU energy reduction. InProceedings of the ACM SIGPLAN 2003 conference on Programming

language design and implementation, pages 38–48, 2003.

[72] C. Hu, D. Jimenez, and U. Kremer. Toward an Evaluation Infrastructure for Power and Energy Opti-

mizations. InWorkshop on High-Performance, Power-Aware Computing, 2005.

[73] S. Hu, M. Valluri, and L. K. John. Effective Adaptive Computing Environment Management via

Dynamic Optimization. InProceedings of the International Symposium on Code Generation and

Optimization (CGO), Mar. 2005.

[74] M. Huang, J. Renau, and J. Torrellas. Profile-Based Energy Reduction in High-Performance Proces-

sors. In4th ACM Workshop on Feedback-Directed and Dynamic Optimization, December 2001.

[75] M. Huang, J. Renau, and J. Torrellas. Positional Adaptation of Processors: Application to Energy

Reduction. InProceedings of the International Symp. on Computer Architecture, 2003.

138

[76] C. Hughes, J. Srinivasan, and S. Adve. Saving energy with architectural and frequency adaptations for

multimedia applications. InProceedings of the 34th Annual International Symposium on Microarchi-

tecture (MICRO-34), Dec. 2001.

[77] IBM. PMAPI structure and function Reference. http://www16.boulder.ibm.com/pseries/enUS/files/aixfiles/

pmapi.h.htm.

[78] Intel Corporation.VTuneTM Performance Analyzer 1.1. http://developer.intel.com/software/products/vtune/vlin/.

[79] Intel Corporation. Intel Pentium 4 and Intel Xeon Processor Optimization Reference Manual, 2002.

http://developer.intel.com/design/Pentium4/manuals/248966.htm.

[80] Intel Corporation.Intel Pentium 4 Processor in the 423 pin package / Intel 850 chipset platform, 2002.

http://developer.intel.com/design/chipsets/designex/298245.htm.

[81] Intel Corporation. Intel 64 and IA-32 Architectures Software Developers Manual, Volume 3B: System

Programming Guide, 2006.

[82] C. Isci, G. Contreras, and M. Martonosi. Hardware Performance Counters for Detailed Runtime

Power and Thermal Estimations: Experiences and Proposals.In Proceedings of the Hardware Per-

formance Monitor Design and Functionality Workshop in the 11th International Symposium on High-

Performance Computer Architecture (HPCA-11), Feb. 2005.

[83] C. Isci, G. Contreras, and M. Martonosi. Live, Runtime Phase Monitoring and Prediction on Real

Systems with Application to Dynamic Power Management. InProceedings of the 39th ACM/IEEE

International Symposium on Microarchitecture (MICRO-39), 2006.

[84] C. Isci and M. Martonosi. Identifying Program Power Phase Behavior using Power Vectors. InPro-

ceedings of the IEEE International Workshop on Workload Characterization (WWC-6), 2003.

[85] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End Processors: Methodology and

Empirical Data. InProceedings of the 36th International Symp. on Microarchitecture, Dec. 2003.

[86] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End Processors: Methodology and

Empirical Data. Technical report, Princeton University Electrical Eng. Dept., Sep 2003.

[87] C. Isci and M. Martonosi. Detecting Recurrent Phase Behavior under Real-System Variability. In

Proceedings of the IEEE International Symposium on Workload Characterization, Oct. 2005.

[88] C. Isci and M. Martonosi. Phase Characterization for Power: Evaluating Control-Flow-Based and

Event-Counter-Based Techniques. InProceedings of the 12th International Symposium on High-

Performance Computer Architecture (HPCA-12), 2006.

139

[89] C. Isci, M. Martonosi, and A. Buyuktosunoglu. Long-term Workload Phases: Duration Predictions

and Applications to DVFS.IEEE Micro: Special Issue on Energy Efficient Design, 25(5):39–51,

Sep/Oct 2005.

[90] A. Iyer and D. Marculescu. Power aware microarchitecture resource scaling. InProceedings of Design

Automation and Test in Europe, DATE, Mar. 2001.

[91] R. Jenkins. Hash functions.Dr. Dobb’s Journal, 9709, Sept. 1997.

[92] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate voltage emergencies in high

performance processors. InProc. of the 9th International Symposium on High Performance Computer

Architecture (HPCA-9), February 2003.

[93] R. Joseph and M. Martonosi. Run-time power estimation in high performance microprocessors. In

International Symposium on Low Power Electronics and Design, pages 135–140, 2001.

