WORKLOAD ADAPTIVE POWER MANAGEMENT
WITH LIVE PHASE MONITORING AND

PREDICTION

CANTURK Iscl

A DISSERTATION
PRESENTED TO THEFACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE
BY THE PROGRAM IN

ELECTRICAL ENGINEERING

SEPTEMBER 2007



(© Copyright by Canturk Isci, 2007.
All Rights Reserved



Abstract

In current computer systems, power dissipation is widebogaized as one of the pri-
mary critical constraints. Improving the power efficiendycarrent and emerging systems
has therefore become a pressing challenge and an actiaclesea over recent years.
Dynamic, on-the-fly management techniques aim to addres€llallenge by adaptively
responding to the changes in application execution. Thegkcation patterns, commonly
referred to as “phases”, expose distinct, dynamicallyivar and often repetitive charac-
teristics of workloads. Dynamic management techniqueasieglby workload phase infor-
mation, can effectively tune system resources to varyintklwad demands for improved
power-efficiency.

This thesis researches new methods to characterize andt@pplication behavior for
a dynamic power management endgoal. Specifically, this Wwaskwo major thrusts. First,
it explores different approaches to characterize and greggnamically varying workload
power behavior. Second, it discusses runtime managenwmtitpies for real systems that
can proactively adapt processor execution to varying egfiin execution characteristics.

This work develops a runtime, real-system power model thatiges processor power
consumption details in terms of the component powers oéwdfit architectural units. We
show that similarity analysis methods applied to these aomapt powers help expose
power phase behavior of applications. A small set of “powgnatures” can represent
overall workload power characteristics within 5% of theuattbehavior. We develop
a “transition-guided” phase detection framework that cdentify repetitive application
phase patterns despite system-induced variability effddtis detection strategy can iden-
tify recurrent phase signatures with less than 5% falseral@n running systems. Last, we
propose a workload-adaptive dynamic power managemenefiank guided by runtime
phase predictions. This predictive power management appris shown to improve the
energy-delay product of a deployed platform by 7% when caethéo existing reactive

techniques and by 27% over the baseline unmanaged system.



Overall, this thesis shows a roadmap to effective on-theffigse detection and pre-
diction on real-systems for application to workload-adagptlynamic power management.
With the increasing focus on adaptive and autonomous systanagement, this research
offers practical techniques that can serve as integral coets for current and emerging

power-aware systems.
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Chapter 1

Introduction

1.1 Background and Motivation

Computing systems have experienced a tremendous sustamweth gn performance and
complexity for more than two decades. Exponentially insmeg transistor integration en-
ables more devices to be packed within single chips, whitcarimprovides more function-
ality and state with each generation of processors. Figdrdlastrates this for a range of
processor families [12, 36, 53, 56, 141, 144]. Moreoveruced process dimensions en-
able faster switching transistors, driving higher opeafrequencies with each generation.
Coupled with technology advances, new architectural angpdentechniques have pushed
the performance bar even higher with deeper pipelines, $pgleulation, out-of-order and
superscalar microarchitectures, and increasing insbrudgvel parallelism. In addition,
new simultaneously multithreaded and multicore systenablenthread-level parallelism
[66, 134, 156, 157, 170]. All of these advances translatenmbre computations per unit
time with each new computer generation.

From a historical perspective, these have been tremendowsid progress in com-
puting performance. By leveraging both technological amthiggctural advances, micro-
processor designers have been able to actually surpassrtbenpance trends indicated by
Moore’s Law [129, 133]. For example, when we look at the réggbperformance results

with the SPEC CPU2000 benchmarks between 2000 and 2006, wessedhan 10-fold
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Figure 1.1: Number of transistors within a die over time.

increase in integer performance and 14-fold increase itifigg@oint performance for In-
tel family processors [165]. This unabated push towardedrigerformance and reduced
form factors has provided currently emerging mobile deviagth computing capability
that was previously confined to mainframe systems.

Nonetheless, this forward progress in performance hasomoe ¢or free. Together with
increasing clock rates and performance capabilities, tveep dissipation of computing
systems has also accelerated rapidly. Figure 1.2 illestrétis for Figure 1.1's processor
families over the same time period [12, 31, 53, 57, 141]. Asfigure demonstrates, pro-
cessor generations also experienced an exponential sgcirepower density. This increase
in power density has recently become one of the primary caings in microprocessor de-
sign. First, stemming from both increased power dissipagiod widespread adoption of
personal computers, the overall energy impact of compwgysems has become an im-
portant issue. Once again looking from a historical persypecthe total worldwide pro-
cessor power dissipation of personal computers increageabpe than 50 times over the

last decade [173]. Second, increasing power density hasdalsctly influenced thermal
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limitations of processors, requiring advanced cooling gr@mal management strategies
[58, 155]. Third, increasing power demand, as well as theptgal and spatial power
variations within microprocessors have produced sigmfistrain on effective and reliable
power delivery [92, 141]. Last and more recently, the finahanhd environmental impacts
of computing system power dissipation has also been wididg@vledged. Especially in
large-scale data centers, the current annual cost of pasligedy and cooling has reached
to the order of millions of dollars. If the current trend—tlalvances in computing per-
formance are accompanied with rising power demand—coasii the next generation
systems, the ongoing costs of power and cooling can soomassithe initial cost of the
underlying computing hardware by a growing margin [12]. ddress the impacts of com-
puter power dissipation, the Environmental Protectionmgyehas recently announced new
specifications for computer power-efficiency [171]. Basedhaprojections of these spec-
ifications, improving the energy-efficiency of computingg®ms can potentially achieve
$1.8 billion of total energy cost savings over the next fivarge Moreover, such empha-

sis on computing power can eliminate greenhouse gas emsssipuivalent to the annual



emissions of 2.7 million cars.

Interestingly, this is not the first time the computing intiy$as faced the power chal-
lenge. Early mainframe systems that relied on bipolar dsvitad experienced a similar
exponential growth in power until the early 1990s, at whidmpthe mainframe industry
had to move towards CMOS devices that enabled an order of tn@gnimprovements in
power densities [146]. Less than two decades later, we hage again approached the
limits of power density. As CMOS technology continues to kevfable design option for
microprocessors, there is a growing necessity to deviseearmoy effective power man-
agement techniques in all levels of computing systems, tmouits and architectures to
systems and software. Indeed, recent years have unveitedrous research efforts that
aim to address power-efficiency at all levels of abstrastion

These different power-management strategies can be caega@s either static and
dynamic management approaches. Static, or offline, teabsigqivolve design-time de-
cisions, profile-based optimizations and compiler-driveanagement responses. These
approaches are employed at various design stages andcéibstiayers. These include
circuit-level techniques such as transistor reorderirdydural-threshold circuits [104, 118,
161], architectural mechanisms such as profiling-baseptatians at subroutine granular-
ities or execution checkpoints [7, 75], systems- and appbo-level approaches such as
task partitioning and stretching, deadline-based sclmegiuoftware transformations and
remote execution [43, 102, 114, 164], and compiler-drivamagement techniques that in-
volve profiling and instrumentation of applications withwer management hints or state
keeping instructions [1, 65, 71, 122, 154, 180].

Dynamic, or online, power management techniques involveime control mecha-
nisms in hardware or software; they tune the configurablepedimg resources during exe-
cution. There is a large variety of dynamic management igcies across the whole spec-
trum of computing systems hierarchy, spanning from cirewiel techniques to application

and compiler level power management. Circuit-level adaptatinclude techniques such



as adaptive body biasing and multi-threshold CMOS circygtsMer gating) [4, 97, 98].
Architectural power management techniques involve pigetieconfigurations [3, 8, 26,
90, 139, 153], adaptive cache scaling and decay [41, 48,4, pipeline-delay-based
supply voltage tuning [47], speculation control [23, 128}ltiple clock domain architec-
tures [147, 178] and management techniques for chip matgssors [94, 103, 115]. At
the system-level many power-aware adaptations exist dinget at dynamic management
of the system operation and the underlying platform comptmeOne of the most widely
used dynamic power management techniques at the systehideverkload-dependent
dynamic frequency and voltage scaling [33, 176]. Some athgployed dynamic power
management techniques are adaptive disk control [60]ggredficient I/O and memory
management [110, 162, 136, 143, 177, 186], task-level grmrdgeting [5, 20, 119] and
power-aware scheduling [67, 127]. In addition to systewellenanagement approaches,
there are also some power-aware dynamic compilation tqabsi[73, 172, 179].

Static approaches generally have the broad view of theeeagiplication, and lead to
simpler control. However, they lack the actual dynamic exea information of appli-
cations. Many software-level static management appra&aals® require prior profiling
of applications or recompilations to incorporate compd&ectives. In contrast, dynamic
techniques are directly exposed to the dynamic executitiaber and can guide man-
agement responses on-the-fly. However, the major drawbfttiese online techniques
lies in their limited view of application execution as thegnoot knowa priori the whole
application structure. In general, dynamic managemeuwt ré¢sessitates more elaborate
monitoring and control schemes to track execution charattess and to apply manage-
ment responses. Nonetheless, as the need for aggressiee panagement continues to
increase, such control mechanisms become more attractraerging systems despite the
design effort they require. In particular, as current wogkls exhibit highly variable and
nondeterministic characteristics, and as the pool of keggplications grows, static tech-

nigues bring limited benefits. Dynamic management tectasauifer significant additional



improvements in overall system power efficiency.

My research particularly aims to leverage the broad viewpgfliaation execution at
runtime by monitoring architectural characteristics oplagations and inferring dynami-
cally-varying workload behavior. | use observed runtimekiamad characteristics to detect
and predict repetitive application execution and this tiéige behavior information guides
dynamic management techniques. One of the primary driieslgraeamic power manage-
ment is the inherent variability in both the running worldo#emands and the underlying
computing systems. Efficiently matching the underlyingpteses to the dynamically vary-
ing application demands by adaptively configuring thesepmding structures is a powerful
enabler for power-efficient computation. My dissertatiesaarch focuses on two impor-

tant research challenges for such workload-adaptive andrdically-controlled execution:

(i) Developing accurate and practical characterizations afidycally varying work-
load demands and correctly projecting future behavior.
(i) Efficiently managing the dynamic configurations of the uhdeg computing re-

sources based on projected workload demand.

One primary focus of my dissertation research is to bringgsgstem experimentation
and validation with real measurements into architectuseaech. In the following chap-
ters of this dissertation, | provide an overview of the difat research aspects and the

accomplishments of my research along these two thrusts.

1.2 Research Overview

My dissertation research explores architectural and sgstem techniques to character-
ize and predict wide-scale power behavior of programs aneldps autonomous meth-
ods that track and predict dynamically-varying workloadrecteristics to guide runtime,
workload-adaptive power management techniques. Manyeoptasented studies aim to
explore and leverage thpghase behavioof workloads. This phase behavior represents the

temporal variations in workload behavior that are commatigerved during execution.
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Figure 1.3: Phase behavior as observed from the measurfedpance metrics and power
for thevort ex benchmark. This execution snapshot can be roughly sepairate two
phases that repeat throughout benchmark execution.
These workload phases are known to exhibit repetitive pettdue to the iterative nature
of dynamic execution and can be observed in various formis asgerformance charac-
teristics, power consumption and traversed executioneaddspace. Moreover, different
phase patterns can be observed at different phase graieslérom a few hundred of in-
structions to billions of instructions. Figure 1.3 showsesx@ample of this phase behavior
with an execution snapshot from the SPEC CPU208XQ ex benchmark when its execu-
tion characteristics are classified into two major phaseghis example, the three charts
show the phase behavior foor t ex for two performance metrics as well as with the actual
measured power behavior.

From a high-level perspective, my thesis research con&to existing literature in

four related research areas:

e First, it presents one of the first real-system frameworksriodeling microarchi-

tecture-level power consumption of modern processorsmitne.
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e Second, | describe workload phase analysis methodoldug$arget characterizing

the dynamically-varying power behavior of applications.

e Third, my research is one of the first real-system phase sisadyudies that tackles
the problem of identifying repetitive execution charaistics despite the system-
induced variability effects. In this direction, | proposavel phase characterizations

and present effective techniques that mitigate the sagpind variability effects.

e Fourth, my work demonstrates a complete predictive dynan@nagement system
that predicts application characteristics at runtime agrfiopms autonomous system

adaptations to improve power efficiency based on projecta#load demand.

Moreover, in this dissertation | describe three differezal+system infrastructures that
| developed for experimentation and evaluations. Thesmastructures are deployed in
running systems for remote power monitoring and estimatmrase analysis with dy-
namic instrumentation and real-measurement feedbackphase-prediction-driven dy-
namic power management. Below, | provide an overview of eddfese four major
aspects of my dissertation research, which are detaileldeisbsequent chapters of this

thesis.
1.2.1 Live, Runtime Power Estimation

The ability to measure or model processor power dissipdigsnat the heart of power-
oriented computing research. At the architecture levekhraf this is performed via sim-
ulator infrastructures. These either perform analytiead@r derivations for architecture
components based on technology parameters [24] or useieahower model macros
derived from lower-level production simulators [21]. Redjass of the taken approach, the
architectural power modeling principle remains similanere the derived maximum com-
ponent powers are scaled with component utilization ratelsaachitectural parameters to
form component-level power estimates. Together with Imgjdir idle power at zero utiliza-

tion, these power estimates can then approximate the macpewer dissipation. While



such simulation-oriented techniques provide extensivaildéhey are generally prone to
limited absolute accuracy, they are impractical for lomgeiscale simulations and they of-
ten consider applications in an isolated environment, khckeng the effects of underlying

system events. Real system measurements can remedy thesersimags [51, 142, 168].

However, they generally lack the architectural detail mted by simulations and focus
only on total power dissipation.

This line of my research explores an alternative approachageling processor power
consumption that aims to leverage the advantages of bothidsni propose a real-system
power measurement and estimation approach that can alsd@ricroarchitecture-level
detail. Fundamentally, this power modeling approach islaimo the simulation approach,
where we consider maximum component powers scaled withitgdactors. However, in-
stead of cycle-level accounting, my technique relies owllare performance monitoring
events to track component activity. Moreover, | develop #8 a runtime power estimation
strategy that operates at native application executioadpeuse real power measurement
feedback to calibrate power estimators, to incorporatdimesr power behavior of proces-
sor components due to baseline power management techrsigdds provide a validated
absolute estimation accuracy. While there are prior stutlias also investigate event-
counter-based power estimations [13, 93, 95], these stddi@ot focus on the distribution
of power to the architectural components. Furthermorey, timéy consider processors with
small power variation. My work provides both validated tqiawer estimates and their
decomposition into architectural components. These astisnare evaluated on a high-
end system with aggressive speculation and baseline p@vergstechniques, where the
observed power at different execution regions can vary byash as 600%. This run-
time power estimation framework can approximate procgsswer behavior within 5% of

actual power consumption, as validated with simultaneeabmeasurements.



1.2.2 Phase Analysis for Power

In recent years, there has been a growing interest in apipicahase behavior. Part of this
interest focuses on identifying workload phases for chiaraation purposes and sum-
marizing execution, while others explore methods to depbetses at runtime to guide
dynamic adaptations [6, 41, 72, 90, 152, 153]. With such glesed adaptations, com-
puting hardware and software can be tuned at runtime to timaudés of different program
phases. Prior research has considered a range of possaisie ahalysis techniques, but has
focused almost exclusively on performance-oriented ghadereover, the bulk of phase-
analysis studies have focused on simulation-based ei@isat However, effective and
practical analysis of application phase behavior on rgsiesns is essential to employing
these phase-based adaptations on running systems. lioadthiere is generally a missing
link between phase characterizations and their abilityefresent power behavior. Such
power characterization is very important especially fonawic power and thermal man-
agement, providing a direct relation between dynamic vaaétlexecution and its impact
on processor power consumption.

In this thesis | describe a phase analysis methodology shatgeted directly towards
characterizing workload power behavior. This approach tisetemporal similarity among
estimated component power dissipations to discern theepbatserns in workload power
behavior. The power phase characterizations acquiredtighmethod capture the power
variations during workload execution within 5% of actualaserements using a small set
of representative phases. These phases generally suranoagrall execution with less
than 1% of the complete execution information. | develop @ehoeal-system frame-
work for power-oriented phase analysis that coordinatefopaance monitoring, power
estimations, dynamic instrumentation and real power nreasents. With this evaluation
infrastructure | demonstrate the comparative benefits fiéréint phase characterization
techniques that utilize control-flow or event-counter teas of applications. This part of

my work shows that while both features reveal significanigims to power phase behav-
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ior, event counter features further provide 33% improveisiém the characterization of

workload power variations.
1.2.3 Mitigating System Induced Variability Effects on RealSystem Phase Detection

One primary requirement for the application of phase-bakgwmic adaptations is the
ability to discern repetitive execution. Detecting refpegi phases in application execution
helps apply dynamic management responses proactively,itiproving their overall ef-
fectiveness. Real system experiments bring additionalexingés to the detection of such
repetitive behavior due to system induced variations. &foee, it is essential to under-
stand how these indeterministic system events alter wadkfthases from phase to phase
and from run to run. Consequently, for a phase detection tqalrio be effective on real
systems, it should be resilient to these variability eBect

This part of my work examines the phase behavior of appbaatirunning on real
systems to reliably discern and recover phase behavioeifatte of application variability
stemming from real-system and time sampling effects. lwlisand classify the extent
and type of the alterations application phases experielfttergal-system experiments. |
propose a set of new, “transition-based” phase detect@miques. These techniques can
detect repetitive workload phase information from timeyiag, real-system measurements
with less than 5% false alarm probabilities. In comparisoprevious detection methods,
my transition-based techniques achieve on average 6+fgddovements in phase detection

efficiency by mitigating the system induced variabilityesfts.
1.2.4 Runtime Phase Tracking and Phase-Driven Dynamic Pow&lanagement

One of the primary motivations for doing power managememtadyically is the highly

variable phase behavior within applications at differergaaition regions. Dynamic man-
agement techniques highly benefit from this applicationsphiaehavior, which can help
identify workload execution regions with different chaeaestics, and thus can dictate dif-

ferent dynamic management responses. Most existing dgnarahagement techniques
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respond to these phase changeactively When they observe a noticeable deviation
from previous application characteristics, these teamsgadjust the underlying system
configurations dynamically, assuming this recent behawithipersist in future execution
[33, 41, 90, 162, 176, 186]. These approaches have diffituatyever, when applications
change characteristics at a high rate. In such cases reaogind predicting phases on-
the-fly provides better adaptation of the applied dynamidfigarations. Therefore, it is
important to develop methods to identify and predict répetphases, tproactivelyapply
dynamic management responses.

My work develops online phase prediction methods that caagied in running
systems and demonstrates how these runtime phase predietoreffectively guide dy-
namic, on-the-fly processor power management. | descrilmnargl-purpose phase pre-
diction framework that can be configured for different poywerformance trade-offs and
can be utilized to track various application charactersstor the desired management ac-
tions. This phase predictor operates at runtime with négégverheads and autonomously
tracks and predicts application phases. These phase fiwedican be employed to guide
various management techniques. In my real-system expetsnhelemonstrate their ben-
efits with dynamic voltage and frequency scaling (DVFS) assample technique. |
implement this complete runtime phase prediction and pdasen dynamic adaptation
infrastructure on a mobile laptop platform. Compared totegsreactive and statistical
approaches, our phase predictor significantly improveatiaracy of the predicted work-
load behavior, reducing the misprediction rates by 2.4Xafgplications with variable be-
havior. My experiments demonstrate that DVFS-based dynamnagement improves the
energy-delay product of the experimental system by 27% erage, when guided by my
runtime phase predictor. Compared to prior reactive apmemthese dynamic adaptations
improve the energy-delay product of applications by 7% Jevimicurring less performance

degradation.
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1.3 Literature Review

This section gives a general overview of existing work eab my thesis research. Each
of the following chapters provides more detailed discussiaf prior work specific to each

of the presented studies. Here, | discuss related litexationg the main areas of contribu-
tion discussed above. These are categorized under thize @recessor power modeling,

workload characterization and phase analysis, and watidokaptive power management.
1.3.1 Processor Power Modeling

Earlier work on processor power modeling involves powersneament feedback for soft-
ware and instruction-level power models. These includieunton energy tables and inter-
instruction effects for processor and memory [113, 126].188ftware power models aim
to map energy consumption to program structure [51, 142jehreral, these techniques are
employed in simpler or embedded processors with minimalkctating and power man-
agement that exhibit low temporal variations. In these sasge power behavior largely
depends on the operating frequency and voltage [28] andisitaple-based approaches
provide good approximations to processor power behavior.

Architectural and functional module-level power modelimas also been prevalent in
power-aware computing studies. These have focused mastiygh-level abstractions of
processor components. These abstractions encompasy enagymption models driven
by functional unit complexity, profiled averages or switaipactivities particular to differ-
ent units [105]. Starting from simple average-case esémit45], these power estimators
evolved into activity and lookup based power models [106] 18at can also incorporate
inter-module interactions [125]. As more capable and teta@xecution- or trace-driven
architectural simulation tools became available, accayipg cycle-accurate power mod-
eling tools have also been developed.

Among different power estimation frameworks, here | mamtseveral of the most

commonly used modelsWattchis a processor power modeling infrastructure that relies
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on parameterized power models for different processodinglblocks such as array and
associative memory structures, logic, interconnect aockdree [24].SimplePowers an-
other cycle-accurate energy estimation tool that useggmaodels together with switch
capacitance tables for each microarchitectural unit [1ThEse approaches use analytical
energy models that rely on circuit capacitance parametarsontrast,PowerTimeruses
an empirical energy estimation model based on circuittewergy models derived from
low-level simulations [21]. LastSoftWattprovides a full-system power model, including
the processor and the complete memory hierarchy [59].

More recently, there has been growing interest in runtinchitactural power model-
ing on real-systems. These approaches enable power astisédr the long timescales
that are required for system-level and thermal adaptati®imee these approaches lack ex-
tensive simulation-style detail, they rely on supportigdware or software functionality
such as performance counters to drive power estimatior®. Waork demonstrates that sev-
eral performance monitoring events correlate highly witthcessor power dissipation [13].
These events can be configured to track and estimate progesser behavior and can be
used to infer the distribution of power to microarchiteaefldomponents [93, 95, 176]. This
runtime information is used in conjunction with analyticabdels for detailed component-
level power estimates [18, 19, 34, 111]. Simple runtime nwdee also employed to track
the operating system’s contribution to power consumptibh6]. While the above ap-
proaches consider fixed, static power models, adaptivdpesk-driven power estimation
models have also recently been explored [61]. As powerghsisin and thermal limitations
become pressing issues in large-scale systems, such eumtodels are also emerging in
the server and cluster domains to enable efficient mongamd dynamic management of
large-scale systems [45, 63].

In runtime power modeling, my work is one of the first studieattprovides micro-
architecture-level power estimations on real systems fargh-end, highly speculative

processor. | develop power estimation models that trackolesr consumption of microar-
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chitectural units in all execution regions with high or lowopessor utilization. Moreover,
my work presents a complete power modeling and validatiaméwork including remote

runtime monitoring and real-time power measurement fegdba
1.3.2 Workload Characterization and Phase Analysis

There is a large body of existing work related to workloadrahterization and the anal-
ysis of application phase behavior. These studies can Issifital under various themes
such as online and offline approaches, simulation-basedeatdystem characterization,
characterizations with different workload features anddifferent endgoals.

One set of existing research employs different charactéoiz techniques to summa-
rize execution with representative regions or phases. Surtieese techniques use simu-
lations to classify workload execution based on prograngakihformation (such as exe-
cuted instruction addresses and visited basic blocks3272, 151, 152] or performance
characteristics [35, 46, 101]. Another line of phase charaation research focuses on
real-system studies that track hardware events or dynarogrgm flow [6, 29, 108, 128,
131, 132, 169]. Several of these studies employ a wide rahgendarity measures and
clustering methods such as k-means, regression treesigalior independent component
analysis for online or offline classification of executiotiself similar regions.

A major area of research focuses on monitoring and detewatimgload phase behavior
for dynamic adaptations [68]. These studies use varioukload features and evalua-
tion technigues in their analyses. Part of these studiessfon different indicators of
dynamic program flow to monitor varying workload charad#cs such as branch counts
[90], working set signatures [41], traversed basic blodik¥[ 153] and visited subroutines
[75]. These approaches track patterns in execution flowiggdr suited dynamic man-
agement responses that employ various architectural figooations. In addition to the
above simulation-oriented studies, some real-systenestednsider detecting specific ap-
plication behavior for dynamic responses. These work&@agplication phases to control

management schemes readily available in current systeahsasuvoltage and frequency
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scaling [176, 179], to detect changes in execution spacé¢catiive dynamic optimization
strategies in runtime systems [38, 100, 120].

Application phase monitoring and detection guides dynaadaptations to react to the
changes in observed characteristics. Once the new behswetected, corresponding re-
sponses in tune with the demands of the new phase can betedtivoweverpredicting
this change in application characteristics can providetimel benefits by initiating man-
agement proactively. This is especially important in theeoaf quickly varying application
behavior, where the fundamental frequency at which theegtpn phases change is close
to the sampling rate of the tracked characteristics. Edstesearch has employed differ-
ent strategies to predict varying workload charactegstiCompiler- and application-level
techniques develop static, analytical models based onramogtructure to predict changes
in workload characteristics such as memory access pafte2n$4]. Several prediction
schemes that dynamically update their decisions duringlaad runtime have been pro-
posed at the systems and architecture levels. At the systeh both statistical and table-
based approaches that predict specific workload charsiitsrbased on previous history
have been proposed [44]. In addition, memory related runfimase predictors based on
memory reuse distance patterns [150], as well as dynamie i@mion based phase predic-
tions [99] have been studied in prior related work. In amsttiiral studies, the ability to
propose hardware support has led to more elaborate phadietfme mechanisms. Run-
length and control-flow based phase predictors have beatapad with hardware support
to predict phases in the dynamic execution space of appliita{153]. In addition to
predictors of future workload phases, alternative schethmatspredict phase changes and
durations have also been employed in architectural imphatens [109]. Overall, these
works demonstrate effective prediction techniques aceossde range of granularities,
with variety of workload features spanning both hardwar software mechanisms.

My research contributes to the existing body of phase aisalysrk in characteriza-

tion, detection and prediction of application phases wittriemary focus on real-system
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phase analysis methods. While most of the existing phasedieaization work focuses on
performance behavior of workloads, my thesis presents aelniques to identify power
phase behavior of applications using hardware performaragtoring features. It devel-
ops novel strategies to detect repetitive application @has real systems in spite of the
system-induced perturbations on workload charactesistlcast, my work demonstrates
a fully-autonomous, real-system phase prediction infuastire that predicts future phase

behavior of applications at runtime by leveraging the patbehavior in execution phases.
1.3.3 Workload-Adaptive Power Management

Earlier in this chapter, | have discussed the extensiverahgesearch broadly in the area of
dynamic management, spanning from circuits to systems pplications. Here | review
some of these approaches that particularly aim to tune reysi@cution to the dynamic
changes in the workload characteristics. | discuss relatel in workload-adaptive power
management under three abstractions: compiler- and afiplelevel techniques, system-
level management and architectural adaptations.

High-level workload adaptations involving compilers ampkcations give high-level
software more responsibility for power management. Tyjyicthese approaches can op-
erate in two opposite directions. First, part of the exgptivork has developed strategies
to adapt the workloads themselves for varying power coimésry providing different de-
grees of quality of service. These adaptations includeiegtpin features with different
gualities or optional application steps that are activatag at high energy settings. Some
techniques also involve choosing between local and rentatgram or data components
based on their power-performance trade-offs [50, 102,.148js first direction deliber-
ately induces changes in workload characteristics to respmenergy constraints, and can
be referred to as power-driven workload adaptations.

In the second direction, several techniques have considargloying special direc-
tives within applications to guide lower-level power maeagent. Such directives are intro-

duced via compiler support or specialized application pogning interfaces to perform
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bookkeeping operations about application charactesi$lic 7], to insert offline profiling
information for code regions at different power managenstaies [71, 122, 154] and to
inform the underlying system layers about different aggilan operations such as 1/O in-
tensive regions [65, 177].

System-level power management techniques are applieaidifferent manners. First,
some studies have considered performing operating systeks such as scheduling and
memory management in a power-aware manner. Second, addiftudies make use of
the operating system to assist lower-level managementifunadities in their management
decisions. In these applications, the operating systemtended with monitoring and
control interfaces that track workload characteristicd provide control directives to the
underlying management schemes such as frequency scatindjssnpower management.
In the first direction, prior studies have considered enenggire scheduling of workloads
with different characteristics to balance power consuamptio reduce power density and to
control energy dissipation rate in both single and muliessor systems [14, 67, 127, 184].
Other workload-adaptive system research has discussegt{@vare memory management
[135, 186] and page allocation [110]. Some recent studies ko presented methods for
power-efficient distribution of parallel, multithreadeppdications into multiple homoge-
neous or heterogeneous processing components [5, 37]e kettond direction, previous
studies have discussed system-level adaptations for diskmpmanagement [60], control-
ling network interfaces and managing other input/outpwias [174]. In addition, there
has been a growing body of work in system-level managemenifeamic voltage and fre-
qguency scaling [33, 49, 176]. More recently, there has atsmbnterest in machine learn-
ing techniques for power management across multiple pfattmmponents [167], as well
as dynamic compilation support for workload-adaptive pomanagement [73, 172, 179].

At the architecture level, existing work has proposed sdh\strategies that track vary-
ing workload characteristics to perform architectural@daons. Tracking methods differ

significantly in their approaches. These can be simple aoutypor usage based models
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[3, 139], metrics that characterize varying workload perfance [8, 26] access frequency
monitoring [48, 96], inconsistency checks [47] or more dethhardware structures that
aim to discern varying application phases [41, 90, 153]. énegal, architectural man-
agement approaches focus on modulating the effective sizpe®d of different hardware
units. Among different architectural components, memadgydrchy is one of the most
investigated structures. Different studies have prop@skgptively disabling or reducing
supply voltages for different cache ways and unused blot&s96, 140]. Some work has
proposed dynamically configurable caches based on varyimmging set size information
and changes in control flow [9, 41, 153]. Architectural maragnt schemes for higher
levels of memory hierarchy, including main memory and diskse also been explored
[117, 186]. Besides the memory hierarchy, several studies facused on other archi-
tectural adaptations, such as adaptive issue queues [8328, These approaches have
considered monitoring changes in application performgnee rate of executed instruc-
tions) and changes in the occupancy of queue structureséatieir configurations to the
changes in workload characteristics. Other managemeatrsehihave also been proposed
for adaptive pipeline scaling and dynamic configurationstbér architectural components
such as reorder buffers and register files [3, 90]. Thesenitqubs have also employed
some amount of architectural support (for example, thedirdoehavior buffer and power
profiling units) to track dynamically-varying workload danmds and to effectively match
the dynamic configurations to different application phases

My thesis in particular discusses workload-adaptive ponanagement techniques that
operate at the architecture and system boundary. It legsraighitectural execution infor-
mation to guide system-level adaptations. Most of the mgstystem adaptations either
function reactively by responding to recent execution bairar rely on prior profiling in-
formation. My work, however, describes a predictive and plately on-the-fly adaptation
strategy that utilizes runtime phase predictions to mamg@amic adaptations, without

effecting the execution or the structure of workloads.
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1.4 Thesis Contributions

My thesis makes four main contributions to the existingréitare. First, | describe a
generic approach to microarchitecture-level power mogdalising processor hardware per-
formance monitoring features. | demonstrate a detailedpngetical runtime power mon-
itoring and estimation approach with simultaneous measen¢ support for runtime vali-
dation feedback. Overall, this framework paves the way fanyrfollowing runtime power
and thermal management studies that can benefit from insiglite processor power dis-
sipation.

Second, | provide two important contributions to the gehkeaaly of workload char-
acterization and phase analysis research. | demonsttéqgal real-system methods for
identifying application phases at runtime. These techesgean be readily employed in
system-level dynamic power and thermal management studieseover, my work de-
fines phases targeted directly to discern varying poweracharistics of workloads, using
event-counter-based power estimations at the basis afitkagty analysis.

Third, this thesis presents a complete flow of methods thizgaté the negative impacts
of system-induced variability and sampling effects on the&edtion of repetitive applica-
tion behavior. My work describes a taxonomy of phase transitions due to variability
and sampling effects. | introduce a new, transition-badese characterization, which is
shown to be more resilient for repetitive phase detectiateuthe influence of these trans-
formations. This work provides a quantitative evaluatibpltase detection techniques and
guantifies their effectiveness in recognizing recurreecetion.

Last, in this thesis | demonstrate a complete real-systamdwork for runtime phase
prediction and its application to workload-adaptive poma@nagement. | describe a config-
urable runtime phase prediction methodology that sealglepsrates on a real mobile sys-
tem with negligible overheads. | depict the immediate bémefiruntime phase prediction
for on-the-fly, phase-driven dynamic power managementhlgh the examples shown

in this thesis use certain phase definitions for specific pananagement techniques, the
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developed approaches represent a general-purpose phagering and prediction frame-
work. My infrastructure can be employed for monitoring ameldicting different workload

characteristics that can guide a range of dynamic manageeamiques.

1.5 Thesis Outline

The following chapters of this dissertation present them@acomplishments of my re-
search in more detail. | present this in a progressive masteting with the experimen-
tation basics and the power analysis framework, followeglgse analysis basics, phase
detection and prediction methods and finally their applcato dynamic power manage-
ment. In particular, Chapter 2 presents the fundamentaly oéai-system experimentation
framework and develops runtime processor power monitaaimd) estimation techniques.
Chapter 3 discusses different phase analysis strategiedeamohstrates their effective ap-
plication for power-oriented workload phase charactéiora Chapter 4 focuses on the
interesting challenges of phase detection in real-sysigraranents and develops an effec-
tive phase detection framework, which is resilient to systeduced variations in observed
workload characteristics. Chapter 5 introduces an effigieaksystem phase prediction
method and outlines a complete infrastructure that is driweruntime phase predictions
for workload-adaptive power management. This chapter eget$te different aspects of my
research together and demonstrates the concrete benghitssé-based dynamic power
management for power-aware computing systems. Last, Gh@greesents the final re-

marks and discusses avenues of future research.
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Chapter 2

Power and Performance Measurement on Real Sys-

tems: Methods and Basics

With power dissipation becoming an increasingly vexinglgem across many classes of
computer systems, measuring power dissipation of reahimgnsystems has become cru-
cial for hardware and software system research and desige pbwer measurements are
imperative for studies requiring execution times too loagdimulation, such as thermal
analysis [14, 112, 155]. Furthermore, researchers ofted tige ability to measure live,
running systems and to correlate measured results witlalbaystem hardware and soft-
ware behavior. Live measurements allow a complete view efaipg system effects, 1/0,
and many other aspects of “real-world” behavior, often tedifrom simulation.

To enable such complete view of system behavior, many psocgegrovide hardware
performance counters that help give unit-by-unit views fcessor events [16, 25, 77,
159, 160]. While these event counters are designed to refiefcirmance, they can also be
used to derive energy estimates for the underlying processoponents [18, 85, 93, 95,
116]. Most of the research described in this thesis is basedal-system experimentation
and real-measurement-based validations. We develop enesperformance monitoring
framework and devise event-counter-based power estinsati¥Ve use real power mea-
surements to validate power estimations as well as to elaluar characterization and

dynamic management techniques in the chapters that follow.
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This chapter presents an overview of our performance mamg@nd counter-based
power estimation framework. This framework lays out theegahexperimental principals
used in the subsequent chapters, while each of the latiiestbave unique experimental
features that we discuss in the corresponding chapterspiimary contributions of this
chapter are threefold. First, it presents a complete nesiem experimentation framework
for power oriented systems research, including performancnitoring, real power mea-
surement and estimation, and runtime validation. Secoeéscribes a detailed methodol-
ogy for gathering live, per-unit power estimates based odvare performance counters in
complicated and aggressively-clock-gated microproassddnird, it presents architecture-
level power characterizations for several SPEC and othemuan desktop applications,

which are validated with real measurements.

2.1 Experimental Setup Overview

Figure 2.1 shows a high-level overview of the real-systemeexnentation flow that is
used in various studies in this thesis. This figure also sumemsome of the primary
functionalities of the different experimental framewodagponents. In general, the overall
experimentation framework consists of the experimentaiater system, external power
measurement components and a monitoring system that pesrfitata collection and addi-
tional analyses. The experimental system includes thaecgioins that are tested, software
monitoring and control mechanisms that are implementetieénoperating system (OS),
and hardware structures within the processor that perf@rfopnance monitoring and
that configure processor operating modes. The paragrapbs b&borate on the main

features of these components.

Experimental System Hardware: Most of today’s processors include some dedicated
hardware performance counters for debugging and measaotemegeneral, performance
counter hardware includes event signals generated by CRtfidanal units, event detec-

tors detecting these signals and triggering the countadshardware counters configured
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Figure 2.1: High-level view of general real-system expertation framework.

to increment according to the triggers [79, 81, 159]. We wmiyhardware performance
counters to track architectural characteristics. In dyiocadaptation studies we also utilize
other specialized registers within the processor to tuiséegy execution to the workload

demands, such as dynamically adjusting the voltage andédrexy settings.

Experimental System OS:The operating system provides the necessary interfacesbatw
the processor hardware and the monitoring and control nméiing used in this research.
We implement several functionalities inside the operasggtem as kernel modules or
interrupt handlers for multiple purposes in different $&sd These include (i) runtime
performance monitoring, (ii) dynamic phase predictiond &n) dynamic management

actions.

Power Measurement:An important aspect of real-system experimentation for growvi-

ented research is real power measurements for modelingvahgadon. Processor power
dissipation can be measured in various ways. These inclsithg serial sense resistors
[93, 148, 168] or current probes [5, 19, 85] over the procegewer lines, which are then
fed into a digital multimeter, oscilloscope or a data acitjois system [34, 70, 72, 83, 179].
More recently, as the benefits of such power dissipationrin&ion are appreciated we

also see designs for high-end systems emerging with ongziwer monitoring features
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[124, 138], as well as new standards for platform-level pomenitoring, such as the
Power Supply Management Interface (PSMI) [149].

In this thesis research, real-system power measuremeongderruntime processor
power dissipation feedback. This information is used todeaé power estimations and
to evaluate phase characterization and dynamic power rear&g techniques in differ-
ent studies. We track processor power consumption with paveasurements via current
probes or data acquisition systems. These power measuiearereither fed back to the

experimental machine or are sent to a separate monitoricgima

Monitoring System: The monitoring machine also performs a variety of tasksfient
studies, such as: (i) monitoring the runtime power behavi@pplications, (ii) estimating
runtime power dissipation of processor units based on ro@ut performance counters,
(i) characterizing power phase behavior of applicatiansg detecting repetitive applica-
tion execution, and (iv) evaluating the benefits of emploghgdamic power management
techniques. In some of our studies, the monitoring systam ebmmunicates with the
experimental machine to track performance behavior atmant

Overall, Figure 2.1 depicts the governing experimental tloat is employed in this the-
sis. The subsequent chapters discuss the specific implatimentletails of the individual

studies and expand upon the above mentioned functiorsalitie

2.2 Using Performance Counters for Power Estimation

This section discusses a specific aspect of our thesis obsedated to real-system power
monitoring: runtime power estimation using hardware pannce counters. While total
power measurements for long-running programs are alreselfigil) it is also important to

estimate how power subdivides among different hardwares within a processor. For
this purpose, this work uses power estimates based on pemme counter readings to
produce per-unit power breakdowns of total processor polgsipation. From a Pentium

4 die layout, we break the processor into sub-units such asatche, branch prediction
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hardware, and others. For each component, we develop a pstusation model based on
combinations of events available to Pentium 4 hardwareteosias well as heuristics that
translate event counts into approximate access ratesdbioeaponent. We use real power
measurements obtained from a current probe to provide ammemmbmparison between the
measured and estimated total power measures.

The machine used in these experiments is a 1.4GHz Pentium)4$(Bcessor, 0.18
Willamette core. The CPU operating voltage is 1.7V and publistypical and maximum
power values are 52W and 71W, respectively [80]. The NetBurstoarchitecture of P4
is based on a 20-stage misprediction pipeline with a trackecéo remove instruction de-
coding from the main pipeline. In addition to a front-endrmta prediction unit (BPU), a
second smaller BPU is used to predict branches for Uops (roigsd within traces. It has
two double-pumped ALUs for simple integer operations. Thechche is accessed in 2
cycles for integer loads, while the L2 cache is accessed yclé€[69]. The processor im-
plements extremely aggressive power management, closiggand thermal monitoring.
Almost every processor unit is involved in power reductionl @lmost every functional
block contains clock gating logic, summing up to 350 unigleek gating conditions. This
aggressive clock gating provides up to approximately 20Wgssavings on typical appli-
cations and produces high amounts of power variation wahihacross workloads [15].

Prior work has developed counter-based or profile-basechasis for much simpler
processors [13, 93, 113, 168]. In our approach, we estimasigal component pow-
ers using counter-based measures, and also generatetadotebpower estimates. This
modeling technique is distinct from prior work in the follow ways. We estimate power
for a much more complicated modern processor, with extreragfjressive clock gating
and high power variability. Second, we consider stricthygibal components from the
die layout. Finally, we estimate power for all levels of pgesor utilization for arbitrarily
long periods of time, rather than restricting our techniqaby to power variations at high

processor utilization. The latter two are particularly ongant for thermal studies as ther-
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mal variations show significant spatial distributions agphysical processor components
and are observed in long timescales on the order of secob8% [The remainder of this
section describes our power estimation methodology armisées the particulars of the

underlying experimental framework.
2.2.1 Defining Components for Power Breakdowns

There are two primary factors that drive the way we deterrttieeprocessor components
for which the power breakdowns are generated. First, wa@@sicroarchitecture-level
granularity in the power decompositions. Second, we chaoseponents that provide
a direct mapping to the physical layout. Both of these decss@iso help enable future
studies for architecture-level processor thermal modedimd hotspot analysis [112].
Based on an annotated P4 die photo we define 22 physical comgorigus control,
L1 cache, L2 cache, L1 BPU, L2 BPU, instruction TLB & fetch, meynorder buffer,
memory control, data TLB, integer execution, floating pokgaution, integer register file,
floating point register file, instruction decoder, tracehsganicrocode ROM, allocation,

rename, instruction queuel, instruction queue2, scheduateretirement logic.
2.2.2 Selecting Performance Monitoring Events for Power Estiration

For each of the 22 components, we need a performance cowetdrad a combination of
events that can approximate the access count of that compdre finalized set of heuris-
tics that define these access counts involve 24 event metmoposed in various ways for
the 22 defined processor components [86]. As an exampled@dtess rate heuristics, the
access rate for the trace cache component can be approdimatonfiguring the “Uop
gueue writes” event to count all speculative Uops writtetheosmall in-order Uop queue
in front of the out-of-order engine. These come from eithhacé cache build mode, trace
cache deliver mode or microcode ROM.