[94] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. Clark. Coordinated, Distributed, Formal Energy

Management of Chip Multiprocessors. InProceedings of International Symposium on Low Power

Electronics and Design (ISLPED’05), Aug. 2005.

[95] I. Kadayif, T. Chinoda, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and A. Sivasubramaniam.

vEC: virtual energy counters. InWorkshop on Program Analysis for Software Tools and Engineering,

pages 28–31, 2001.

[96] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting generational behavior to reduce cache

leakage power. InProceedings of the 28th International Symposium on Computer Architecture (ISCA-

28), June 2001.

[97] A. Keshavarzi, S. Ma, S. Narendra, B. Bloechel, K. Mistry, T. Ghani, S. Borkar, and V. De. Effective-

ness of Reverse Body Bias for Leakage Control in Scaled Dual Vt CMOS ICs. InProceedings of the

2001 International Symposium on Low Power Electronics and Design (ISLPED), Aug. 2001.

[98] C. H. Kim and K. Roy. Dynamic Vth Scaling Scheme for Active Leakage Power Reduction. In

Proceedings of the conference on Design, automation and test in Europe (DATE’02), Mar. 2002.

[99] J. Kim, S. V. Kodakara, W.-C. Hsu, D. J. Lilja, and P.-C. Yew. Dynamic Code Region (DCR) Based

Program Phase Tracking and Prediction for Dynamic Optimizations. Lecture Notes in Computer Sci-

ence, 3793:203–217, 2005.

[100] T. Kistler and M. Franz. Continuous Program Pptimization: A Case Study.ACM Transactions on

Programming Languages and Systems (TOPLAS), 25(4):500–548, 2003.

140

[101] A. KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja. Adapting the SPEC2000 benchmark suite

for simulation-based computer architecture research. InWorkshop on Workload Characterization,

International Conference on Computer Design, Sept. 2000.

[102] U. Kremer, J. Hicks, and J. Rehg. Compiler-Directed Remote Task Execution for Power Management.

In Proceedings of the Workshop on Compilers and Operating Systems for Low Power (COLP’00),

2000.

[103] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-ISA Heterogeneous

Multi-Core Architectures: The Potential for Processor Power Reduction. InProceedings of the 36th

International Symp. on Microarchitecture, Dec. 2003.

[104] E. Kursun, S. Ghiasi, and M. Sarrafzadeh. Transistor Level Budgeting for Power Optimization. In

Proceedings of the 5th International Symposium on Quality Electronic Design (ISQED’05), 2004.

[105] P. E. Landman. High-level power estimation. InProceedings of the 1996 International Symposium on

Low Power Electronics and Design (ISLPED), Oct. 1996.

[106] P. E. Landman and J. M. Rabaey. Black-box Capacitance Models for Architectural Power Analysis.

In Proceedings of the International Workshop on Low Power Design, Apr. 1994.

[107] P. E. Landman and J. M. Rabaey. Activity-sensitive Architectural Power Analysis for the Control Path.

In Proceedings of the International Workshop on Low Power Design, Apr. 1995.

[108] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The Strong Correlation between Code

Signatures and Performance. InIEEE International Symposium on Performance Analysis of Systems

and Software, Mar. 2005.

[109] J. Lau, S. Schoenmackers, and B. Calder. Transition Phase Classification and Prediction. In11th

International Symposium on High Performance Computer Architecture, 2005.

[110] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page Allocation.ACM SIGOPS Operating

Systems Review, 34(5):105 – 116, Dec. 2000.

[111] B. Lee and D. Brooks. Accurate and Efficient RegressionModeling for Microarchitectural Perfor-

mance and Power Prediction. InProceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-XII) , October 2006.

[112] K. Lee and K. Skadron. Using Performance Counters for Runtime Temperature Sensing in High-

Performance Processors. InWorkshop on High-Performance, Power-Aware Computing, 2005.

141

[113] S. Lee, A. Ermedahl, S. L. Min, and N. Chang. An accurateinstruction-level energy consumption

model for embedded RISC processors. InLCTES/OM, pages 1–10, 2001.

[114] S. Lee and T. Sakurai. Run-time Voltage Hopping for Low-power Real-time Systems. InProceedings

of the37th Design Automation Conference (DAC’00), 2000.