As another example, the access rates for the bus contral dognponent are obtained

by counting the allocations into the 1/0 queue (via I0OQ Adtons) and by tracking the
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activity on the front side bus (via FSB Data Activity). IOQlé¢ations count all bus trans-
actions (all reads, writes and prefetches) that are abocat the 10 Queue (between the
L2 cache and bus sequence queue). FSB Data Activity is carfiga track the events that
occur on the front side bus when processor or other agems, dgad or reserve the bus.
The bus ratio (3.5 in our implementation) is the ratio of @ssor clock (1400MHz) to bus
clock (400MHz), and converts the counts in reference togssar clock cycles. Equation

2.1 shows the resulting access rate relation for the menwnirdler unit.

I0Q Allocation Bus Ratio FSB Data Activity

2.1
ACycles + ACycles (2.1)

Access Rat@us Contro) =

To account for all component accesses, we use 15 countdrstwdtations. The P4
events and counter assignments minimize the counter sgitdguired to measure all the
metrics needed. At least four rotations are unavoidableis Bhbecause floating point
metrics involve 8 different events, of which only two at aéman be counted due to the

limitations of P4 counter configurations.

2.2.3 Counter-based Component Power Estimation

We use the component access rates—either given directlypbyfarmance counter or ap-
proximated indirectly by one or more performance countdmsweight component power
numbers. In particular, we use the access rates as weidattays to multiply against each
component’s maximum power value. This product is furtheltiplied with a scaling factor
that is based on microarchitectural and structural praggertn general, all the component
power estimations are based on Equation 2.2, where maxinower@and conditional clock
power are estimated empirically during implementatione Thin the equation represent
the 22 hardware components.

Power(C;) = AccessRat(€) - Architectural ScalingC; ) - MaxPowe(C;) + NonGatedClockPow¢Ei) (2.2)
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As an example of our overall technique, consider the trackecaomponent. It delivers
three Uops/cycle when a trace is executed and builds onecy@p/when instructions are
decoded into a trace. Therefore, the access rate approaimiatdeliver mode is scaled by
1/3, while the access rate from instruction decoder is doaith 1. These rates are then
used as the weighting factors for the estimated maximune tache power.

Equation 2.3 constructs the total power as the sum of 22 copmicgpowers calcu-
lated as above, along with a fixed idle power @ ®btained from actual power measure-
ments. Hence, this fixed/® base includes some portion of globally non-gated clock ppwe
whereas the conditionally-gated portion of clock powelissributed into component power
estimations.

22
Total Power= 'Z‘Powel(Ci) + Idle Power (2.3)
=

For initial estimates of each component’s “maxpower” vaMexPowerC;) in Equa-
tion 2.2, we used physical areas on the die. In many casese #reas serve as good
proportional estimates. To further tune these maximum p@semates, we developed a
small set of training benchmarks that exercise the CPU inqudatt ways. By measuring
total power with a multimeter, we could compare true totav@oover time to the total
power estimated by summing our component estimates. Adtearal experiments with the
training benchmarks, we arrived at a final set of maxpowemamdgated clock power val-
ues for each of the components. These are hard-coded as ipeéific weighting factors
in the final implementation of our power estimation setup.

While this section describes our overall event-counteetdg®wer estimation strategy
for a specific platform, there are certain design aspectsthdd help further improve the
accuracy of power estimations with future performance mooimg hardware implemen-
tations [82]. First and foremost, as power and thermal egtons correspond directly to
physical units located on die, counters that individuathck accesses to each unit sep-

arately are extremely desirable. This set of counters shprdvide high parallelism in
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concurrent counting to minimize the need for counter roteti Such information, together
with the documentation of maximum utilizations and maximpoaver per unit allows for
easier and more accurate tracking of component activitico®® additional structures
to track bitline activity and one/zero population counts ianperative for good power esti-
mates. Third, depending on circuitimplementation, cantpieues at the in-order processor
front-end and out-of-order engine schedulers dissipateep@ proportion to their occu-
pancy. Specifically for these units, metrics that gauge tteaipancy ratio lead to better
power approximations. Furthermore, in lower-power emleedgrocessors power con-
sumption of support logic outside the core can significactigtribute to processor power
consumption. Adding counter support for external core coments (off-chip memory ac-
cesses, DMA unit activity, etc.) can increase the fidelitgainter-based power estimation,

providing greater opportunities for power behavior momitg and control.

2.3 Implementation Details for Counter-based Power Estimation

The complete event-counter-based power estimation frameis conceptually based on
the generic experimental flow described in Section 2.1. Rumfperformance monitoring
lies at the center of this power estimation methodology.e&livalidation of the power
estimations is performed with runtime real power measurgsnd he overall experimental
setup combines these two components into the final infretsire: that performs runtime
power estimation with real measurement feedback. Thisosefitst discusses the im-
plementation details for performance monitoring and pomweasurement. Afterwards, it

presents the complete power estimation infrastructure.
2.3.1 Hardware Performance Monitoring

To access the hardware performance counters, there are l@enofpre-written counter
libraries available [16, 78, 158, 25]. For efficiency andesakuse, we have written our
own Linux loadable kernel modules (LKMs) to access the cexsntOur LKM-based im-

plementation offers a mechanism with sufficient flexibibityd portability, while incurring
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negligible power and performance overhead so that we camcously collect counter in-
formation at runtime and generate runtime power statishicsrder to use the performance
counters, we implement two LKMs. The first LKNLPUinfq is simply used to read infor-
mation about the processor chip installed in the systengbeeasured. This helps the tool
identify architecture specifications and discern the atdity of performance monitoring
features. The second LKMPerformanceReadgeimplements six system calls to specify

the events to be monitored, and to read and manipulate asufitee system calls are:

(i) select events:Updates the event selection control register (ESCR) and eouoah-
figuration control register (CCCR) fields as specified by the wsdetine the events,

masks, and counting schemes.
(if) reset event counter:Resets specified counters.
(i) start event counter: Enables specified counter’s control register to begin dognt
(iv) stop event counter:Disables specified counter’s control register to end cognti
(v) get event counts:Copies the current counter values and time stamp to user space
(vi) setreplay MSRs: updates special model specific registers (MSRS) requireatdor

play tagging” [79].

With this simple and lightweight interface, we can comgiet®ntrol and update coun-

ters easily from within any application.
2.3.2 Real Power Measurements

In this work, real power measurements provide the timedagrprocessor power dissipa-
tion information to validate the counter-based power edfiioms. We use a current probe
with a digital multimeter to track current flow in the Pentidndesktop platform.

Figure 2.2 shows the details of our power measurement sdti@gpe CPU power is
measured with a clamp ammeter (current probe). The maindoves for the CPU operate

at 12V, and then are fed to the voltage regulator module, wtanverts this voltage to the
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Figure 2.2: Processor power measurement setup.

actual processor operating voltage and provides tightrabah voltage variations [185].
Therefore, we use our current probe to measure the totamthrough the 12V lines. We
use a Fluke i410 current probe connected to an Agilent 344itabdmultimeter (DMM).
The current probe converts current readings to voltagels avitmV/A conversion rate.
The DMM sends the voltage readings to a second logging machathe serial port.
The logger machine converts these values into processarpiigsipation with the power
relation:P =Vl =12 (VoltageSampl¥'])-1000. It displays the measured runtime power
in our developegower monitorwith a sliding time window, while also logging time vs.
voltage information.

The DMM samples 1000 current readings per second witldigit resolution, which
corresponds to 0.12W power resolution. However, it cansfieararound 55 samples per
second over RS232, so we collect the data in the logger maehid@ms intervals, while
finer granularity sampling is possible with a General Pueplogerface Bus (GPIB). The
logging machine then computes a moving average within adosgcond sampling pe-
riod that is used to update the on-screen power monitor amdidka log. These coarser

granularity samples are used in validating the counteedb@swer estimations.
2.3.3 Overall Implementation

In the final implementation, the performance reader prasitie system with the required
counter information. The monitoring machine collects h# tounter and measurement
information to generate the runtime component power esibms \We verify power es-
timates against total power measurements by measuringlgmwer and by feeding this

information simultaneously to the monitoring machine. Ufey2.3 depicts the overall ex-
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Figure 2.3: Overall runtime power measurement and perfoc@&ounter-based power
estimation setup.
perimental setup for this final implementation.

Measured processor current is sent by the DMM to the loggehma via RS232 and
the logger machine converts the current information to pov@n the experimental ma-
chine, thePowerServecollects counter information every 100 ms, for the P4 evehts
sen to approximate component access rates. Every 400nBpwerServer sends collected
information to the logging machine over the Ethernet. WHiie perturbs system behav-
ior slightly, it is done infrequently to minimize the dishance. On the logger machine,
the PowerClientcollects measured ammeter data from the serial port, andoawter in-
formation from Ethernet. Combining the two, it applies theess rate and power model
heuristics, and generates component power estimatesdatefined components. After
synchronizing the modeled and measured power over a 108d&ote window, the Pow-
erClient generates a runtinsemponent power breakdown monit® well as runtimeotal

power monitorfor both measured and counter estimated power.

2.4 Power Estimation Results

This section provides the results for our power estimatiamework for some microbench-
marks with well-defined characteristics, for the full runés of SPEC benchmarks, and for
some common desktop applications. The benchmarks are Bammsing gcc-2.96 and
with compiler flags of “-O3 -fomit-frame-pointer”. For SPBErkloads, we use the refer-
ence inputs with a single iteration of run. In order to dentiate our ability to model power

closely even at low CPU utilizations, we also experimentetth \practical desktop tools:
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Figure 2.4: Power breakdowns for branch and cache benclsmark

AbiWordfor text editing,Mozilla for web browsing andsnumericfor numerical analysis.
All these benchmarks share the common property of proddoingCPU utilization with

only intermittent power bursts.
2.4.1 Microbenchmark Results

Figure 2.4 shows component power breakdowns for two micrchvaarks. Thér anch
benchmark creates different branch misprediction ratdsldferent ratios of taken branches.
This is a very small program that is expected to reside masttiie trace cache and that
is mostly L1 bound. This microbenchmark is a high Uops petecydPC), high-power
integer program. Theache benchmark creates variable L1 and L2 cache hit rates by
performing a linked list traversal in a pseudorandom seggien

The leftmost bar of Figure 2.4 shows the estimated powerkid@ans for our branch
exercise microbenchmark. The breakdowns show high isgaeugon and branch predic-
tion logic power. In contrast, because the applications#tenainly fits in the L1 cache,
the L2 cache and bus for main memory dissipate lower power.

The second bar of Figure 2.4 shows breakdowns for cacheiggaricrobenchmark
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with an almost perfect L1 hit rate. Once again, the compobesskdowns track our in-
tuition well. The breakdowns show high L1 power consumptod relatively high issue
and execution power as we do not stall due to L1 miss and meardgyring/replay issues.
Both L2 and bus power are relatively low.

In the third bar of Figure 2.4, we configure the cache micrcherark to generate high
L1 misses, while hitting almost perfectly in L2. The powestdbution of L2 cache is seen
to increase significantly, while execution and issue col@s down due to replay stalls.
Moreover memory order buffer power shows a slight increasetd increasing memory
load and store port replay issues.

Finally, in the rightmost bar of Figure 2.4 the workload afgmerates high L2 misses
and therefore bus power climbs up, while the execution domessdown even further due
to higher main memory penalties. Although total L2 access®sally increase, due to
significantly longer program duration, access rates rél&iel 2 drop and aggregate L2
power decreases.

Overall, this sequence of microbenchmarks, while simpleldb confidence that the
counter-based power estimates show meaningful insiglasctotecture-level power dissi-
pation and do not violate intuition in their estimates. Thet®ns that follow present more

large-scale, long-running experiments on SPEC and desigplications.
2.4.2 SPEC Results

Figure 2.5 first shows our power estimation results for thEG§cc benchmark to demon-
strate the capability of our power estimation frameworkthis figure, we show the total
estimated and measured power behaviogaf for its complete execution time over its
five data setsGece is one of the most highly varying benchmarks in the SPEC CP0200
suite, as observed with the measured power timeline. Ouepestimations closely track
actualgcc power behavior, at all regions of execution. This shows ganecounter-based
power estimations provide a very good proxy to applicatiowgr behavior, regardless of

the range of power consumption.

35



MEASURED POWER — COUNTER ESTIMATED POWER

a
o O
L |

w
o
T

Power [Watts]
N B
o o

=
o

0 50 100 150 200 250
Time (s)

o

Figure 2.5: Measured and estimated power behavior fog¢chébenchmark with a 400ms
sample granularity.

In addition togcc, Figures 2.6—2.9 also show the power estimations and ddtedm-
ponent breakdowns for the SPECint applicatipn, andequake from SPECfp. For refer-
ence inputs, thepr benchmark actually consists of two separate program ruhs.fifst
run uses architecture and netlist descriptions to genargtacement file, while the sec-
ond run uses the newly-generated placement file to generatgiag descriptor file [166].
Although the total average power for the two runs is quitellsimFigure 2.6 shows a no-
ticeable phase change at around 300s when the second rms begjure 2.7 demonstrates
even more clearly how distinct the power behavior in the sdqahase is. Although the
first run, the placement algorithm, dissipates very stablegp, the second phase’s routing
algorithm has a much more variable and periodic power behawis discussed in prior
work [101], the initial placement phase produces highersmages than the routing part.
This is because routing benefits from the fact that placerengs much of the dataset
into memory. The per-component power breakdowns corré@ahés with the increased
L2 power in second phase.

As an example of floating point benchmarks, Figures 2.8 aAdsBow theequake
benchmarkEquake models ground motion by numerical wave propagation equakbdu-
tions [10]. The algorithm consists of mesh generation amtitjpeing for the initialization,
and mesh computation phases. In Figure 2.8, we can alreadylcidentify the initial-

ization phase and computation phase. Figure 2.9 demasstitag high microcode ROM
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Figure 2.7: Estimated power breakdowns\opr .

power as the initialization phase uses complex IA32 insimus extensively. The mesh
computation phase, then exhibits the floating point intensomputations.

In addition togcc, vpr andequake, we have generated similar power traces for sev-
eral other SPEC2000 benchmarks. Figures 2.10 (a) and (lsermrstatistical measures
that confirm the accuracy of our modeling framework, for dugér set of the SPEC2000
benchmarks.

Figure 2.10 shows the average power computed from real powesurements and
counter estimated total power, for both the whole runtiméhefbenchmarks and for the
actual execution phases, excluding idle periods. Heneddth-inclusive measures cannot
be considered as standard results, as the idle periodsvagch experiment. They are
of value, however, for comparing counter-based totals tasueed totals, because one
of our aims is to be able to characterize low utilization powé&h reasonable accuracy

as well. For the estimated average power, the averageatfifferbetween estimated and
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Figure 2.9: Estimated power breakdownsdquake.

measured power is around 3 Watts, with the worst case lBgjngke (Figure 2.8), with
a 5.8W difference. For the standard deviation, the aver#fgrehce between estimated
and measured power is around 2 Watts, with the worst casg beitex, with a standard

deviation difference of 3.5W.
2.4.3 Desktop Applications

In addition to SPEC applications, we investigated threeikidesktop applications as well.
These help demonstrate our power model’s ability to esématver behavior of practical
desktop programs. Because of their interactive naturegthpglications typically present
periods of low power punctuated by intermittent bursts ghler power. The three appli-
cations, shown in Figure 2.11, are AbiWord for text editivpzilla for web browsing and
Gnumeric for numerical analysis.

In the web browsing experiment in Figure 2.11(a), the powares represent opening

the browser, connecting to a web page, downloading a strepmideo and closing the
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Figure 2.10: Average (top) and standard deviation (bottohmieasured and counter esti-
mated power for the SPEC2000 benchmarks. For each benchtharkst set of power
values represents averaging and standard deviation averttble runtime of the program.
The second set represents averaging and standard deaatjoaver non-idle periods.
browser. In the text editing experiment in Figure 2.11(bg power traces represent open-
ing the editor, writing a short text, saving the file and ahgsthe editor. In the Gnumeric
example in Figure 2.11(c), the power traces represent ngehe program, importing a
large data set, performing statistics on the data, saviediln and closing the program.
The power traces reveal the bursty nature of the total pamedine for these benchmarks.
Overall, the long idle periods mean that the benchmarks lawveaverage power dissi-
pation. The power traces for the desktop applications adgeal that our counter-based
power model follows even very low power trends with reasdémabcuracy. Together with

the SPEC results, this demonstrates that our counter-lpseer estimates can perform

reasonably accurate estimations independent of the rdmmwer variations produced by
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Figure 2.11: Total measured (light) and counter estimatackj runtime power for 3 desk-
top applications.

different applications, without any realistic bounds oe tibserved timescale.

2.5 Related Work

While there has been significant work on processor power astns, much has been

based only on simulations. Our approach, in contrast, igegérformance counter mea-
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surements as the foundation for an estimation technique.

One category of prior work involves live measurements dltpower. While these are
numerous, we touch on a few key examples here. In early wankariet al. developed
software power models for an Intel 486D X2 processor and DRANN\grified total power
with real measurements [168]. This work developed insibacenergy cost tables and
demonstrated inter-instruction effects. Russell and Jacprasented a software power
model for iI960 embedded processors, validated using dumeasurements [142]. Flinn
et al. developed the PowerScope tool, which maps consunedyeto program structure
at procedural level [51]. More recently, Lee et al. used gyneneasurements based on
charge transfer to derive instruction energy consumptiodets for a RISC ARM7TDMI
processor [113]. This study used linear regressions toditribdel equations to measured
energy at each clock cycle. These techniques are aimedasiwaple processors with
almost no clock gating, and therefore need to track and modgl minimal temporal
power variations.

As a first example of Pentium 4 power measurement studieg &wh Tullsen inves-
tigated the effect of compiler optimizations on averagegpam power [148]. They use
real measurements to track the processor power. Howesr,din not present total and
component-level power estimations.

Another category of prior work is on performance counteid power metrics. For ex-
ample, Bellosa uses performance counters to identify @airoels between processor events
for an Intel Pentium Il processor [13]. This counter-basedrgy accounting scheme is
used as a feedback mechanism for OS directed power managsmeéras thread time ex-
tension and clock throttling. Likewise, the Castle tool,&leped by Joseph and Martonosi
[93], uses performance counters to model component poweesPentium Pro processor.
It provides comparisons between estimated and measugdgtotessor power. Our work
makes significant extensions in both infrastructure andcguh in order to apply counter-

based techniques to a processor as complex as the P4. Katlafifuse performance
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counter information to estimate memory system energy aopson for an UltraSPARC

processor [95]. They collect memory related event stasistihich are applied to an analyt-
ical memory energy model. Last, Haid et al. [62], proposem@oessor for runtime energy
estimation for system-on-a-chip designs. Essentially,gbal of this work is to design a

set of event counters specifically for power measurement.

2.6 Summary

This chapter presented an overview of our real-system pangperformance monitoring
methods. It has described a complete view of our real-systgrarimentation framework
for our power-oriented research. It has discussed the gkeeguerimentation principals of
runtime performance monitoring, power measurement amchason. As such, this chap-
ter provides the high-level view of our general research eraduation methods, applied
throughout this thesis.

Following from the overview of the experimentation basitss chapter has also pre-
sented our runtime power estimation methodology based mwaae performance coun-
ters for a modern processor with highly variable power baha¥his framework performs
power estimations for both the overall processor power wopsion and for the individ-
ual architectural units within the processor. The resglpower estimations are validated
against real power measurements at runtime. The expeminesults showed that our
power estimations track even very fine trends in program ptwebkavior closely, and can
accurately estimate processor power consumption at @ldef CPU utilization.

There are several key contributions of this chapter. Fir&iys out a general experi-
mentation approach carried out in the following chapterthis thesis. The measurement
and estimation framework offers an alternative to pureiyudation-oriented power re-
search. Our runtime power estimations demonstrate a pirograsd practical methodology
for tracking architectural power behavior in real-systeower and thermal management

techniques. The component power breakdowns offer archredevel detail to runtime
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workload power characteristics, which is useful for botlaretcterization and adaptation
purposes. Starting with the next chapter, we build upon nasitoring and estimation
framework for several research goals. We use the generateganent power estimates
to characterize power phase behavior of applications argktdify repetitive application
execution. We use real-system power and performance nuimgtto accurately predict

future application behavior and to guide workload-adaptiynamic power management.
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Chapter 3

Power Oriented Phase Analysis

Most workloads exhibit considerable variations in exemutbehavior during their life-
times. These different execution characteristics thabheerved during workload execu-
tion are commonly referred to abase®f a workload. Due to large loops at program scale,
and procedure-based execution nature, these phases atgalfjeshow certain repetitive
patterns. While this workload phase behavior has long besareéd [39], in recent years
application phase behavior has seen growing interest withnain goals. Some seek to
identify program phases in order to select representatetp within a run to study or
simulate [6, 72, 109, 137, 151, 152]. Others seek to recegpiase shifts on-the-fly in
order to perform optimizations such as dynamic adaptatiortache organization, volt-
age/frequency scaling, thermal management, or even dgneonmpiler optimizations of
hotcode regions [11, 14, 41, 76, 90, 155].

While most of the prior phase analysis studies focus on padace characteristics of
applications, runtime power behavior also exhibits sigaiit phase behavior. Moreover,
this power phase behavior gets emphasized with emergirgegsor generations due to
increasingly aggressive power management technique4 §5%, Different programs with
similar average power can show significantly different povagiations. Likewise, a single
program with stable total power can have distinctivelyeatént power behavior—in terms

of the decomposition of power to the architectural units-gifferent execution phases.
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This chapter demonstrates a phase analysis method whatesealirectly to power.
Our analyses use estimated power dissipations of processgponents—such as cache
and integer ALU—to identify the phases a program goes thralwging its execution. We
consider these component power estimateposver vectorsas characteristic features of
application power behavior. After describing our phaseatigrization methodology, this
work also evaluates how these features perform in compatisdeatures used in prior
studies for power phase characterization [41, 90, 152]. mibst important aspect of this
work is that it uses power signatures of programs and thexgfwesents a direct and ac-
cessible way to analyze power phase behavior. The poweorgegsed in our analyses
are acquired at runtime. Therefore, they are directly apple to runtime, phase-driven
dynamic adaptation techniques.

The power phase analysis described in this chapter offexe girimary contributions to
the existing research. First, this work demonstrates tharagdge of using event-counter-
based power vectors for power phase characterization.n8eogpresentative power vec-
tors, generated as part of similarity analysis, can be usg@ram power signatures in
power oriented studies. Third, as this analysis is based m@alasystem, it can directly
be utilized in power aware research for runtime phase ifieation. With the ability to
identify recurring phases over large scales of executiontechnique can also be used for

system-level dynamic management [17, 30, 63, 64, 74, 13%),1184].

3.1 Characterizing Workload Power Behavior with Power Vectors

Applications exhibit phases at various time granularigied with different characteristics.
For example, benchmarks can exhibit different phases wiittrent datasets even though
the observed total power may remain similar. On the othedhaithin a single dataset a
benchmark may go through different phases such as inatadiz, computation and report-
ing [6, 85, 88, 108, 151, 169]. Figures 3.1 and 3.2 show twahberarks, SPEC200§ap

andgzi p, wheregap shows distinct phases for a single dataset gng shows periodic
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Figure 3.1: Total and component-wise power tracegépr.

phases within a dataset as well as recurring phases acsosgdtasets. The sampling
period used in these measurements is 400ms. The figuresnalsde plots for power
breakdown traces filtered with a 10 point moving average abwie filter down higher fre-

guency phase components and look at distinct phases atrtjez l@hole execution scale.

The power traces shown in Figures 3.1 and 3.2 demonstratie@artant observations.
First, program power behavior exhibits phase behavioi)aito performance metrics such

as IPC and miss rates. Additionally these phases may noshsevintotal power observa-
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Figure 3.2: Total and component-wise power tracegfop.

tions, but can be hidden in the variations of power vectoezo8d, the runtime technique
observes large scale phase behavior in the order of tencohde. For most workloads,
executing the first few billions of instructions, which cespond to a few seconds of actual
execution, can produce a misleading view of program powhawer [35]. Thus, these
two observations set the fundamental principals of our pg@h@se analysis research: to
focus on large-scale power behavior of whole programs andetatify regions that can
accurately represent program power behavior.

Our power phase analysis considers power vectors as poitite positive quadrant of
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the power space spanned by the 22 dimensions of these ve&soesich power vector cor-
responds to a specific execution time sample in the prograce twe evaluate the power
behavior similarity of execution regions by measuring tpat&l closeness of the points
specified by the corresponding power vectors. We use the deh—L1—distance be-
tween two vectors as our measure of closeness; it is defindteabsolute difference of
vector elements summed over all vector components.

We record the Manhattan distances for all vector pairs ingeudiagonasimilarity
matrix in execution order. Matrix entryr,c) shows the Manhattan distance between the
power vectors correspondingtt8 andcth execution time samples. Only the upper diagonal
needs to be constructed, as distance fromrtheector to thec!" is identical to distance
from thect" vector to ther™. The matrix entries are nonnegative real numbers. A “0” at
entry (r,c) represents a perfect similarity between execution sammgad c, while higher
values represent higher dissimilarity. The execution filow is along the matrix diagonal.
For an execution point, entries in the upper columm; < r,r) represent its similarity with
respect to previous samples, while the entries in the rhr, ¢; > r) represent similarity
with respect to samples in the forward path.

We visually demonstrate the power similarity matrices & of matrix plotsthat are
aligned with the execution timeline along the diagonal, keltae top left corner represents
the start of the timeline and the lower right corner represéme end of the timeline. The
matrix entries are presented as greyscale pixels, wherghtiding is scaled from white,
for maximum dissimilarity, to black, for perfect similaritFigure 3.3 shows a simplified
example of our similarity analysis. In this figure we consifteur time samples, each
as five dimensional vectors. The diagonal-symmetric, 4 bymilarity matrix stores the

Manhattan distances between vector pairs, which is theesepted in the matrix plot.
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Figure 3.3: Similarity analysis example with four time sdegrepresented as five dimen-
sional vectors.

3.2 Similarity Metrics

While the initial similarity measure provides satisfactoegults for vectors with similar
norms, it inherently considers vectors with small magresudimilar regardless of the dis-
tribution of power. The initial absolute vectors distingluiregions with high power well.
However, they cannot discern low-power regions with défearpower distributions as their
absolute similarity distance remains relatively small. tO@ other hand, considering nor-
malized vectors helps distinguish small-magnitude veatoth different compositions eas-
ily as normalized vectors focus primarily on how power idrifisited among vector com-
ponents. However, normalized vectors cannot differemti@tween vectors with different
norms and similar component ratios. In refining our simiyjagnalysis, we use a more
restrictive approach in order to distinguish cases wheotovenagnitudes or component
ratios are different, even for vectors of smaller magnitudénerefore, we use normalized
vector distances in conjunction with the original absolgetors.

We first construct the similarity matrix based on the absophgdwer vectors from Man-
hattan distances of all vector combination pairs. A singhgrix entry, AM(r,c) for this
absolute metric, is computed as shown in Equation 3.1, WR¥€rg represent the sample

power vectors ande {1,2,...,22} correspond to vector component indices.

AM(r,c) = _§|Pvr<i> — PVe(i)| (3.)

In a similar fashion, we construct the similarity matrix ed®n only normalized power
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vectors from the Manhattan distances of all the combingpiains of normalized power
vectors. We compute a single matrix entM(r,c) as shown in Equation 3.2, where

NPV c represent the sample normalized power vectors.

NM(r,C):.2221|NP\4(i)—NPVC(i)| (3.2)

The reason behind normalization is to emphasize the diftexg between the distri-
bution of power into the vector components. In other worlds,dimilarity metric demon-
strated here is based on the relative ratios of componergqgandependent of vector mag-
nitudes. Consequently, the similarity matrix discrimirsasenall magnitude power vectors
better than the original approach.

Both normalized and non-normalized techniques tend toghsdecertain types of dis-
similarities. Therefore, in order to restrict ourselvesitmilarities that satisfy both cases,
we developed an intersection of the above two matrices $dwvtloavectors are considered
similar only if they are similar under both measures. We @enfthis by adding the two
matrices after normalizing each to unity in order to weigbthbmeasures equally. We then
limit the resultant matrix elements to a maximum value of hafTis, 1 is representative
of maximum dissimilarity and O corresponds to perfect santy. \We perform a limiting
operation, rather than normalization, after adding the tmairices in order to achieve a
final similarity metric which emphasizes dissimilaritids. other words, we want a simi-
larity and a dissimilarity to result in dissimilarity. Corggeently, the final similarity matrix
is constructed from the two previous similarity matriceshewn in Equation 3.3, where

SM, AM and NM represent final, original and normalized simtlamatrices respectively.

AM(r,c) NM(r,c)

SM(r,c) = min
(r,0) max(AM(r’,c’)) * m%x(NM(r’,c’))’
r/7C/ r/7

(3.3)

The matrix plot representing this final similarity metricssown in Figure 3.4(a) for

thegzi p benchmark. This final plot identifies both ratio based andmitade based dis-
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(a) Similarity based on power vectors (b) Similarity based on total power

Figure 3.4: Similarity matrices based on power vectors atal power.

similarities relatively well. Moreover, the emphasis oggimilar regions also provides
much sharper distinction between the degrees of sim#atiffo provide a comparison, we
also show the observed similarity information by considgolely total power in Figure
3.4(b). Here, the similarity information is calculated mnsidering total power as a single
dimensional power vector. Therefore, the similarity madiirectly corresponds to the vari-
ation of absolute total power difference among executiantpo Each matrix entryr, c)

is computed ag> — P;|, whereP ¢ represent the total power samples at execution points
andc. In comparison to Figure 3.4(b), the final similarity matpbot reveals significantly
higher information regarding program power phases, bdtiwadr power and higher power
execution regions.

This final similarity metric demonstrates that power vediased phase analysis pro-
vides detailed insight into workload power behavior, whaannot be directly observed
from total power. It identifies several regions with distipower characteristics, which are
considered to have similar behavior from total power obet@ns. In the rest of this chap-
ter, we utilize this similarity metric to identify progranihases and to characterize program

power behavior.
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3.3 Representing Execution with Signature Vectors

One primary aim of power phase analysis is to achieve a srhaliacteristic set of exe-
cution phases that capture most of the workload’s powereharl his set of phases are
useful for representative evaluations of workload chanastics by monitoring a small por-
tion of the overall application. Moreover, the sequencehefabserved phases can guide
phase-driven, runtime adaptations. Our methodology it described as “representative
sampling” [169], where we identify a small set@fecution pointshat are representative
of the overall power traces of programs. Second, we also a@lefiset ofrepresentative
power vectorswhich are not directly associated with execution pointstéad, they define
a program “signature” based on their component powers anddhdering in the timeline.
These signature vectors can be used in program identificatid phase prediction.

For both of these problems, we use various clustering dlguos to group execution
points. Here, we demonstrate our results with a simple mantinresholdingor first pivot
method. Later we consider more elaborate clustering metHadhe thresholding method,
we specify a threshold as a percentage of maximum dissitgilaetween sample pairs.
Then, as the execution moves forward in time, we identify @asthat lie within the
threshold criterion. The thresholding algorithm perfotims similarity grouping to gener-
ate agrouping matrix Similar to the initial similarity matrix, the grouping nratillustrates
which other points are similar to each execution point foivemgthreshold. To divide ex-
ecution into sets of phases, we consider each new execwoplsr that does not fall
into a prior phase category apaot. In the forward execution path, we identify the points
(r,ci > r) that lie within a threshold distance 0&nd tag the corresponding execution points
i as the same group.

There are three primary components of our workload poweaviehcharacterization
technique: (i) generating representative vectoft) selecting execution points, ari)
reconstructing power traces using these representatimplea. We describe the basics of

each of these steps here.
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Generating Representative VectorsTo represent workload power behavior with a small
set of signature vectors, we define a representative vemteath phase group, which is the
set of all vector instances belonging to that phase. Consélguthe number of phases is

equal to the number of representative vectors for a givaretrgach representative vector

is the component-wise arithmetic average of all the vedielsnging to the corresponding

group.

Selecting Execution Points:Unlike representative vectors, the execution points refer
actual regions in workload execution. These points idgrdifaracteristic regions with
specific power behavior that can be used for more detailelbetpn of power behavior,
in a similar fashion as proposed in simulation studies [RYpur approach, we choose the
earliest occurring member of each group—the pivot—as thectsl execution point for
that group. Thus, as the distance between the startpoingafugp and all other members
of the group is always bounded by the given threshold, we baaya formally specify an
upper bound on the amount of difference between the origieatimated power and our

power approximation based on the selected set of powerngecto

Reconstructing Power Traces:The definitions of representative vectors and selected ex-
ecution points can characterize overall execution with alkset of vectors. For each
sample, the representative vector for the correspondiaggthe sample belongs to is that
sample’s power vector. Thus, we reconstruct the whole ptnaee with only the represen-
tative vectors. Similarly, with the selected executionmp®j we identify the corresponding
power vectors and construct the power trace based on thetesdtlexecution point vectors.
These approaches closely approximate original applicgiewer behavior with minimal

information.
3.3.1 Representation Accuracy with Power Phases

Here, we quantify our approximation error with respect te #ittual application power.

Figure 3.5 shows the reconstructed power traces togetltertine actual power behavior
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Figure 3.5: Reconstructed power behavior and absolute iertotal power estimates for
gzi p reconstructed from representative vectors and selectszliggn points.

for both representative vectors and selected executiantp@r thegzi p benchmark. In

the lower plots, the figure also shows the absolute errorcgonstructed total power for
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both cases. In this example, we clasgify p execution into approximately 7 phases per
dataset with the first pivot method using a 10% similarite#iold. Thus, the reconstructed
power traces rely on around 1% of the actual execution indion to capturgzi p’s power
behavior.

The errors for representative vectors and vectors base@lented execution points
differ in one major aspect. Since the startpoints of groupdlee selected execution points,
the sum of absolute errors for components is always withengpecified threshold for
selected execution points while the errors for represiestatctors are not necessarily
bounded with the same threshold. However, as the repreésentactors are the averages
of each group, they have a lower average error over the whnédine. For representative
vectors, the RMS error is 2.31W (4.9%), while for executionngg the RMS error is
3.08W (6.6%).

Finally, Figure 3.6 shows a summary of the experiments wittergnt applications.
This figure shows the average variation between actual asahséructed power for dif-
ferent numbers of phases. In addition, it shows the maximaodchrainimum observed
variation among the tested applications. For a specificghasnber, the whole power
behavior is characterized with the same number of repratemtvectors. The variations
are averaged over all applications. As the number of phasesadse, the characterization
accuracy improves and reconstructed power behavior cgesdo the actual power with
increasing number of phases.

The important observation in Figure 3.6 is that a small nundfgoower phases can
capture the most of the application power behavior. For rapptications around 10 dif-
ferent phases can represent overall power variation ofcgifgns within 5% of the actual
power. This typically corresponds to less than 1% of the wieslecution.

Overall, these results demonstrate that power phase @&aligh event-counter-based
power vectors and the composite similarity metric can éffely capture varying workload

power behavior. The following sections evaluate our phaseacterization in more detail,
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employing comparative studies with other existing repnés@n features.

3.4 Comparing Event-Counter-Based Phases to Control-Flow-Based
Phases

While the previous sections have focused on event-coumtsgeb program characteriza-
tions with power vectors, various prior studies have dertrated that phase behavior can
be observed via different features of applications. Theafdhis chapter compares how our
phase characterizations perform relative to the existimgsp analysis approaches. Most
of these approaches fall into two main categories: In thedategory, application phases
are determined from the control flow of the applications @rpinogram counter (PC) sig-
natures of the executed instructions [41, 72, 90, 109, 187, 152, 153]. In the second
category, phases are determined based on the performaa@eigistics of the applica-
tions [14, 35, 44, 84, 169, 176].

Although there have been some previous efforts to compaegaluate phase charac-
terization techniques [6, 40, 108], they do not perform aaticomparison of the two main
approaches, namely control-flow-based and event-cobatsxd phases. Moreover, there
is generally a missing link between phase characterization the ability to use them to

represent power behavior, especially on real systems. gawhr characterization is very
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important for real systems, as a primary goal of phase cteaiaation is dynamic power
management of running systems.

This study primarily evaluates these techniques for ateyrawer behavior character-
ization on a real system. We compare these with respect tadtoal, measured runtime
power dissipation behavior of applications. Specificallg,look at phase analysis based on
basic block vector (BBV) features of an application [152] téedimine regions of similar
power behavior. We compare this to phases determined bytiaipar set of performance
monitoring counter (PMC) events that are chosen to reflecepaoigsipation [85]. We test
the power characterization accuracy of these methods oe2dhimarks from SPEC2000
suite and 9 other benchmarks derived from commonly usedtaesind multimedia ap-
plications. In general, tracking performance metrics quens better than tracking control
flow in identifying power phase behavior of applications.diwnally, specific examples
from real applications demonstrate cases where power fiieds/ior cannot be deduced

from code signatures.

3.5 Dynamic Instrumentation Framework

To collect synchronous control flow, event counter and pawirmation during an ap-
plication’s execution, we use dynamic instrumentationRia[121]. Pin provides several
flexible methods to dynamically instrument the binary atedlént granularities. This first
step,instrumentation simply decides where in the native code the additional gutaces
to analyze the application behavior should be insertecerdards, whenever one of these
instrumentation checkpoints is reached, Pin gains cowfrdhe application and injects
corresponding analysis routines. During execution, eswa the instrumented locations
are visited, their injected analysis routines also exequteviding the dynamic applica-
tion information. This second phase of operation is cadledlysis Pin utilizes a single
executablePintool, to perform instrumentation and analysis on an application

Figure 3.7 presents an overview of the experimental setypdieer phase analysis with
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Figure 3.7: Experimental setup for power phase analysis Rirt.

Pin. The Pintool uses trace-level instrumentation to keapktof executed code traces.
The analysis routine consists of three levels of hierar¢hg first level simply provides an
account of executed instructions. This is implemented aslered conditional at the trace
level to improve performance and to avoid perturbing powedrdvior. The instrumented
traces include multiple basic blocks consisting of arou@dstructions. The second level
samples one PC address approximately every 1 million icstms. The highest level
analysis is invoked every 100 million instructions. Thisitioe generates one BBV from
the 100 PC samples, reads performance statistics from PMOsgsthe measured power
history from the serial device file. These three sources t dallection are shown with
the three incoming arrows to the analysis routine of thed@int

It is important to isolate application behavior from Pin ogg@on. Pin provides control
flow information about the application on its own. Howevestfprmance monitoring and
power measurements are out of Pin’s control. Thereforerdritines disable data logging
for power and performance at routine entries, and reenadike Idgging at routine exits.
Under Pin execution, instrumentation and analysis are ¢eafly intermixed. Therefore,
we use these handles during both instrumentation and asalys

External, live power measurements provide real power imétion to compare with
the power phase characterizations. Power measuremerperédoemed by measuring the

current flow into the processor with a current probe. Thissaeament information is then
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fed back to the measurement system over the serial portanger

To isolate the application power behavior from Pin analgsid instrumentation, we
use certain controls within the instrumentation and amalgitines of our Pintool. These
handles detach/attach the serial device driver from thécddile at routine entries/exits
viaterm os flags. This approach preserves previous application poistari, while pre-
venting further logging while inside an instrumentatioraoialysis routine. At the end of
a 100 million instruction sampling period, the highest lemealysis routine halts logging
and reads the logged power history for the past sampling@geiihis history is then av-
eraged and is assigned as the observed power for the padirgaoquantum. Afterwards,
the buffer is flushed and reenabled for logging at the stati@hext sampling interval.

Similar to the power measurement method, several handigsot@MC monitoring
from within the Pintool. Pintool initialization first configes the events to be monitored.
This is the most heavyweight operation, but it only occursepiefore the application ex-
ecution commences. We selectively halt/start performangeitoring at instrumentation
and analysis routine entries/exits. This is used to avoiidiag the PMC information with
Pin execution. Although we provide the start/stop handdellitroutines, after our initial
experiments we do not invoke them for instrumentation aedsdtond level analysis rou-
tines, as their costs are comparable. This trade-off orfigctsf PMC information without
any effect on control flow information and power measurememnhe highest level analy-
sis routine reads the past PMC statistics and resets théaredar the following sampling

period.
3.5.1 Program Counter Sampling and BBV Generation

To track control-flow-based application phases, we use the BBMoach [152]. BBVs
summarize application execution by tracking both whichibagcks of the application
are touched and how many times each basic block is visiteaglar sampling interval.
BBVs represent application execution behavior by providiathlworking set information

and execution frequencies for different basic blocks [8BYVs are constructed from exe-

59



cution flow by mapping executed PC addresses to the basikdtd@n application binary.
Originally, each component of a BBV is a specific basic blocld #re magnitude of the
component represents how often the corresponding basik Ilas been executed for a
past sampling period. For practical purposes, BBVs are giyenapped into smaller di-
mensional vectors via random projection/hashing, compbaealysis, or the elimination
of the least significant dimensions [6, 46, 152, 153, 182].183

Our implementation uses Pin to sample the PC addressesatiads. As each trace
head is also a basic block start address, each sampled Pdlyacturesponds to a specific
basic block. For sampling periods, we sample one PC evenjlibminstructions similar
to prior work [6] and construct a BBV at every 100 million insttions. Thus, each BBV
has anL1-norm—sum of vector components—of 100. To apply dimensaatuction, we
choose 32 buckets based on previous work [153]. We use divariaf Jenkins’ 32 bit
integer hash function [91] to reduce the large and variable BBiwensions into common
32 dimensional vectors. As has been discussed in previodgest[108], sampling al-
ways incurs some amount of information loss. Therefore, arapare full-blown BBVS,
constructed from complete PC information, to our sampled B#®ils similarity matrices
[152]. Both methods reflect the major phase content in ternexetution flow similarity

and lead to similar phases for small numbers of target pHaseecs.
3.5.2 Using Performance Counters to Generate PMC Vectors

The original power vectors are 22-dimensional vectorsrénguire four counter rotations to
collect. To use this information in the dynamic instruméotaframework without incur-
ring too much reconfiguration overhead, we reduce thismaigdvent counter set to a final
set of 15 PMC events that can be monitored simultaneoushpwitconflicts. Therefore, no
PMC configuration is required except at the initial Pinta@iraup. Factor analysis [42] is
used to choose the reduced set of event counters. This praoelkss by eliminating highly
correlated dimensions. We call these reduced dimensiaonsMC vectors While the

original 22-dimensional vectors were developed to proaid@e-to-one mapping between
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the physical processor components and the estimated poeekdowns, such a mapping
is not directly required for tracking power phases. The ceduset of PMC vectors per-
form almost identically to the original power vectors inidiéying phases. The complete
list of chosen performance counters are shown in Table gdther with the applied mask

configurations that define the particular event subsets wesghto track.