[115] J. Li and J. Martinez. Dynamic Power-Performance Adaptation of Parallel Computation on Chip

Multiprocessors. InProceedings of the 12th International Symposium on High-Performance Computer

Architecture (HPCA-12), 2006.

[116] T. Li and L. K. John. Run-time Modeling and Estimation of Operating System Power Consumption.

In Proceedings of the International Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), 2003.

[117] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Kumar. Performance Directed Energy

Management for Main Memory and Disks. InProceedings of the 11th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS-XI), 2004.

[118] M. Liu, W.-S. Wang, and M. Orshansky. Leakage Power Reduction by Dual-Vth Designs Under

Probabilistic Analysis of Vth Variation. InProceedings of the 2004 International Symposium on Low

Power Electronics and Design (ISLPED), Aug. 2004.

[119] J. R. Lorch and A. J. Smith. Improving Dynamic Voltage Scaling Algorithms with PACE. InPro-

ceedings of the 2001 ACM SIGMETRICS international conference on Measurement and modeling of

computer systems, 2001.

[120] J. Lu, H. Chen, P. Yew, and W. Hsu. Design and Implementation of a Lightweight Dynamic Optimiza-

tion System.The Journal of Instruction-Level Parallelism, 6:1–24, 2004.

[121] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood.

Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation. InProgramming

Language Design and Implementation (PLDI), June 2005.

[122] G. Magklis, M. Scott, G. Semeraro, D. Albonesi, and S. Dropsho. Profile-based Dynamic Voltage

and Frequency Scaling for a Multiple Clock Domain Microprocessor. InProceedings of the 30th

International Symposium on Computer Architecture (ISCA-30), 2003.

[123] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation control for energy reduction.

In Proceedings of the 25th International Symposium on Computer Architecture, pages 132–41, June

1998.

142

[124] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium Processor.IEEE Micro,

25(2):10–20, Mar/Apr 2005.

[125] H. Mehta, R. M. Owens, and M. J. Irwin. Energy characterization based on clustering. InProceedings

of the33rd Design Automation Conference (DAC’96), 1996.

[126] H. Mehta, R. M. Owens, and M. J. Irwin. Instruction Level Power Profiling. InProceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’96), May 1996.

[127] A. Merkel.Balancing Power Consumption in Multiprocessor Systems. PhD thesis, Sept. 2005. System

Architecture Group, University of Karlsruhe, Diploma Thesis.

[128] M. C. Merten, A. R. Trick, R. D. Barnes, E. M. Nystrom, C.N. George, J. C. Gyllenhaal, and W. mei

W. Hwu. An architectural framework for runtime optimization. IEEE Transactions on Computers,

50(6):567–589, 2001.

[129] G. E. Moore. Cramming more components onto integratedcircuits. InElectronics, pages 114–117,

Apr. 1965.

[130] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling cool: Temperature-aware

workload placement in data centers. InProceedings of USENIX ‘05, June 2005.

[131] P. Nagpurkar, C. Krintz, M. Hind, P. Sweeney, and V. Rajan. Online Phase Detection Algorithms.

In Proceedings of the International Symposium on Code Generation and Optimization (CGO), Mar.

2006.

[132] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-AwareRemote Profiling. InProceedings of the

International Symposium on Code Generation and Optimization (CGO), Mar. 2005.

[133] K. Olukotun and L. Hammond. The Future of Microprocessors.ACM Queue, 3(7):27–34, Sept. 2005.

[134] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K.-Y. Chang. The Case for a Single-

Chip Multiprocessor. InSeventh International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS VII), Oct. 1996.

[135] H. H. Padmanabhan. Design and Implementation of Power-aware Virtual Memory. InProceedings of

USENIX, 2003.

[136] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. DMA-Aware Memory Energy Management. InPro-

ceedings of the 12th International Symposium on High-Performance Computer Architecture (HPCA-

12), Feb. 2006.

143

[137] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing Representative

Portions of Large Intel Itanium Programs with Dynamic Instrumentation. InProceedings of the 37th

International Symp. on Microarchitecture, 2004.

[138] C. Poirier, R. McGowen, C. Bostak, and S. Naffziger. Power and Temperature Control on a 90nm

Itanium-Family Processor. InIEEE International Solid-State Circuits Conference (ISSCC 2005), Feb.

2005.

[139] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing Power Requirements of Instruction Scheduling

Through Dynamic Allocation of Multiple Datapath Resources. In Proceedings of the 34th Annual

International Symposium on Microarchitecture (MICRO-34), Dec. 2001.