PMC Event Mask Description
I0Q_allocation OxOEFEL1 (I/O Queue and Bus Sequence Queue
allocations from all agents
BSQ cache_ref |0x0507 |L2 cache read and write accesses
FSB_data_activity |Ox03F Front Side Bus utilization for reading,
driving or reserving the bus.

ITLB reference 0x07 ITLB translations performed
uop_queue_writes |0x07 All yops written to the pop queue
TC_deliver_mode |0x038 Number of cycles the processor is
buiding traces from instruction decode

uop_queue_writes |0x04 pops written to the yop queue by
microcode ROM

x87_FP_uop 0x08000 |All x87 floating point pops executed

LD_port_replay 0x02 Number of replays at the load port

x87_SIMD_moves |0x018 Executed x87, MMX, SSE and SSE2
load, store and register move pops

ST_port_replay 0x02 Number of replays at the store port
branch_retired Ox0F All branches retired

uops_retired 0x03 Number of pops retired
front_end_event |0Ox03 Number of loads and stores retired
uop_type 0x06 Tags load and stores (Does not count)

Table 3.1: The set of chosen performance counter events aski configurations.

Every 100 million instructions, we collect the performaeeent counts and cycle count
for the past sampling period. We then convert these evemitsanio per-cycle rates. These
15 event rates are then used to construct the 15 dimengtdm@lvector which gauges the

similarity of execution samples in a similar manner as BBVs.

3.6 Phase Classification

We cluster BBV and PMC vector samples into phases with multjstering algorithms.
First, a runtimeFirst Pivot Clusteringmethod assigns samples to phases as they are ob-
served. We also experiment with a more detailed method, lyaAgglomerative Cluster-

ing [42]. There are two variations of this methashmplete linkagandaverage linkage

The original first pivot method provides an upper bound todstance within each
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phase, but it does not guarantee a fixed number of phases. aligelthis to an iterative
process, where the threshold is changed dynamically basddeoacquired number of
phases. With this modification, we classify both BBVs and PM&es into 5 final phases
after a few iterations.

Agglomerative clustering is a tedious bottom-up approactclustering samples into
phases. In this approach, the clustering algorithm stattsam initial solution ofN clus-
ters, whereN is the number of samples. At each iteration, the algorithmares all pair-
wise combinations of the current set of clusters and findd#sé candidate pair of clusters
to combine into a single cluster. The pairs are comparedd@salinkagecriterion, which
determines the best candidates. We experiment with twastgpénkages, complete and
average linkage. Average linkage compares the averagmdesbetween all sample pairs
belonging to two different clusters. For two clusters witnd j samples respectively, it
computes the distance between allithe pairs and finds the average distance between the
clusters. It chooses to combine two clusters with the mimmawrerage distance. This leads
to clusters with similar ranges in all dimensions. Complitiedlge compares the maximum
pairwise sample-distance among clusters. It combinedtiséecs with the least maximum
distance among all their pairs. Consequently, the final setusters have similar ranges

among most of their samples, although the range across @aehsion can be different.
3.6.1 Evaluating Phase Classifications

We evaluate the quality of generated phase clusters by aomgphie measured power at
each sample to the aggregate power for the whole clusteratigle belongs to. For a
benchmark witiN samples, each samgléi = 1,...,N) is an element of one of the final
phase setB; (j =1,...,5). Each sample has a corresponding set of {tdta, pmg, pwri],
wherebby andpmg are the corresponding BBV and PMC vectors used during phase clu
terings, andowr; is the measured power value during samjgexecution. For each phase
Pj, we compute a “representative powel], as the arithmetic average of the power values

for the totalN; samples belonging to that phase. Then, for each sampie compute the
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squared difference between the sample’s actual power \@iugand the representative
powerR; for its owner phas®;. We denoteR; values corresponding to each samipiath
RS. For example, for a samplethat belongs to phas®, RS = R,. The rooted average of
the squared differences over all samples is the final RMS &gure Erys Equation 3.4

summarizes this error computation.

pwr
R = N (j=1....5)
N
_Z(DWH -RS)?
Erms= '\ = N (3.4)

To gauge the ability of the phase classification techniqoeksicern application power
behavior, we also provide the error boundaries that cantiead with perfect knowledge
of power information—a lower bound—as well as without anypwiedge of application
behavior—an upper bound. To compute lower error boundspwale directly at the mea-
sured power. We apply all three clustering algorithms tchdaenchmark’s power infor-
mation and for each case choose the smallest error valuevachi This “gold standard”
measure is thbaseline errorin our results. For the upper error bounds, a separate cluste
ing method assigns each sample to any of the final target pmasdomly, without using
any application behavior information. We refer to the resof this “uninformed” phase
characterization asndom errot

Our experiments use 11 SPECint benchmarks—all exmptonk due to compilation
problems—and 10 SPECfp benchmarks—excluded are F90 berichm&e experiment
with all reference datasets for the 21 SPEC benchmarksngddia total of 37 different
experiments. In addition to SPEC, we also use 9 other bendisnram previous studies
and derived from well-known applications. These benchsarkeghost scri pt, dvi ps,

gi np, | ane, ¢j peg, dj peg, nesh, st r eamandmibnch. For some cases, we alter the dataset
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Figure 3.8: Power characterization errors for BBV and PMC pbagith agglomerative
clustering and complete linkage.

or iterations for the benchmarks to achieve longer executies [88].

3.7 Phase Characterization Results

Although we perform our experiments for all clustering ayguohes, the observed results
are consistent regardless of clustering approach [88].reftwe here Figure 3.8 shows
the overall results for only agglomerative clustering wattmplete linkage. Figure 3.8(a)
shows the results for the SPECint applications and FigurébBs$hows the results for
SPECITp and other applications. The figures show the uppadém and lower base-
line) error bounds for each application and the achieved errarsBBV and PMC based
approaches. They also show the average accuracies for tB€iI®P SPECfp and other
experimented benchmarks.

Comparing among the three sets of applications, SPECfp apiplis lead to relatively
low errors even with random phase clustering for some cabess. is due to the generic
flat power behavior of these benchmarkgp( u, art, si xt rack, wupwi se). In some other

cases, benchmarks go through specific initialization @dgiake) or periodic phases (i.e.
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ammp) with significant changes in all control flow, performancel ggower features. In
these cases, both BBVs and PMCs achieve very good power chriaraibes approaching
baseline errors.

SPECint shows significantly higher errors for all approaatas to higher variations
in behavior. In many cases, BBVs and PMCs have significant ingonent over random
clustering. This shows the benefit of phase tracking for pdyedavior characterization.

Most of the other experimented benchmarks show signifigdagher error ranges due
to their high power variability based on input data chanasties and functional behavior.
In these cases, applying phase analysis, especially witG$?ldroves to be very useful in
identifying similar power behavior.

Overall, for the three benchmark sets, BBVs achieve errotsaifgaon average 48%
less than random clustering errors for benchmarks with fradrpower behavior. PMC
phases lead to 66% less error than random clustering. F&N\t&based approach, power
characterization accuracies are 2-6X better than randastering. Performing the same
comparisons with respect to baseline errors, BBVs achievé¢ Righer error on average
compared to baseline, while PMC error is 1.8X of the basdimee. These comparisons
show that BBV and PMC phase analyses have significant benefiairacterizing power
behavior. However, there still exist opportunities to imy& power phase behavior charac-
terization of applications.

As the above measures also indicate, in almost all expetederases, our PMC based
phase analysis represents power behavior better than a BEM bagproach. PMCs lead
to 2.2% and 1.4% errors for SPECint and SPECfp, while BBVs acl8e#% and 1.5%
errors. For the other benchmarks, PMCs and BBVs have 7.1% afiélolazerage errors
respectively. For most of the benchmarks PMCs achieve 304&68%cerrors than BBVs
with an average of 33%. Thus, although both techniques geavseful features to identify
power phase behavior, in general PMCs perform better.

Thus far, all analyses have used a fixed target number of ®epha€nable meaningful
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Figure 3.9: Variation of errors with respect to number of fiplzases.

averaging across benchmarks. However, we have also exg@gthwith different numbers
of target phases to verify the reliability of our resultsgiie 3.9 shows the achieved errors
as both RMS and maximum observed values. For each benchmadgmpute the RMS
and maximum error figure for each target phase count. Aftetsyave average these values
over all benchmarks to reach a single error figure for eagetashase count.

Intuitively, for a single final phase, both BBVs and PMCs will ceahe same error,
equivalent to the standard deviation of all the power sampfethe benchmark. As the
number of phases increases, errors for both methods witedee with different slopes.
As number of target final phases grows towards infinity, botbrecurves will converge to
0, i.e. where each phase is a singleton sample. Figure 3véssihe behavior up to 100
phases. As phase counts grow beyond 100, both curves app@od2MC based phases

perform consistently better, independent of the numbemnat fihase clusters.

3.8 What Control Flow Information Does Not Show

There are multiple aspects of application behavior thatoeause the control flow and per-
formance based approaches to reach different phase ar@ration conclusiondDynamic
change in data localitgluring an application’s execution can cause the power hehty
significantly change. While this change can be easily reeav#o0m memory performance
metrics, code signatures cannot reflect this as executmpriats are not alteredeffec-
tively same executiorepresents the converse of the above effect. In variouscapiphs,

multiple procedures or code segments perform similar @seE® leading to practically
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identical power behavior. These are considered as faiffigrdnt phases in terms of control
flow, which may result in many different phase clusters tlanhdt reflect actual changes
in program power. Typical examples for these are scientifiotber iterative processing
applications performing different tasks on an input witlitar power/performance impli-
cations [68]. Operand dependent behavioray result in similar effects as the first case,
where power and latency of a unit depends on the input opsyaedpite the same control
flow. Typical cases for these are overflow handling and sgalirexecution based on the
input operand values or widths [22].

This section demonstrates two of these effects, operanehdent behavior and effec-

tively same execution based on observations from actudicagipns.
3.8.1 Operand Dependent Behavior

The st reambenchmark shows a simple example of operand dependentibebhad its
implications on power. St r eam performs four repetitive operations with simple vector
kernels. It operates on three vectash andc. The four operations amopy(c|j] = alj]),
scale(b[j] = scalarxc[j]), add (c[j] = a[j] + b[j]) andtriad (a[j] = b[j] + scalarx c[j]).
It targets at measuring sustainable memory bandwidth vethors larger than cache sizes
and by avoiding data reuse. There exists a positive feedbatikeen each iteration of
the four described operations. This causes the the FP apesdb overflow at iteration
261, where the first vectar overflows atriad. This is then propagated to vectdraindc
in the next iteration. This overflow causes the three FP ketoeexperience a slowdown
larger than 10X, while theopyoperation is not significantly effected. Consequently, powe
dissipation experiences a drastic phase change, whilex#waigon path is still conserved.
Figure 3.10, shows the resulting behavior in terms of po8BW/ signatures and PMC
signatures. Figure 3.10(a) shows the power (top) and BBV siges (bottom) with re-
spect to executed instructions. It shows the BBV signaturatag&ed vector sample bars,
where the magnitude of each vector component adds on tog atdélck. Here, we see the

repetitive BBV vector patterns throughout the executionyesponding to the 4 different
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Figure 3.10: Power phase change at overflow condition fostheambenchmark. Upper

plot (a) shows BBV signatures, unable to detect the phase ehdmyver plot (b) shows

PMCs detecting the change. Lower plot is drawn with respeetdpsed cycles to show
the actual time behavior.

operations repeated 275 times. As the control flow is rapetithe sudden power drop
goes undetected with BBVs. Figure 3.10(b) shows the same &xeamith power (top)
and some of the PMC vector samples (bottom). Shown PMC rsetfiresent instructions
per cycle (IPC), L2 cache access rates (L2) and memory acaess(MEM). This figure
shows the execution with respect to cycles to emphasizediualaeffect of overflow on
elapsed time in different power phases. While the lower pgliese occupies less than 6%
of the executed instructions, the time spent in this phas®i® than half of the total exe-
cution. Tracking PMCs easily identifies this power phase gkaresulting from operand

dependent behavior of r eam
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Figure 3.11:Mesh power and BBV signatures (top) and generated PMC and BBV phases
with target cluster numbers of 5 (middle) and 3 (bottom). tiblg control flow phases
with effectively same power characteristics disguise acpower phases in BBV based
classification. Actual power phases are labeletiigls andM, for high, low and medium
power dissipation regions.

3.8.2 Effectively Same Execution

Figure 3.11 demonstrates another example of the discu$sstisewith thenmesh bench-
mark. This example shows how PMC vectors and control flow eaclr different phase
characterizations due to effectively same execution.

The top graph of Figure 3.11 shows the measured power beh¥véocan easily sepa-
ratemesh execution into three power phases by observing the powes.trEhese “actual”

power phases are labeledtasL andM on the power trace, representing phases with high,
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low and medium power consumption. Underneath the powee trthe figure shows the
corresponding 32-dimensional BBV vector patterns for eaatpéa Several distinct con-
trol flow phases are observable from the BBV patterns. Vertlogted lines separate each
of these distinct regions. These regions correlate well mash tasks. The first high power
phase corresponds to the sorting task after reading nodesiéialization. This task sorts
nodes based on their types. It operates mainly in L1 cachesarmmputation intensive.
The following low power phase results froetBoundaryDatsask which sets the values
for boundary nodes. This task mostly accesses L2 and hasveiapping computation,
which leads to less power. After this tasksh repetitively operates on three computa-
tion tasks, namelyComputeForces()ComputeVelocityChange@nd SmoothenVelocity,)
These constitute the medium power phaseesh. All of these tasks also make significant
L2 accesses. However, their overlapping FP computati@ustierelatively higher power.
The lower two plots of Figure 3.11 show the phase classiGoatperformed by BBVs
and PMCs. In these plots, the y axis shows different phasgsafrom 1 to 5 for the first
case and 1 to 3 for the second. For each sample, we add a tikkatave the horizontal
line corresponding to its phase assigned by BBV classificatia also add a tick mark
below the horizontal line that corresponds to each sampII€ phase. These marks then
form the bands of phases seen in these plots. For examplefoase with 5 phases, low
power phase afesh is classified into phase “1” by BBVs and phase “3” by PMCs.
These plots show the impact of effectively same executigrhase classification. For
N =5, PMCs correctly identify the three actual power phases. BBVthe other hand,
collapse the high and low power phases into a single phasgislihecause BBVs identify
several different large-scale control flow phases. Clusgestarts to overlap these based
on theirL1-distances, and these result in combining the high and laggs of power. The
three repetitive control flow phases with effectively same@r behavior are seen as the
more different phases by BBVs. Fhir= 3, BBV phases still show more sensitivity to the

three repetitive tasks of medium power phase and assigntihémee different phases. In
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this case, all high, low and parts of medium power phasessaigreed to same phase (“1”)
by BBVs. In contrast, PMCs show very good fidelity. They sucadlsfdentify three
power regions and assign them to different phases.

This example demonstrates the clear impact of effectivatyesexecution on control-
flow-based phase characterization. Overall, both BBV and PM&s@s provide a good
account of application power phase behavior. PMCs usualiysh better mapping to
power behavior due to both their proximity to the actual fldyower in the processor, as

well as due to these discussed sources of disagreementdrmepoeer and code signatures.

3.9 Related Work

A number of previous works investigated program phase hehawluding simulation-
based [35, 41, 101, 151, 152, 153] and runtime [128, 132, 183] program profiling
techniques to identify phase behavior. These works spars#ivareas such as identifying
representative simulation point samples, predicting ghagenerating reduced datasets,
and managing configurable hardware with program signatukésst of these research
studies focus on either control flow or performance charesties of applications. lyer and
Marculescu [90], Dhodapkar and Smith [41], Sherwood etl&2] 153], Huang et al. [75],
and Lau et al. [109] analyze control flow behavior of applmag via different features
such as subroutines, working sets and basic block profilegsd studies use simulation
based methods to identify application phases for sumnmarigerformance and architec-
tural studies. Patil et al. also look at control flow phasethweal-system experiments
[137].

Cook et al. show the repetitive performance phase charsiitsrbf different applica-
tions using simulations [35]. Todi [169], Weissel and Bedl¢$76], and Duesterwald et al.
[44] utilize performance counters to identify performamhesed phases. They use perfor-
mance statistics to guide dynamic optimizations and menedlictions. These works do

not consider the power behavior of applications. Chang efglly process power profiling
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to determine software power breakdowns [29]. Hu et al. dlese compile time methodol-
ogy to find basic block phases at runtime for power studief [[1&s study looks at control
flow information from a compiler perspective.

There are also previous studies that compare or evaluate piteracterization tech-
niques. Dhodapkar and Smith perform a comparison betwdtmatit control flow tech-
niques [40]. Annavaram et al. sample the program counterpasxy to control flow and
show the correlations between code signatures and apphgagrformance [6]. Lau et al.
also look at control flow and performance of applicationsibkihg program counter to
procedures and loops of applications via profiling [108].cemparison, our work looks
at the direct comparison of two phase characterizatiorufeat BBVs and PMCs, with

runtime measurement feedback for real power evaluationrealaystem.

3.10 Summary

This chapter presented a power phase analysis methodadogghéracterizing program
power behavior based on power vectors sampled at prograimmeuwith hardware perfor-
mance counters. We used performance-counter-based vézidentify execution regions
with similar power behavior. Based on this similarity infation, we could represent ap-
plication power behavior with a small set of power phases dha acquired via different
clustering approaches. Our experiments demonstratethibsd sets of power phases cap-
ture workload power variations within 5% of actual behavide have developed an exper-
imental framework for comparing both control-flow-based gerformance-monitoring-
based phase techniques. Our results showed that both kefiotvand performance fea-
tures provide useful hints to power phase behavior. Howemegeneral, performance-
counter-based phase tracking leads to approximately 38%gdewer characterization er-
rors than code signatures.

Overall, the results presented here show a roadmap to ieéfgmiwer phase analysis

in real systems. As our power phase analysis is based on aystaim, it can readily be
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used in architecture and systems research, and can pragrdicsint insights for dynamic

management and workload characterization techniques.
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Chapter 4

Detecting Repetitive Phase Patterns with Real-System

Variability

The previous chapters have focused on the characterizaitiorkload phases, and how
we can use these phases to efficiently represent appligader behavior. In particular,
Chapter 2 demonstrated that performance monitoring eventsde useful information
about the power consumption of processors. Chapter 3 shdveedsimilarity analysis
methods that are applied to these events characterize #se jplehavior in the power con-
sumption of computing systems. However, to be able to emlsyphase information
in real-system dynamic management studies, it is also itapbto develop methods that
identify the repetitive phase behavior of applications. M/prior chapters have focused
on characterization of this phase behavior, this chaptetipally focuses on methods for
detecting repetitive phases in application execution ahggstems. It describes and evalu-
ates a new framework that helps extract the recurrent irddom in phase behavior despite
system-induced variability effects.

Most of the recent phase tracking work has focused on simualatudies. There the
largely repeatable and deterministic behavior means thedgs can stand out quite clearly.
In order to move towards using on-the-fly phase analysisdiyoa real systems, it is
important to understand how system effects manifest thimesén the observed phases.

Recent work shows the degree of time and space variabilithleig real systems that is
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generally not captured in simulations [2, 116]. This vailigbcan stem from changes in
system state that can alter cache, TLB and 1/0O behaviorsysalls or interrupts, result-
ing in noticeably different timing and power/performanahhbvior. This work discusses
the repeatability of phase extraction experiments fromtorun on a real system, and
demonstrates the extent and type of alterations an applicean experience in different
experiments. It categorizes these alterationnas shiftstime dilations andphase muta-
tions as well as transitionglitchesandgradients This work proposes a transition-based
phase characterization scheme and then develops andtegaffactive methods for recog-
nizing phases under these alterations. A step-by-stepeplasgnition system tests these
proposed techniques on several SPEC2000 benchmarks ancboatesktop applications.
There are four primary contributions of this work. Firstistichapter presents a tax-
onomy of real system effects on phase behavior based on plicappn measurements.
Second, it proposes a transition-based phase charattanitaat proves to be more effec-
tive in phase detection under variability. Third, it pretseam complete flow of methods to
recognize phases that are resilient to variability and $aqeffects. Fourth, it provides
a quantitative evaluation of these techniques on a varigdhgnchmarks and demonstrates

their effectiveness in phase recognition.

4.1 Real-System Variability

In order for a phase technique to be applicable on a realrsys$ite phase characterizations
of applications should lead to similar classifications asrdifferent runs. In most cases,
we expect that the phases of two runs of the same applicdtmridsbe much more similar
than that of two different applications. This section présahe extent of system-induced
variability in real, measured application behavior andrshbow this variability is reflected

in the corresponding phase sequences.
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4.1.1 Variability Effects on Application Behavior

Applications exhibit two types of variability on a real sgst across multiple runs. First,
they show slightly different instantaneous behaviors @irtbharacteristic metrics, such as
IPC, miss rates and power dissipation. Therefore, at anyfgpme instance, these values
deviate between runs. Second, following from this, the iappbns show different timing
behavior. This results in deviations in both total runtimne & the duration of each phase.

To quantify these two forms of variability, we collect dagdated to characteristic met-
rics and timing behavior of applications for five differennhs on the same system. In all
the experiments, the benchmarks are run to completion witdreénce datasets. After data
collection, we align the traces of five runs such that all hlxgesame first transition from
idle to active phase. The first form of variability is obseaiva the individual measured
metrics at each time sample. To show the second form of vhtyabdifferent timing
behavior—we specify 3 execution checkpoints for each apptin. We measure how long
each run required to reach these points, starting from teetadactive transition common
reference.

Figure 4.1 demonstrates an example of the observed vaiydbil the gcc benchmark.
The leftmost graph shows the measured power variabilitghEiane sample includes the
average power observed across all runs as well as the rangs@fved power values in all
five runs. The rightmost graph shows the application’s tirmueability at the three check-
points. Each checkpoint shows the average time, and thenmsaxiand minimum time
elapsed until the checkpoint over the five runs. It also shbesverage power behavior at
these regions for reference.

All benchmarks exhibit some level of both metric and timaadaility. The benchmarks
exhibit time variabilities on the order of few seconds. TVasiability is a fundamental as-
pect of real-system behavior, and is neither a side-effemiiigphase analysis methodology,
nor can it be diminished with finer data sampling. Moreovergc@amputing systems move

towards higher layers of control with hypervisors and \attanachines, managed code, and
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Figure 4.1: Measured time and metric variability in fee benchmark.

runtime systems more sources of system variability aredhiced into application execu-
tion. In general, all applications result in visually siaripower and performance behavior
across different runs. However, some variability alwayistexn both characteristic metrics

and runtime.
4.1.2 Variability Effects on Observed Phase Patterns

Phase analysis is inherently about gauging similarity assimilarity of sampled data over
time. To gauge the similarity of two vector datapoints gegkddoy runtime PMC sampling,
we use the composite similarity metric given in Equation. 3Qur starting point in this
work is a value-based phase clustering method that we hatlimg®evious chapters. In
this method, we apply a set of thresholds to this similarigtno to cluster sampled data
into phases. We label encountered phases alphanumerstaliing from ‘A’ in each case.
We call this phase representativalue-Based Phas€¥ BPs), where different observed
phases are given different labels (phase IDs).

Although the qualitative visual behavior of a benchmarkfisropreserved across mul-
tiple real-system runs, differences in phase assignmecis @ue to inter-run variability.
Even small variations can lead to the different interpretedf a phase change, thus chang-
ing the phase assignments and sequence information tleat$olin addition, the durations
of an application’s observable phases are not identicabiwdiso impedes exact runtime-
based phase tracking techniques.

Figure 4.2 gives examples of how variability affects phagdere, we usgoint his-
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Figure 4.2: Joint histograms of phase distributions for $@parate runs of thgec bench-
mark. (a) An example histogram in the case of no variabilig. (repeatable simulations).
(b) The actual variability in phase behavior observed ihsgatem runs. The letters at the
top and left-hand side of the matrix plots are the phasedabel
togramsto illustrate these effects. Again with tigec benchmark as an example, we use
the value-based approach to split differgot runs intoV BPs. We then time-align these
runs with respect to the first phase transition. The joirtbigisamh of two phase sequences
is a matrix, where entria(X,Y) shows how many times runl was assigned to pXasben
run2 was assigned to phasdor the same data sample. The plots show the intensity of this
matrix, where brighter regions correspond to higher nunoberatches and darker regions
show poor matches. The x and y axes on the plots show the pizeds bf the two runs.

Figure 4.2(a) shows the ideal matching in the case of perépaatability (i.e., a sim-
ulation environment). In this cash,is only a diagonal matrix, where the diagonal values
differ depending on how often each phase is encounteredglapplication runtime. If
runl is in phase ‘C’ at timg, then run2 is also in phase ‘C’ at Figure 4.2(b) shows the
joint histograms resulting from real-system rungjot. In these cases, the phase assign-
ments are far from ideal. The phase assignments show a lanegds indicating significant
mismatches.

In summary, the observable across-run variability seerpplieation power and time
behavior also exists in the value-based phase charadtengaf applications. This vari-

ability causes different runs of the same applications toHagacterized by different phase
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sequences; this conceals the underlying recurrent phaseiobe
4.1.3 Taxonomy of Phase Transformations

Figure 4.2 highlights the fact that direct, brute force cangons of phase traces are inef-
fective in conveying repetitive behavior. Before discugdime proposed methods, Figure
4.3 first presents a taxonomy of the effects of variabilitypbrases. The figure illustrates
these effects and resulting phase transformations. It stiosir cumulative effect on a hy-
pothetical phase distribution, shown as the phase sequénBeC, B” where the length of
each labeled block indicates the duration of the correspgnzhase. The first effecttime
shiftsin phase sequences—will always occur, as the processorr e can be consid-
ered as a stream of data with no specific beginning and endstéhpoint merely depends
on where we start logging the sampled power information. Jéwmond effectiime dila-
tions, inevitably results from indeterministic system effect$ie length of a specific task
depends on the state of the machine, the available localitpber of page faults, and load

of the systemGlitchesoccur when brief snippets of isolated behavior occur in sdmé

not all, runs. Finallymutationsare cases where a different phase name is seen in a run;

this can be either due simply to labeling issues or it can leetdwariable behavior in the

application during different runs.

Ideal A B C B
Shift A B C B
Time Dilation A B C B
Glitch A|BC B D B
Mutation A|BC B D E

Figure 4.3: Effects of real system behavior variability @plkcation phase distribution.

The following sections tackle each alteration in this teoroy and propose a series of
techniques for recovering the phase behavior such thaefieated runs of an application

are recognized as similar.
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4.2 Transition-Oriented Phases

This Section proposes a representation for applicatiosghbehavior that is an alternative
to the prior value-based phaséRP) approach. The goal of this representation is to be
more resilient to real-system variations. We suggest ingcghase transitions, instead of
tracking phases themselves, and show that transitions@eeffective in detecting recur-
rent workload behavior. We identify phase transitions atimme by comparing the current
and the previous sample vector, and by evaluating theitdaiity based on Equation 3.3.
This transition-based representation of phase behawi@gmparison to the origin& BP
representation, is much more successful in identifyingog@m from its phase signature
and in rejecting other application signatures based oretted features.

One way to evaluate our claim—that tracking transitionseiad of values is more suc-
cessful in detecting recurrent behavior—is by computingedations. If two phase traces
vary together, they have a high correlation coefficient. réfae, one would expect high
correlations between two runs of the same application, anchrfower correlations among
different applications.

To perform this comparison, we enumerdi®Psequences with positive integers, where
phase numbers are assigned to encountered different ghaeeseasing order. This cor-
responds to the original value-based representation.neéagame stream, we can also rep-
resent the transition information as a binary stream, as¥igl to phase transitions and 0
to stable regions. This is our initial proposed transitoi@sed phasél BP) representation.
We call these binary sequendegial Transitions(T BRyjt).

Figure 4.4 presents the resulting correlation coefficiéotswo different cases. In
both plots, the lighter lines plot the correlation coeffitge for the originaV BP traces.
The darker lines show the results for the transiti®mBR,;;) traces. Figure 4.4(a) shows
the “matching” case for two separate runsgot. Here, since we are correlating phase
sequences for two runs of the same program, a good phasarassigwill show a high

correlation spike when the two runs are properly time-adyn Figure 4.4(b) shows the
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Figure 4.4: Correlation coefficients for a range of shiftsametn twodifferentgcc runs (a)
and separatgcc andequake runs (b) (y axis shows the computed correlation coefficient
values).

“mismatch” case withgcc and equake. Here, we are correlating two unrelated phase
sequences, so we do not expect a high spike.

In the correlation plots, we show the results for a rangeroétshifts to consider the
probable lag between two runs. For instance, if two tracesd@ntical, one would expect
a peak (1) imample shift= 0. If there is only a lag ok samples between traces, the peak
will move to+x or —x.

Figure 4.4 reveals that correlating value-based phasesegqa does not produce a good
discrimination among benchmark signatures. In compayis@msitions provide much
more useful results. Notably, we can distinctly see a pedke BR,i; gcc vs. gcc case
with a time-shift of 6 samples, while there is no observaldakpfromV BP correlations.
Furthermore, correlating the transition tracegyof andequake gives very low correla-
tions as expected. TReEBP correlations are also lower than thgac-gcc counterpart, but
transitions perform observably better, with roughly O etation.

This distinguishable peak in the correlation trace for thagition-based BR,j; repre-
sentation proves to be very useful in identifying benchradmm their signatures. Starting
with the next section, we look into these initial transisan more detail, demonstrating
how we can further improve and use this information to mapglieation signatures in the

face of real workload variability.
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4.3 Techniques for Detecting Repetitive Phases with Variability

4.3.1 Removing Sampling Effects on Transitions with Glitch ad Gradient Filtering

Our starting point for defining phase transitions was to $& they are sample points
where the next interval’s phase is different from the curprase. These transitions can
be identified on-the-fly by evaluating the similarity metimcEquation 3.3 for the current
and previous power vector and comparing against a sinyilmeshold. While Figure 4.4
illustrates that thi§ BR,i; approach is already useful for phase detection, we improve o
here. In particular, we note that sampling and stabilitg@f impede the effectiveness of
transitions for representing phase behavior.

We characterize these effectsg#chesandgradients(Figure 4.5). Section 4.1.3 has
provided a specific example of how glitches impact phasewehd-ollowing the stability
definitions of Dhodapkar and Smith [40], we defingléch as one or more consecutive
unstable sampling intervals, where theforeand after of the glitch belong to the same
stable phase. Because glitches are short and unstablesitigge sample phase information
is not likely to be useful for dynamic management techniguiegradientis one or more
consecutive unstable samples, wheretbreandafter of the gradient belong to different
stable phases. These regions correspond to an actual phasgian. However, some
phase transitions do not happen instantaneously in a ssaghpling interval, but instead
can actually have multiple samples along the transitiodigrds.

In the context of our work, glitches are false transitiond gnadients are duplicated
transitions. To remove these spurious effects, we proposara intelligent transition anal-
ysis that works to filter the transitions deemed to be gliscived gradients. I®litch/Gra-
dient Filtering extraneous transitions corresponding to glitches ameadied. Single or
multi-cycle gradients en route to a new phase are conventeda single stable phase
change.

Figure 4.5 shows the generic scenarios for the glitches eamtiants. The upper rows
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GLITCHES:

TBPinit:

TBPge: 00000000000000 000000000000 000000000000000000

GRADIENTS:

TBPinit:

TBPge: 00001000000000 000010000000 000001000000000000

Figure 4.5: Initial transitionsT BRt, with different types of glitches and gradients, and
refined transitionsT BRyg, after glitch/gradient filtering.

depict the initialT BRyi; traces. ("1’ denotes a transition and '0’ denotes stahjlifyhe
lower rows denote the refined transition traces after weyappt glitch/gradient filtering.
We refer to these transitions with glitch/gradient remaskfined transitionor T BRyg.

Our filter implementation identifies each initial transitiby monitoring the phase
stream, and forms the initial binary representafiddR,i;. From theT BR,; stream, we
constructT BRyg in the following manner. A variable-size window keeps tratkhe first
transition in a burst of transitions. After the burst end#hva last transition to a stable re-
gion, the filter compares the stable regions before the faasttion and after the last one.
Then, it identifies the bursts as either glitches—if the akiea regions before and after
the burst are similar—or gradients—if the two regions hatfernt characteristics. Each
burst of transitions is replaced by either no transitionsthey are glitches—or a single
transition—if they form a gradient. We do not allow multiglensecutive transitions in the
refinedT BRyg signature and all gradients have a prior transition adjetoethem.

Figure 4.6 shows the application of glitch/gradient filbgrto thegcc benchmark. The
figure shows the refined transitions, as well as the regiomstiited as glitches and gra-
dients, for a zoomed-in execution region. Koc, the initial 212 transitions reduce to 82

once glitch/gradient filtering is applied.

83



SSW Glitches %% Gradients =——Power =#=Transitions

\_

/\fékj

p
7
Z
7
4

SONNNANANNANN

%
Z
é
A

I/

Power [W]
w
al

NANNAAAAA NN AN RN

]
222 A
NN

16.28

N
o
o
©

25.08 29.48 33.88 38.28
Time [s]

Figure 4.6: Transitions, glitches and gradientsgior after glitch/gradient filtering.

4.3.2 Discerning Phase Behavior with Time Shifts

Initially we have quantitatively shown the quality of maitefp with transitions using com-
puted correlation coefficients for a range of shifts. Howgthes method is computationally
expensive and not suitable for runtime use. As the genetedadition features now con-
tain simple binary information, a simpler metric to use i8sg-correlation. Correlators can
be easily implemented in hardware and can be applied canigiy to the incoming data
stream online.

Figures 4.7 and 4.8 demonstrate again the “matching” angrfraich” cases. In the
first case, we show how well a nayec run can be matched to a previogsc signature.

In the second case, we reguake and examine the severity of a false alarm. We show the
results for refined{ BRyg) and initial (T BRyit) transitions in both cases.

For the twogcc runs, refined transitions show a significant peak, provingadgnatch
between the two signatures for a shift of 13 samples.georandequake, the cross cor-
relation of transitions produces no significant peak, wlsafgests the signatures do not
match. Thus, we can see the spike behavior in case of signatatch is retained with

refined transitions and with the application of cross catiehs.
4.3.3 Handling Time Dilations with Near-Neighbor Blurring

In addition to glitches and gradients, time dilation betweens is a common problem.

Recognizing the similarity of an original phase trace witlnaetdilated one is a problem
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Figure 4.7: Matching of transition signatures for tgex runs.
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Figure 4.8: Matching oéquake transition signatures tgcc.

with similarities to many other research domains. Exampiekide matching a warped
image in image recognition or pitch tracking in humming igaition [163]. These high-
level methods can afford high complexity and they can stast hbraries of training data.
In contrast, our goal is to implement an approach with singpleelators and table lookup
on a small set of recent signatures.

Table 4.1 demonstrates the potential problems that tina¢ialils pose on the transition
guided phase detection scheme. Table 4.1(a) shows the fatginimg of processed transi-

tion information (lower trace) to a previous baseline stgna(upper trace) in the absence

85



a. No Dilation b. With Dilation
00100101000010 00100101000010
00100100000010 01010000000010
v/ (match) x (mismatch)

Table 4.1: Effect of time dilations in detecting recurreahbvior.

of time dilations. In Table 4.1(b) the lower transition teais dilated, which shows the
negative effect of time dilations on detecting recurrertayéor.

This matching problem results from considering transiiigiormation to be sharply
associated with a particular deterministic sample poirtilevthe actual transition times
in each run are instead probabilistic with a modest distidouaround an average. (See
Figure 4.1(b) for examples.) To remedy this problem, we psepnear-neighbor blurring
solution, which is fundamentally similar to blurring imageges for image matching. With
near-neighbor blurring, we consider transitions as distions along the time axis centered
at their encountered locations. With this probabilistip@ach, subtle time dilations are
not penalized altogether, but instead are scaled accotdittgeir proximity to the exact

location.

Tolerance:We use this metric to define the “spread” of the distributiamagsume around
an encountered transition time point. We define this in teomsamples. For example,
a tolerance ok samples means that a transition at time samjp¢econsidered to have a
distribution in the sample range ftf— x,t + X].

In our implementation, we choose a relatively primitive rabavhere we scale the near
neighbors of transitions linearly from 1 to 0, based on theseim sample tolerance. Further
research could investigate other suitable distributionsharacterize phase transitions. To
apply near-neighbor blurring, the baseline refined sigea(liBRyg) is altered from its
raw form to generate the distributions. In our evaluatiomsexperiment with a range of
tolerances from 0 to 10 samples. The second T8R4 stream, on the other hand, is not
altered to avoid the runtime cost. Table 4.2 shows how thenplaof Table 4.1 is altered

for a tolerance of 4 samples. With near-neighbor blurrihg, previous mismatch due to
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Baseline (refined): 0 0 1 0 0 1 0 1 0 0 0 0 1 0

Baseline (near-neighbor): 0.6 :0.8° 1.0 :08: 08 10 08 10 08 0.6 06 08 :1.0: 08
New run with time dilation: 0 #1: 0 i1} 0 0 0 0 0 0 0 0 i1: 0
vV (match)

Table 4.2: Detection with near-neighbor blurring undergidaation.

time dilations is now correctly detected as a strong match.

Applying near-neighbor blurring t@ BRyg results in similar cross correlations as in
Figures 4.7 and 4.8. For the remainder of this chapter, ver tefl BR,g augmented with
near-neighbor blurring aBBRygn. In the following section, we quantify these results for

our overall algorithm, using a quality metric we refer to lasrmatching score

4.3.4 Quantifying Signature Matching with Matching Score

Matching Score:In order to quantify the success of a matching, we definarthiching
scoremetric, m, which provides a measure for the strength of matching betvieo sig-
natures. Our goodness measure is the strength of the cvosdation peak at the best
alignment. Therefore, we defima as the ratio of best match value to the average of its
closest 10 best matchings. As this value will always be grehan 1, we subtract 1 from
the final value to remove this offset.

For our previous experiments with twgzc runs—thematchingcase—the matching
scores for initial transition$ BR,jt, refined transition§ BRyg and near-neighborEBRygn
are 0.22, 0.55 and 0.32 respectively. Corresponding vatrabdgcc vs.equake compa-
rison—themismatchcase—are 0.054, 0.16 and 0.036. Therefdoi@Ryy performs best for
signature matching as it produces the highest matching feiween the two runs gtc.
On the other handl BRygn performs significantly superior for signature rejectiontdsas

a much lower matching score for the signaturegaaf andequake.
4.3.5 Summary of Methods

Before presenting the general quantitative results of @unsition-guided recurrent phase

detection method, Figure 4.9 provides a brief summary oafi@ied techniques. First, we
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Benchmark run #1 Benchmark run #2

<?’{ Sample PMCs to form 12D vectors }:>

Vector stream #1 Vector stream #2

<::{ Identify Transitions }r:>

A A

TBP,. #1 TBP,,. #2
<::{ Apply glitch/gradient filtering }::{>
TBP,, #1 TBP,, #2

<::{ Apply near-neighbor blurring
TBP,_, #1

ggN

\;’{ Apply cross correlation }

Match = Peak at best alignment
Mismatch > No observable peak

Figure 4.9: Flow of our methods.

sample PMCs during application runtime and represent beadhexecution as a stream
of vectors. Then, evaluating the similarity between eaahecu and previous vector sam-
ple, we identify initial transitions. This process congetite application execution into
the binary strean BRyji; (Section 4.2). Next, we apply glitch/gradient filtering @Ryt
streams and convert them into refined transitidnBRyy (Section 4.3.1). In addition, for
the first run, we apply near-neighbor blurring T8Ryy and generate the baseline signa-
ture TBRygn (Section 4.3.3). After this point, any newly observeBRyg trace is cross-
correlated with this baselinEBRygy to detect a signature match (Section 4.3.2). A match
is determined based on the strength of an observed peak andbg-correlation sequence,

which we quantify with our matching score metric (Sectiod.4).

4.4 Phase Detection Results

This section presents the phase detection results for &speof benchmarks that include

SPEC and other mainstream applications. We choose a sUlSBE&L benchmarks that
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bzip2® | equake® | gap® | gcc® | gzip® | mcf©@ |vortex® |convert )| lame®
bzip2 0.44 0.05 0.07 0.05 0.15 0.18 0.08 0.09 0.15
equake 0.15 0.39 0.28 0.06 0.26 0.25 0.09 0.04 0.08
gap 0.20 0.22 0.79 0.07 0.10 0.33 0.04 0.05 0.12
gcc 0.05 0.04 0.05 0.19 0.03 0.05 0.16 0.04 0.12
gzip 0.10 0.10 0.19 0.05 1.08 0.16 0.10 0.03 0.07
mcf 0.18 0.18 0.23 0.04 0.16 6.14 0.17 0.08 0.08
vortex 0.23 0.10 0.12 0.01 0.11 0.08 1.93 0.03 0.05
convert 0.21 0.17 0.26 0.06 0.14 0.25 0.09 0.22 0.13
lame 0.12 0.11 0.12 0.04 0.13 0.20 0.06 0.02 0.21

Table 4.3: Matching scores for different applications. Benarks in each column repre-
sent the base signatures to which we apply near-neighbatirigu The matching scores
represent how well the refined phase transition signaturédseorow benchmarks match
to these base signatures. The superscripts in parenthesetorbenchmarks show the
optimum tolerance.

exhibit distinct phases in terms of power and performanceioileehavior. Most of these
benchmarks have high metric variability with varying tréiosis across different runs. Ad-
ditional non-SPEC applications offer interesting phaseatteristicsConvert is a general
file conversion program that converts a large postscripiritie pdf. Convert shows sig-
nificant phases depending on the contents of the input fileus&ehd ame MP3 encoder
to encode a wave file under varying quality settings. The pdewels increase with finer
recurrent phases at higher quality settings.