[140] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Reducing Leakage in a High-

Performance Deep-Submicron Instruction Cache.IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 9(1):77–90, 2001.

[141] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J. P. Shen. Coming Challenges in Microar-

chitecture and Architecture.Proceedings of the IEEE, 89(3):325–340, Mar. 2001.

[142] J. Russell and M. Jacome. Software power estimation and optimization for high performance, 32-bit

embedded processors. InProceedings of the International Conference on Computer Design, October

1998.

[143] D. G. Sachs, W. Yuan, C. J. Hughes, A. Harris, S. V. Adve,D. L. Jones, R. H. Kravets, and K. Nahrst-

edt. Grace: A hierarchical adaptation framework for savingenergy. Technical report, Computer

Science, University of Illinois Technical Report UIUCDCS-R-2004-2409, 2004.

[144] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, and A. Kovacs. Implementation of the 65nm

Dual-Core 64b Merom Processor. InIEEE International Solid-State Circuits Conference (ISSCC

2007), Feb. 2007.

[145] T. Sato, M. Nagamatsu, and H. Tago. Power and Performance Simulator: ESP and Its Applications

for 100 MIPS/W Class RISC Design. InProceedings of the 1994 International Symposium on Low

Power Electronics and Design (ISLPED), Oct. 1994.

[146] R. Schmidt. Liquid Cooling is Back.Electronics Cooling, 11(3), Aug. 2005.

[147] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S. Dwarkadas, and M. Scott. Energy-

Efficient Processor Design Using Multiple Clock Domains with Dynamic Voltage and Frequency Scal-

ing. In Proceedings of the 8th International Symposium on High-Performance Computer Architecture

(HPCA-8), 2002.

144

[148] J. S. Seng and D. M. Tullsen. The effect of compiler optimizations on Pentium 4 power consumption.

In 7th Annual Workshop on Interaction between Compilers and Computer Architectures, Feb. 2003.

[149] Server System Infrastructure (SSI) consortium. Power Supply Management Interface Design Guide,

Rev. 2.12, Sept. 2005.

[150] X. Shen, Y. Zhong, and C. Ding. Locality Phase Prediction. InEleventh International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS XI), Oct. 2004.

[151] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find periodic behav-

ior and simulation points in applications. InInternational Conference on Parallel Architectures and

Compilation Techniques, Sept. 2001.

[152] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Characterizing Large Scale

Program Behavior. In Tenth International Conference on Architectural Support for Programming

Languages and Operating Systems, Oct 2002.

[153] T. Sherwood, S. Sair, and B. Calder. Phase tracking andprediction. InProceedings of the 28th

International Symposium on Computer Architecture (ISCA-30), June 2003.

[154] D. Shin, J. Kim, and S. Lee. Low-Energy Intra-Task Voltage Scheduling Using Static Timing Analysis.

In Proceedings of the38th Design Automation Conference (DAC’01), June 2001.

[155] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan. Temperature-

aware microarchitecture. InProceedings of the 30th International Symposium on Computer Architec-

ture, June 2003.

[156] L. Spracklen and S. G. Abraham. Chip Multithreading: Opportunities and Challenges. In11th Inter-

national Symposium on High Performance Computer Architecture (HPCA-11), 2005.

[157] E. Sprangle and D. Carmean. Increasing Processor Performance by Implementing Deeper Pipelines.

In Proceedings of the 29th International Symposium on Computer Architecture (ISCA-29), May 2002.

[158] B. Sprunt. Brink and Abyss Pentium 4 Performance Counter Tools For Linux, Feb. 2002.

http://www.eg.bucknell.edu/bsprunt/emon/brinkabyss/brinkabyss.shtm.

[159] B. Sprunt. Pentium 4 Performance-Monitoring Features. IEEE Micro, 22(4):72–82, Jul/Aug 2002.

[160] B. Sprunt. Managing The Complexity Of Performance Monitoring Hardware: The Brink and Abyss

Approach.International Journal of High Performance Computing Applications, 20(4):533–540, 2006.

[161] A. Srivastava and D. Sylvester. Minimizing Total Power by Simultaneous Vdd/Vth Assignment. In

ASPDAC: Proceedings of the 2003 conference on Asia South Pacific design automation, Jan. 2003.

145

[162] P. Stanley-Marbell, M. S. Hsiao, and U. Kremer. A Hardware Architecture for Dynamic Performance

and Energy Adaptation. InProceedings of the Workshop on Power-Aware Computer Systems, 2002.