In our experiments, we run each application twice on our messent setup. During
the first run, we collect the phase transition informatiod apply glitch/gradient removal
as they are identified. In our analysis, we consider a rangeaf-neighbor tolerances as
well as the refined transition signatures—i.e., the outpidditch/gradient filtering without
near-neighbor blurring. In the second run, we only geneasdteed transitions without any
blurring.

Table 4.3 presents the matching scores for the experimegplication pairs. The
diagonal entries show the matching scores for the two runBeosame application—the

matchingcases. The non-diagonal entries show the matching sconeedretwo different

applications—thanismatchcases. The baseline signatures correspond to the columns of
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Table 4.3. The transitions for the second runs are repredentthe rows of the table.
Therefore, the matching scores read along a column show heliavibaseline signature
can characterize a repeatable application phase behdaiole 4.3 presents the matching
scores corresponding to the tolerances that maximize thehimg score ratio to the highest
mismatch score.

As an example, fogzi p, the baseline signature has near-neighbor blurring with-a t
erance of 1 samples as indicated by the value in parenth&ssgding theyzi p column
shows that a second run gti p produces a matching score of 1.08 to the basejme
signature. However, the same baseline signature produseels lmwer matching scores for
the runs of other benchmarks, with an average of 0.13. Ambeget other benchmarks,
equake is the closest match tgzi p with a matching score of 0.26. This is significantly
lower, however, thamgzi p's matching score of 1.08. Thus, our transition-based sehem
successfully detects the second rungoi p from its transition signature, while strongly
rejecting signatures of the other benchmarks. In genenaalfthe benchmarks, we see the
same trends. In all cases, the highest matching scoresporré to the second runs of the
same application (diagonal entries), while the matchirges for different applications
(non-diagonal entries) are significantly lower.

Most benchmarks achieve their best matching scores witlv &feels of tolerance (1-3
samples) due to their small dilation magnitudes. The ontepkon isconvert with an
optimal tolerance of 7. Asonvert has only 17 transitions in its signature, each extra hit in
the spread has greater relative impact, thus favoring higtherances. The zero tolerance
case is equivalent to thEBRyg signatures, without any blurring. Only focf is the best
matching condition achieved ByBRyg.

In general, the outcomes of our detection method are verfylusé/e can detect spe-
cific recurrent phase sequences under different kinds adhisity, with a moderately sim-
ple technique that can be implemented at runtime with ndxddigoverhead. In most cases,

considering transitions as distributions via near-negghddurring improves our results fur-
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ther, with the choice of small tolerance levels.
4.4.1 Receiver Operating Characteristics

As with any detection scheme, our matching scores are alseepio missesand false
alarmsfor a particulardetection thresholdThat is, for all applications, a matching score
above this single detection threshold is categorized a&’aFor instance, for the runtime
detection scheme of Table 4.3, if we use a threshold of 0.£9vauld be able to identify
all the hits. However, out of the 72 possible mismatches, welevhave also detected 11 of
them as hits. Thus, this scenario would have a hit detectiobgbility of 1. However, this
would also incur dalse alarmprobability of 11/72~ 15.3%. If we increase the detection
threshold, the probability of false alarms diminish, whhés, in turn means some hits are
missed It is common practice in pattern classification to demaistthis effect in terms
of Receiver Operator Characterist{®OC) curves. The detection function is graphed as
the hit probability as a function of the false alarm rate [4Rigure 4.10 shows the ROC
curves for our detection technique. To present the proitiakil the axes are shown from
0 to 1. However, for absolute measures, 1 onhi@xis represents 9 detected hits for the
9 benchmarks; and 1 in tHalse alarmaxis represents 72 falsely detected hits for the 72
possible different benchmark combinations. The interiaedralues are linearly scaled for
both axes. Each ROC curve in the figure corresponddtBRygn with a specific tolerance.
For each curve we first compute the matching score matrixlasito Table 4.3, across all
the benchmarks for the current tolerance value. We then atertpe hit and false alarm
probabilities for several detection thresholds with siepsof 0.05 for the whole matching
score range 0-6.15.

In the ROC curves, we see that our detection scheme achigyedhit probabilities
with small false alarm rates. Among the applied tolerangel$e T BRygn with a sample
tolerance of 1 performs best, which is followed by toleraai2 and 3. The zero tolerance
case, which correspondsTdRyg, with no distribution, performs distinctly worse for signa

rejection. This proves the effectiveness of our near-rigglurring technique. Our best
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Figure 4.10: Receiver Operating Characteristic (ROC) curve$ BRyg\ with 0-10 range
of tolerances.

detection method achieves 100% hit detection with less S8aralse alarms.
4.4.2 Comparison of Transition-Guided Approach to Value-Baed Phases

Figure 4.11 provides a final comparison of detection sucbesseen the original value-
based phase representatid@BPs), refined transitionsT(BRyg), and final near-neighbor
blurred transitionsTBRygN). For this comparison, the figure shows the ratio of the match
ing score between two runs of the same application (matatasg) to the highest matching
score among all the different applications (worst mismata$e) for the same application
(i.e.,vortex for bzi p2). Consequently, this quantifies how well each represemates
tects a matching signature, while rejecting other unmatghkignatures. The figure shows
the individual results and the average for the experimelp¢edthmarks. Below the “break-
even” line atratio = 1, a technique finds another application signature as agtbetatch”

for the current benchmark. Ratios significantly higher thaedresent accurate signature
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Figure 4.11: Improvement in phase detection efficiency wahsition-based approach.

detection.

In all cases, transition based methods perform much bdtéer\tBPs. In all cases
exceptef , TBRygn shows significant improvement ov@BRyg. Forntf, both transition
techniques perform equally well, as the best tolerancedbris 0. On average, our tran-
sition based, near-neighbor blurring technique providéda@d improvement in recurrent

behavior detection under variability, over the origindinabased phases.

4.5 Related Work

Prior phase detection work operates at various domains ramaiigrities using a variety of
characteristic metrics to track phases. Dhodapkar andndail{, Sherwood et al. [152,
153], Lau et al. [109], lyer and Marculescu [90], and Huanglef75] track the executed
code characteristics such as basic blocks and subroutiméoldetect phases. All these
works are based on cycle-level simulations and, althougfulior guiding representative
simulation and architectural studies, they do not reflezttailable real-system variability.
Some recent research also looks at executed code chastctewith real-system ex-
periments. Patil et al. [137] and Lau et al. [108] use dynamstrumentation to identify
basic block based phases. Hu et al. [72] discuss compileitistieimentation to find basic
block phases at runtime for power studies. Annavaram e6hbgply program counter
sampling to find similar execution paths and investigatégoerance behavior similarity in

these regions. These approaches also account for realysyatiability. However, they do
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not consider detection of recurrent phase sequence sigsatu

Another line of research explores performance behaviopl@ase tracking, using met-
rics such as IPC and memory references. Cook et al. [35] fgleatecution phases based
on deterministic simulations. Todi [169] and Weissel anddel [176] use runtime per-
formance counter information on different platforms forrload characterization and re-
active dynamic optimizations. Chang et al. [29] use a powefilprg method triggered
by consumed energy quanta to attribute software energyottepses. Duesterwald et al.
[44] also use performance counters to predict metrics sadP@ and L1 misses. Their
work uses previous short-term sample history to predicabieh in the next sampling pe-
riod. These run-time techniques also analyze applicatemabior under variability, but
they do not aim to detect large-scale recurrent phase segsie8hen et al. [150] also look
at detecting recurrent phases by observing reuse distattgns. They use detailed pro-
gram profiling and instrumentation to detect phases, whilenmrk tries to identify phase

transitions from runtime power vectors.

4.6 Summary

This chapter presented a novel approach to phase behavemtida that is resilient to
real-system variability effects. Based on real-system oreasents, we categorized the
variability effects and provided methods to address théstrtions of phase behavior.
We proposed dransition-orientedphase representation and demonstrated its robustness
against phase mutations and shifts with correlations. Weldpedglitch/gradient filtering
to refine phase transitions from sampling effects and nsed-neighbor blurringo handle
observed moderate time dilations. By carefully discrimimgthese variability effects and
application specific phase information, we were able todetcurrent phase sequences
prone to several real world transformations.

Overall, the results of this chapter show that this fullyesmiatable flow of techniques

can detect recurrent application phase signatures witld goouracy for SPEC and other
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benchmarks. Our best detection scheme, near-neighbeoingjuvith a tolerance of 1 sam-
ple, was able to detect all signatures with a false alarmaiiiby less than 5%. In compar-
ison to original value-based phase representation, transiwith near-neighbor blurring
performed on average 6X better in detecting recurrent egipdin signatures, while reject-
ing unmatching signatures.

This research has importance both in characterizing resésn variability effects and
in addressing phase detection despite this variabilitypiAese-adaptive management tech-
niques become available in the emerging architecturesyamtems, such variation-resilient

phase detection techniques are essential for real-systeamdc management.
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Chapter 5

Runtime Phase Tracking and Phase-Driven Dy-

namic Management

The increasing complexity and power demand of processonslata aggressive dynamic
power management techniques that can adaptively tune gg@cexecution to the needs
of running applications. As the previous chapters haveudised, these techniques ben-
efit extensively from application phase information thah ganpoint execution regions
with different characteristics. Recognizing these phasethe-fly enables various dy-
namic optimizations such as hardware reconfigurationsamtyn voltage and frequency
scaling (DVFS), thermal management and dynamic hotcodenggaitions [3, 11, 14, 41,
76, 90, 155, 179]. In recent years, studies have demongtvareous approaches to char-
acterize and detect application phase behavior [6, 41, 871B6]. Some of these stud-
ies have also discussed methods to predict future applicakecution characteristics
[44, 89, 150, 153, 186]. However, to be able to utilize phaermation effectively on
a running system, a general dynamic phase prediction framkemvust seamlessly operate
on-the-fly during workload execution. Moreover, it is eds#diio provide a useful and clear
binding between application phase monitoring and presh¢tand dynamic management
opportunities, especially on real-system implementation

This chapter brings together the phase monitoring and tietgechniques discussed in

previous chapters and extends these to a a complete runyinaenic power management
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framework that is controlled by phase monitoring and prioiic Overall, the runtime
power and performance monitoring techniques discussed apt€h2 provide the foun-
dation of the deployed real-system infrastructure. Thesplanalysis methods of Chapter
3 are utilized as the generic baseline phase monitoringitgel. The impact of system
induced variations in workload behavior that are discussedhapter 4 guide the phase
definitions and prediction methodology presented in thagptér.

In particular, this chapter describes a fully-automategasnic phase prediction in-
frastructure deployed on a running mobile platform. It shalat aGlobal Phase History
Table (GPHT) predictor, inspired by a common branch predictohmégue, achieves su-
perior prediction accuracies compared to other approaditesGPHT predictor performs
accurate on-the-fly phase predictions for running appboatwithout any offline profiling
or any static or dynamic modifications to application executlow, and with negligible
overhead. This runtime phase prediction method can efedgtguide dynamic, on-the-fly
processor power management using DVFS as the underlyimgmealynamic power man-
agement technique [55]. Our dynamic phase predictor dffigieooperates with a DVFS
interface to adjust processor execution on-the-fly for mapd power/performance effi-
ciency. This GPHT-based dynamic power management imptbeesnergy-delay product
(EDP) in our deployed experimental system by more than 1584 methodology can be
used with different phase definitions that can be aimed girggdifferent purposes such as
bounding execution with performance degradation limite &valuate our methods on the
SPEC CPU2000 benchmark suite, with runtime monitoring upgrformance monitoring
counters (PMCs), and real power measurements with a datésdimgqu(DAQ) unit.

There are three primary contributions of this chapter.tFirpresents and evaluates a
live, runtime phase prediction methodology that can sesshteoperate on a real system
with no observable overheads. Second, it describes a ctemglal-system implementa-
tion on a deployed system. This implementation can automgiydunction during native

operation of the processor, without any profiling or statstiumentation of applications.
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Third, it demonstrates the application of the phase priedidnfrastructure to dynamic
power management using DVFS as an example technique. Aththus work discusses
specific phase definitions and power management techniguesyntime phase prediction
is a general framework. It can be applied to any feasible dietmof application phases
and to other dynamic management techniques, such as dytia@nmal management or

bounding power consumption.

5.1 Phases for Dynamic Management

The key motivation of this work is to develop a phase predittiechnique that can be
accurately applied at runtime application execution talguynamic power management.
This section explains our phase classification methodolelich is later used in the evalu-
ations. The fundamental purpose of phase characterizattorclassify application execu-
tion into similar regions of operation. This classificaticem be done via various features,
depending on the ease of monitoring and the goal of the applese analysis. Simi-
larly, how the observed features are classified into diffephases depends on the target
application. The previous chapters have defined phaseefirasent different power char-
acteristics of workloads. While these phases are usefuldoel power characterization,
they are not directly tied to a specific management actionth®@mther hand, this chapter
considers DVFS as the underlying management applicatidrdafines phases that reflect
the potential of different execution regions to be improlgdDVFS.

We rely on hardware performance monitoring counters (PMGgjack application
behavior. These counters can be configured to monitor erecwithout disrupting ex-
ecution flow. While Chapter 3 demonstrated that control flowrimfation is also useful
for tracking application phases, fine-grain runtime mamiig of control flow incurs sig-
nificant overheads for system-level management. Therefmeely only on PMC events
to monitor application characteristics. For system-lelygiamic management, we define

relatively coarse grained phases, on the order of millidnasiructions. This guarantees
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that monitoring of application behavior—and dynamic mamagnt responses—does not
lead to any observable overheads.

The phase classifications are constrained by two factorst, Bur experimental plat-
form, described in greater detail in Section 5.5, suppartsikaneous monitoring of 2
PMCs. Therefore, our classifications of application belragan only be based on two
configured counters. This leads to somewhat more resgiptase definitions than prior
chapters, where the experimental platform supported rmong of 18 simultaneous events.
The primary reason for this different experimental platfois that the previously used
experimental systems do not support DVFS. Second, we mroRMCs from within a
performance monitoring interrupt (PMI) routine. There&fowe need a simple classifica-
tion method to avoid violating interrupt timing constrardas well as to have negligible
performance overheads. In addition, one of the counterdchbe dedicated to monitor
micro-ops (Uops) retiredto trigger the PMI at specified instruction granulariti€Bhis
instruction-based phase tracking is motivated by the kditiya observations presented in
Chapter 4. While this approach induces significant restnstio performance monitoring,
it diminishes the impact of timing variations in observedthééor.

We draw from prior work for our choice of monitored PMC even®u et al. [179]
make use of event counter information to assign applicatatines to different DVFS set-
tings under a dynamic instrumentation framework [121]. yTtlefine the ratio omemory
bus transactionso Uops retiredas the measure of the “memory-boundedness” of an execu-
tion region, and use the ratio bfops retiredto instructions retiredas a proxy to represent
available “concurrent execution” in the same region. Thegsemetrics then determine the
available “CPU slack” in the application, which guides diffet DVFS settings. For our
experiments, we configure the remaining independent cotonteack memory bus transac-
tions. Thus, the ratio of the memory bus transactions to ap gfanularity represents the
memory-boundedness of each observed phase. This measefexiied to asMem/Uop’

in this chapter.
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In addition to Mem/Uop, the two counters, together with theetstamp counter (TSC),
also enable simultaneous monitoring of Uops per cycle (UR@B)¢ch can provide addi-
tional information on application behavior. These two nosthave already been used
cooperatively in other previous studies to guide dynamiggrananagement [176]. How-
ever, for phase prediction to perform reliably, dynamic agament actions should not
alter the workload characteristics they are tracking. @tise, recorded phase histories
will become obsolete at each change in the management sctfkmSection 5.4 demon-
strates, while Mem/Uop behavior is virtually invariant teetresponses of our dynamic
management technique, UPC can fluctuate strongly. Thexefor a simple, yet robust
phase classification that is largely invariant under dymrapawer management, we use
Mem/Uop to define application phases.

We classify Mem/Uop into different phases by observing hdteigent Mem/Uop rates
are assigned to different DVFS settings in prior work [17Bjat work examines memory
access rates and concurrency of different applicationsmigar experimental platform.
Then, it calculates the DVFS settings for different apgicraregions based on a perfor-
mance loss formulation. For our phase definitions, we catlrese measures to Mem/Uop
rates and available concurrency ranges for each DVFS get#s we do not have the
concurrency measure available for our runtime monitoring prediction, we base our
phase classifications on the derived Mem/Uop ranges for dhenon lowest observed
concurrency—i.elJops retired/instructions retired= 1. Based on this classification, Ta-
ble 5.1 defines 6 phase categories. Conceptually, Categonyelsponds to a highly CPU-
bound execution pattern that should be run as fast as pesaitd Category 6 corresponds
to a highly memory-bound phase, where the application casidmeficantly slowed down

to exploit available slack.
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Mem/Uop Phase #

< 0.005 1 (highly cpu-bound)
[0.005,0.010) 2

[0.010,0.015) 3

[0.015,0.020) 4

[0.020,0.030) 5

> 0.030 6 (highly memory-bound)

Table 5.1: Definition of phases based on Mem/Uop rates.

5.2 Predictability and Power Saving Potential Characteristics of Work-
loads

To assess the quality of a phase prediction scheme, it isratipe to first understand
the predictability characteristics of different applioas. Consider, for example, a very
stable application with very few changes in its phase bemaere, a simple predictor
that assumes the last observed behavior will continue,beilhighly accurate. However,
on benchmarks with high variability, where the observedspsachange rapidly, such an
approach will experience many mispredictions. Therefoeéore evaluating our phase pre-
diction method, this section discusses the intrinsic ptedility of different benchmarks.
Figure 5.1 shows the characteristics of different benckmigrtwo dimensions. The
dimension shows the variability of benchmarks, based onlblserved variation in Mem/Uop.
We represent this as the percentage of time Mem/Uop changestiman 0.005 between
two samples for a 100 million instruction sampling graniyaim hus, this dimension shows
how “unstable” the benchmark is. Benchmarks higher along theés represent cases with
temporally varying behavior, which cannot be predicted straightforward manner sim-
ply by assuming the benchmark will preserve its last obskbehavior. On the other hand,
benchmarks close to the x axis show almost completely “fla¢tation behavior, where
the application rarely changes its execution propertiesthése cases, simply assuming

the previous observed characteristics will prevail pen®as well as any other method. In
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Figure 5.1: Benchmark categories based on stability (inseshiMem/Uop variation be-
tween samples) and power saving potential (based on avitagreUop rates).

addition to these variability characteristics, thdimension of the figure shows the average
Mem/Uop rate for our applications. This shows how much pidépxists to slow down
the CPU frequency for each application. Thus, benchmarkbduto the right exhibit
higher power savings potential. There are a cluster of egipiins that lie very close to the
origin, showing small variations and power saving oppdties We do not label these in
the figure to avoid cluttering the image.

Based on these observed properties we categorize the berkshimta four quadrants.
Q1 benchmarks, which include many of the SPEC applicatiomsyery stable and show
little power saving opportunitieQ2 benchmarks show higher power saving potential and
little variability. These two categories are easily preéalide with simple phase predictors.
Q3 benchmarksppl u, equake andnygri d are the most interesting applications for our

research. These have both highly varying phase behaviohigidpower saving poten-
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tial. Q4 benchmarks also show high variability, but show relagiwsehaller power saving
opportunities. Because of their high variabiliQ3 andQ4 applications are not expected
to perform well under a simple phase prediction strategyydsaumes that the next phase

behavior will match the previously observed one.

5.3 Phase Prediction

This section first discusses different prediction optiams @escribes our chosen technique.
Afterwards, it presents our evaluations for phase preahiciiccuracy. For a phase predic-
tion technique that can perform well on all corners of benatinbbehavior, we propose a
Global Phase History Tabl@gPHT) predictor. There exist other prior history-basesbi-
tors that also seek to estimate application performanceactaistics [44, 89]. However,
predictors that simply rely on the statistical measuresast fpehavior, such as averages
or population counts, cannot perform well for highly vatebenchmarks. To demon-
strate this comparatively, we also consider some of thelsistatistical predictors in our
evaluations.