[163] D. Talkin. A robust algorithm for pitch tracking (RAPT). Speech Codingand Synthesis. Elsevier

Science B. V., New York, 1995.

[164] T. K. Tan, A. Raghunathan, and N. K. Jha. Software Architectural Transformations: A New Approach

to Low Energy Embedded Software. InProceedings of the conference on Design, Automation and

Test in Europe (DATE’03), Mar. 2003.

[165] The Standard Performance Evaluation Corporation. SPEC CPU2000 Results.

http://www.spec.org/cpu2000/results/.

[166] The Standard Performance Evaluation Corporation. SPEC CPU2000 Suite.

http://www.specbench.org/osg/cpu2000/.

[167] G. Theocharous, S. Mannor, N. Shah, P. Gandhi, B. Kveton, S. Siddiqi, and C.-H. Yu. Machine

Learning for Adaptive Power Management.Intel Technology journal, 10(4):299–311, 2006.

[168] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: A first step towards software

power minimization.IEEE Transactions on VLSI Systems, 2(4):437–445, December 1994.

[169] R. Todi. Speclite: using representative samples to reduce spec cpu2000 workload. InProceedings of

the IEEE International Workshop on Workload Characterization (WWC-4), 2001.

[170] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing on-chip

parallelism. InProceedings of the 22nd International Symp. on Computer Architecture, pages 392–

403, June 1995.

[171] United States Environmental Protection Agency. ENERGY STAR Program Requirements for Com-

puters, Version 4.0. Oct. 2006.

[172] P. Unnikrishnan, G. Chen, M. Kandemir, and D. R. Mudgett. Dynamic Compilation for Energy Adap-

tation. In Proceedings of the 2002 IEEE/ACM international conferenceon Computer-aided design

(ICCAD), 2002.

[173] O. Unsal and I. Koren. System-Level Power-Aware Design Techniques in Real-Time Systems.Pro-

ceedings of the IEEE, 91(7), July 2003.

[174] V. Venkatachalam and M. Franz. Power Reduction Techniques for Microprocessor Systems.ACM

Computing Surveys (CSUR), 37(3):195–237, 2005.

146

[175] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy-Driven Integrated

Hardware-Software Optimizations Using SimplePower. InProceedings of the 27th International Sym-

posium on Computer Architecture, June 2000.

[176] A. Weissel and F. Bellosa. Process cruise control: Event-driven clock scaling for dynamic power man-

agement. InProceedings of the International Conference on Compilers,Architecture and Synthesis

for Embedded Systems (CASES 2002), Grenoble, France,, Aug. 2002.

[177] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O-A Novel I/O Semantics for Energy-Aware

Applications. InProceedings of the Fifth Symposium on Operating System Design and Implementation

OSDI’02, 2002.

[178] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Voltage and Frequency Control with Adaptive Reac-

tion Time in Multiple-Clock-Domain Processors. InProceedings of the 11th International Symposium

on High-Performance Computer Architecture (HPCA-11), 2005.

[179] Q. Wu, V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi, and D. W. Clark. A Dynamic

Compilation Framework for Controlling Microprocessor Energy and Performance. InProceedings of

the 38th International Symp. on Microarchitecture, 2005.

[180] F. Xie, M. Martonosi, and S. Malik. Compile-Time Dynamic Voltage Scaling Settings: Opportunities

and Limits. InProceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 2003), June 2003.

[181] T. Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch prediction. In19th

Annual International Symposium on Computer Architecture, May 1992.

[182] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A StatisticallyRigorous Approach for Improving Simulation

Methodology. InProceedings of the 9th International Symposium on High-Performance Computer

Architecture (HPCA-9), Feb. 2003.

[183] J. J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. J. Lilja, and L. K. John. Evaluating Benchmark Subsetting

Approaches. InProceedings of the IEEE International Symposium on Workload Characterization, Oct.

2006.

[184] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. ECOSystem: Managing energy as a first class op-

erating system resource. InTenth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS X), Oct. 2002.

147

[185] M. T. Zhang. Powering Intel Pentium 4 generation processors. InIEEE Electrical Performance of

Electronic Packaging Conference, pages 215–218, 2001.

[186] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar. Dynamic Tracking of Page

Miss Ratio Curve for Memory Management. InProceedings of the 11th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS-XI), 2004.

148