The simplest statistical predictor is thest valuepredictor. In this predictor, the next
sample behavior of an application is assumed to be identi¢a last seen behavior. In this
case, predicted phase in the next interval can be expres$dthaét + 1] = Phasét]. This
predictor can be extended to encompass longer past hstyrieonsidering &xed history
windowpredictor, where the predictions are based on theNasiow sizeobservations. In
this case, the next phase prediction can be phrasBtasit + 1| = f(Phasét], Phasét —
1],...,Phasét — (winsize— 1)]). The functionf() can be a simple averaging function, an
exponential moving average or a selector based on popuoletionts. Another approach,
similar to fixed history window is aariable history windowpredictor. In this case, the
history can be shrunk in case of a phase transition, wheveguhistory becomes obsolete
for the subsequent phase predictions. The next phase poedisethod for this predictor

is similar to the fixed history window predictor. Howevertvindow size is also a varying
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parameter based on the last account of observed phasditnasisi
5.3.1 Global Phase History Table Predictor

In contrast with the statistical predictors, dsilobal Phase History TablgGPHT) predictor
observes theatternsfrom previous samples to deduce the next phase behaviarchan
approach, it relies on the well-known repetitive executi@havior of applications. Struc-
turally, the GPHT predictor, depicted in Figure 5.2, is $anto a fully-associative global
branch history predictor [181]. Unlike hardware branchdtors, however, the GPHT is

a software technique, implemented in the operating systerhifh-level, dynamic phase

prediction.
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Figure 5.2: GPHT predictor structure.

Similar to a global branch predictor, a GPHT predictor cstssof a global shift reg-
ister, called theGlobal Phase History RegistdGPHR), that tracks the last few observed
phases. The length of the history is specified@d®HR depth At each sampling period,
the GPHR is updated with the last seen phase, as observedifeoRMCs. This updated
GPHR content is used to indexXPattern History TabldPHT). The PHT holds several pre-
viously observed phase patterns, with their corresponthegt phase” predictions based
on previous experience. These phase predictions are slhwtvaRHT Pred-nvector in the
PHT. The GPHR index is associatively compared to the stoaéid ?HT tags. If a match

is found, the corresponding PHT prediction is used as thégmeaiction. A per-entryAge
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/ Invalid value tracks the ages of different PHT tags and allows foraatleecently used
(LRU) replacement policy when the PHT is full. Al entry denotes the corresponding tag
contents and prediction are not valid. The number of enitnidse PHT is specified bHT
entries In the case of anismatchbetween the GPHR and the PHT tags, the last observed
phase, stored in GPHR[0], is predicted as the next phaser Afteismatch, the current
GPHR contents are added to the PHT by either replacing trespéhtry or by occupying
an available invalid entry. In the case of a match, a PHT pt&xh entry is updated in the
next sampling period based on the actual observed phadsefoptresponding tag.

By observing the phase patterns in application executienGRHT predictor can per-
form reliable predictions even for highly variable benchksa Inevitably, for a hypotheti-
cal application with no visibly recurrent behavior, no ¢ixig predictor can function accu-
rately. In such cases there is no matching pattern in the RtdWwe revert to a last value
predictor, thus guaranteeing to meet the accuracy of puevieethods under the worst case
scenarios. Most applications exhibit some amount of répetpatterns, however, due to
the common loop-oriented and procedural execution style.

Figure 5.3 gives an example of how the GPHT accurately captwarrying application
behavior with theppl u benchmarkAppl u shows highly varying behavior with distinctive
repetitive phases throughout its execution. The figure shibv variation in Mem/Uop
for appl u and its corresponding phases from a sample execution reégains chosen
to reflect the repetitive execution characteristicamsl u. It shows the performed phase
predictions with both the GPHT and last value predictors. lé/tve have experimented
with other statistical predictors (depicted in Figure S#e figure only shows the last
value predictor as the best performing statistical predifdr this application. The GPHT
has a GPHR depth of 8 and 1024 PHT entries. This example shaivswten for this highly
variable application, GPHT predictions almost perfectitoh the actual observed phases.
In contrast, a last value prediction method mispredictsemiban one-third of the phases

due toappl u’s rapidly varying phases. Figure 5.3 highlights two regioshowing the
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Figure 5.3: Actual and predicted phases forappl u benchmark.

repetitive phase behavior and how GPHT can easily captiséb#havior. In addition, it
shows two distinct cases, where GPHT first mispredicts tkeptease at point labeleéd” ,
and later can correctly predict similar behavior at p&Bit by learning from the previous
pattern history. This example shows the clear strength tiepabased phase prediction

with GPHT over statistical approaches.
5.3.2 Phase Prediction Results

Figure 5.4 shows the achieved prediction accuracies on mplications for four predic-
tion methods. In particular, it shows last value prediction(ii) fixed window prediction
with window sizes of 8 and 128iii) variable window with a 128-entry window and phase
transition thresholds of 0.005 and 0.030, &wl GPHT with a GPHR depth of 8 and 1024
PHT entries. The thresholds for the variable window predlgcare chosen to achieve effec-
tive window sizes that fall between last value and fixed wimgwedictors. We have also
experimented with different PHT and GPHR sizes. The effé&HT size on the predic-
tion accuracy is discussed later in this section (Figurg 3-6r the GPHR depth, the near
neighborhood of eight entries performs similarly to thespraged results. However, GPHR

sizes larger than 16 or smaller than 4 degrade accuracyglnd-b.4, the benchmarks are
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Figure 5.4: Phase prediction accuracies for experimentigion techniques.

sorted in the order of decreasing prediction accuracy \ashvalue prediction.

For most of theQl andQ2 benchmarks, almost all approaches perform very well,
achieving prediction accuracies above 80%. For these ynstsible applications, last value
and GPHT perform almost equivalently. However, the benefitSPHT are immediately
observed with the last 6 benchmarks, which constitut€X®andQ4 applications. In these
more variable benchmarks, the last value, fixed window amidbie window approaches
experience significant drops in prediction accuracies|eM@PHT can still sustain higher
prediction accuracies by observing repetitive phase petteForappl u, the last value
predictor—the best non-GPHT predictor for this applicatieresults in more than 53%
mispredictions. In comparison, GPHT achieves less than 88predictions, which im-
proves phase mispredictions by more thXn ®n average, for th@3 andQ4 benchmarks,
our GPHT predictor leads ta£2X fewer mispredictions than the other predictors.

The detailed results of Figure 5.4 are for the initial phastnitions described in Ta-
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ble 5.1. However, it is also important to verify that our phasediction methodology is
a consistent general framework regardless of the chosesepteinitions. Therefore, we
experiment with a wide range of phase definitions with vagyiamber of phases as well
as with phase boundaries different from the ones in TableFdlure 5.5 shows the result-
ing prediction accuracies, summarized as averages adresxperimented applications.
The benchmarks include all SPEC applications excludingfty, eon, nesa, vort ex,

si xtrack, swi mandt wol f . The excluded applications show no visible variations \&#s
than 1% mispredictions with all predictors. This chart oodynpares the GPHT predictor
with the last value predictor. Here, the results show thatGRHT predictor is consistently
more accurate for all practical phase definitions. Both mteds start with a 100% predic-
tion accuracy for a singleton phase and trend towards O witteasing phase granularities.
In all the intermediate regions, the accuracy of GPHT ptedis significantly higher than
that of the last value predictor.

This evaluation clearly demonstrates that our proposed3#tedictor performs effec-
tively in all quadrants of the benchmark categories and farge set of phase definitions.
The remainder of this work builds our dynamic power manag#rframework upon this
phase prediction methodology. However, for different iempéntations, storing and asso-

ciatively searching through a 1024-entry PHT may be undbkror unnecessary. There-

108



100

920 F

80 |
<O~ LastValue

O PHT:1024, GPHR:8
60 | —®—PHT:128, GPHR:8
—X— PHT:64, GPHR:8
—+—PHT:1, GPHR:8

70 F

Prediction Accuracy (%)

50

L) L) L) L) L)
\} 5 ] & Q> © N 5 ) ) O Q
NI PN & & & Q T @& ¢ (zﬁQ bf QIR ®§
Q7 &7 o/ O e/ R N < ((\Q 14 N Q7O S & R > ¥
ST T TS SR ST S
SRR & S & T & al q) TS
S @qQ &7 ] &7 NS, e
S & o

Figure 5.6: GPHT prediction accuracy for different numbElPEIT entries.

fore, Figure 5.6 shows how GPHT prediction accuracy chamgisdifferent numbers of
PHT entries. As the figure shows, down to 128 entries, the Gpiddictor performs al-
most identically to the 1024 entry predictor. However, oaable degradations in accuracy
are seen with a 64 entry PHT. As the number of PHT entries iscexdito 1, the accuracy
of the GPHT predictor converges to last value, due to alm08fd tag mismatches. In
these cases, the next phase is continuously predicted dasthencountered phase from
GPHRJO0]. This shows that a 128-entry PHT is sufficient for o3 implementation. In
our deployed real system, described in the following sestiave use this configuration for

our final GPHT predictor implementation.

5.4 Dependence of Phases to Dynamic Management Actions

For the phase prediction methodology to be useful in a dyoanainagement framework,
phase patterns must not be significantly altered by the dimaranagement actions that
respond to them. Action-dependent phases both conceall gattase patterns, impairing
the predictability of application behavior, and also leadhtorrect management decisions.
Previously, Section 5.1 mentioned that the phase defisittased on memory bus transac-
tions per micro-op (Mem/Uop) are resilient to changes ircpssor voltage and frequency

settings. This section justifies this claim with detailedasi@ements.
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The two metrics obtainable with our choice of monitored PM@rgs are Mem/Uop
and Uops per cycle (UPC). We profile the application set witfigueance counters (PMCs)
and record different observed PC, MemyU op) pairs, which constitute a two-dimensional
execution behavior space. Figure 5.7 shows the correspgedploration space for all ac-
quired (UPC,Mem/Uop) sample pairs for all the set of applications with the ligidata
points. These show the diverse characteristics that arered\by these applications. In
addition, a boundary is observed as the maximum achievaBlé for each Mem/Uop
level, depicted with the “SPEC Boundary” curve. This is anestpd effect, as high mem-
ory latencies stall dependent execution. Consequentlye mmamory-bound applications
can retire fewer instructions per cycle. To evaluate howdR&E and Mem/Uop metrics
change under different DVFS settings, we develop a suitewfigurable applications that
can pinpoint specifigU PC,MenmyUop) coordinates in our two-dimensional exploration
space. These applications consist of several configuraitik®kernels that are tuned via
performance monitoring to achieve desired Mem/Uop and UR&acteristics. We call
these applications th#PCxMEM suite”. The grid points, denoted as “IPCxMEM Grid”
in Figure 5.7, represent configurations of the IPCXMEM suitedver the whole explo-
ration space. These applications evaluate the behavibedfacked metrics at all possible
corners of execution and evaluate how these are affected/Bs[actions.

For our evaluations, we run the IPCXMEM suite in approximasél (U PC, Mem/Uop)
configurations, uniformly sampling the exploration spadd.gWe run all configurations
at all the available frequency settings of our experimept@iform. These are 1500MHz,
1400MHz, 1200MHz, 1000MHz, 800MHz and 600MHz. We monitor@J&hd Mem/Uop
via PMCs in these frequency settings. Figure 5.8 illustrdtedrequency dependence of
the two metrics for a representative subset of the reprasemtonfigurations. Each curve
corresponds to a specific IPCXMEM suite application—run hfrahjuency settings—
configured to target a specific UPC and Mem/Uop at the higlmequéncy. These target

values, referenced in the legend, correspond to the sppoifits of the IPCXMEM grid in
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Figure 5.7: Observed (UPC,Mem/Uop) pairs for all experiradrapplications sampled

every 100 million instructions and grid of points covereddoy IPCXMEM suite.

Figure 5.7. For example, the top flat UPC curve in Figure 518 \egend entry UPC=1. 9,
Ment Uop=0. 0000” corresponds to the rightmost grid point in Figure 5.7 at libeation
(UPC=1.9,Mem/Uop= 0.0).

Figure 5.8 shows the strong dependence of UPC to DVFS settid§@C mostly has
an increasing trend with decreasing frequency. This is Umecanemory latencies are
not scaled with DVFS, and therefore, memory accesses ctenpléewer CPU cycles at
lower frequencies. The frequency dependence of UPC alsesvaith memory intensity.
UPC values for completely CPU-bound configurations (legertides withMerm/Uop= 0)
show no dependence to frequency. On the other hand, foryhigéimory-bound configu-
rations, UPC can change up to 80% across frequencies. Theasandtrate the dangerous
pitfall we avoid in our phase definitions. Directly using URCphase classification is

not reliable for dynamic management, as the resulting ghesey with different power
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Figure 5.8: Observed UPC and Mem/Uop behavior at six diffefirequencies for different
IPCXMEM grid configurations.
management settings.

Conversely, Figure 5.8 shows that the Mem/Uop parameteriitaaiy no dependence
on DVFS settings. It is almost constant across all frequencTherefore, our phase clas-
sifications based on Mem/Uop are completely “DVFS invafiantd can be reliably used

for runtime phase prediction under our target dynamic paong&nagement.

5.5 Phase-Driven Dynamic Power Management: Real-System Imple-
mentation

The actual implementation of the on-the-fly phase monigpand prediction framework
runs on a Pentium-M based, off-the-shelf laptop computaming Linux kernel 2.6-11.
Figure 5.9 shows an overview of how this overall implemeaatabperates on our system.
Our prototype implementation monitors application exgguwia performance counters
(PMCs) and performs phase predictions at fixed intervals 6frhflion instructions in a

performance monitoring interrupt (PMI) handler. The rorgiphase predictions guide dy-
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Figure 5.9: The flow of operation for our runtime phase prigoiicand dynamic power
management framework.

namic voltage and frequency scaling (DVFS), readily atdéa@n the Pentium-M platform,
as the example management application. At each interruptation, after performing the
next phase prediction with the GPHT predictor, the intermgutine translates the pre-
dicted phase into a predefined DVFS setting. This settinges applied to the processor
for the next execution interval. After the initial configtican (performed once at system
startup) all phase prediction and dynamic managementrectiperate autonomously, with
no observable overheads to user applications. All apphicatcan run natively, without
any modifications or additional system or dynamic compilgapsort.

Figure 5.10 shows the overall prototype implementationraeesurement setup for our
experiments. This diagram depicts different aspects ofroplementation that correspond
to on-the-fly phase monitoring and prediction, dynamic powanagement via DVFS, and
additional mechanisms for evaluating runtime phase ptiedi@and performing real power
measurements that can match each phase. The followingaignsediscuss the details of

each of these aspects for the prototype platform.
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Figure 5.10: Developed measurement and evaluation phatfdRegions identified a%,
2 and 3 via dashed lines correspond to different parts of implewdént relevant to on-
the-fly phase monitoring and predictiof)( dynamic management with DVF&)(and
measurement and evaluation supp8jt (

5.5.1 Runtime Phase Monitoring and Prediction

One of the fundamental challenges of phase detection amtichom on a real system is
the impact of system-induced variability. The previouspgteahas shown that application
phases are prone to several variations at runtime, whictakkanthe timing and values of
observed metrics. To eliminate the effect of timing vaaasi, we monitor phases at fixed
instruction granularities with the PMI. This is a relatiyehore intrusive method than the
approach described in Chapter 4 as it requires an initiahngdation of the operating sys-
tem kernel to specify the necessary bindings for interrapidhing. However, it provides a
simpler means to track our performance events with mininsalichance due to variability
effects. We have implemented our PMI handler and suppostyistem calls as a loadable
kernel module (LKM), which can be loaded and unloaded dusygjem operation. These
system calls control the PMCs and bind the interrupt handléeneé PMC hardware that
triggers the interrupt. The implemented LKM also holds ttegesfor our predictors and
logs the PMC values and predicted and actual observed pfaasas evaluations.

For our experiments, we configured the two available PMCserPéntium-M proces-

sor to monitor the retired micro-ops and memory bus acceggiethe UOPSRETIRED
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and BUSTRAN_MEM event configurations. We have experimented with variosguc-
tion granularities and chose to invoke the interrupt hanelery 100 million instructions.
This granularity provides a safe lower bound that operatdsowt causing significant over-
heads and operating system timing violations. After eagbdation, the first PMC is reini-
tialized to overflow after 100 million retired Uops.

After every 100 million instructions, the interrupt handgops and reads the PMCs,
updates the GPHT predictor states, and performs the negegiradiction. It also logs the
observed PMC values, actual observed phase for the pastipand the predicted phase
for the next period for our evaluations. At its exit, the hiemalears the PMC overflow bit,

reinitializes the PMCs and time stamp counter (TSC), andntedtae counters.
5.5.2 Dynamic Power Management with DVFS

The on-the-fly phase prediction methodology can guide agafiglynamic management
techniques. This work considers DVFS as an example impl&atien. DVFS is supported
on our platform via Intel SpeedStep technology [55]. In ototptype implementation,
we use a look-up table, defined at LKM initialization, to ddyctranslate the predicted
phase to one of the 6 DVFS settings within the handler. Tal@esBows these settings for
the prototype machine and the original phase definitionsghvare similar to prior work
[179]. For alternative phase definitions or managementsekgwe can simply reconfigure
this table. At each sampling interval, the handler traesldahe predicted phase to the
corresponding DVFS setting. It then compares this to theeatiisetting and updates the
DVFS mode registers if necessary. The 100 million instarcgranularity (on the order of
100 ms) guarantees that the overheads induced by intemagtihg and DVFS application

(on the order of 10-10Q9) are essentially invisible to native application execuitio
5.5.3 Power Measurement

To track the power consumed by the Pentium-M processor, vasuane the input voltage

and current flow to the processor. For this purpose, we usetannal data acquisition
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Mem/Uop Phase # DVFS Setting

< 0.005 1 (1500 MHz, 1484 mV)
[0.005,0.010) 2 (1400 MHz, 1452 mV)
[0.010,0.015) 3 (1200 MHz, 1356 mV)
[0.015,0.020) 4 (1000 MHz, 1228 mV)
[0.020,0.030) 5 ( 800 MHz, 1116 mV)
> 0.030 6 ( 600 MHz, 956 mV)

Table 5.2: Translation of phases to DVFS settings.

system (DAQ) that is connected to the processor board. Tgtegdaboard includes two

2 mQ precision sense resistothat reside between the voltage regulator module and the
Pentium-M CPU, shown a1 andR2 in Figure 5.10. The total current that flows through
these resistors represents the current flow into the CPU. dhage after the resistors,
denoted a¥cpy, represents the input voltage of the CPU.

In the measurement setup, we measure the three voNagésandVcpy, to track pro-
cessor current and voltage. These voltages—and addipanallel port bits for evaluation
support—are first fed into a National Instruments AlBgnal Conditioning Unit This
unit filters the noise on the measured voltage signals amdledés the voltage drop across
the two resistors. These voltage drofds, —Vcpy) and(V2 —Vepu), and the CPU voltage
Vcpu are then fed into a National Instruments DAQPad 60D&Ea Acquisition System
This unit then scales the voltage drops with the resistarasato compute the current flows
asly = (V1 —Vcpu)/0.002 and = (V2 —Vcpy)/0.002. The DAQ system monitors a total
of eight signals, and has a sampling period o040 The two measured currents and the
CPU voltage, together with additional parallel port signal® sent to a separdt®ging
machine which logs the observed currents and voltages. The CPU pmwesumption for
each sample is computed on this logging machinP@segpy = Vepu - (11 + 12). With
this complete measurement setup, we can accurately trackgoRer consumption. By
also utilizing parallel port signaling, described belowr measurement setup can individu-

ally compute the power consumption and performance statistr each 100M-instruction
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phase sample as well as for the whole execution of applitatio
5.5.4 Evaluation Support

The full operation of our system requires only on-the-fly gghanonitoring and predic-
tion, and dynamic power management with DVFS as highliglmeckgions 1 and 2 in
Figure 5.10. However, to experimentally evaluate our mgghave develop additional in-
strumentation in our prototype system. First, we use theiqusly described real power
measurement setup to measure processor power consumjiaddition, for detailed
power/performance and phase prediction evaluations, wa#ognadditional mechanisms
in our implementation; these fall into region 3 in Figure(®.1

To evaluate runtime phase prediction accuracy and to amalgplication behavior, we
use a separate kernel log in our LKM. This log keeps track efabtual observed and
predicted phases for each sample as well as memory accesddspand Uops per cycle
for each phase. At each invocation, the handler recordsarelénformation in this log.
Afterwards, a user-level tool can access this informatiarseparate system calls.

The execution of the processor and the real power measutermeninherently two
completely independent processes. To provide a synchingrink between the two sides
of our framework, we use parallel port bits that signal sfiegrrocessor execution infor-
mation to the DAQ system. We use three parallel port Bit2 is set from the user level
via system calls at the start of an application executioniaieteared when an application
ends. This helps DAQ to measure power specifically duringpgtiGation executionBit
1is used to distinguish between the application and intémxpcution. This bit is set by
the handler at the entrance to the handler routine and isetled exit. Finallypit O is used
to help the DAQ track each phase. The handler flips this biaehesampling interval so
that the DAQ and the logging machine can distinguish eacBghad compute power and
performance statistics for individual phases.

Figure 5.11 shows a detailed view of the overall operatioousfdeployed system with

the appl u benchmark, performing on-the-fly phase predictions wigh@PHT predictor
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Figure 5.11: Overall operation of our framework, shown witike appl u benchmark, in
comparison to the baseline system. Top chart shows thewaas®&tem/Uop, actual and
predicted phases. Middle and lower charts show achieve@psavings and induced per-
formance degradation in the shaded regions.

and dynamic power management with DVFS. The figure shows tesuared prediction,
power and performance results with respect to a baselineanaged system. The top
chart shows the observed Mem/Uop behavior for the two ruagfu, with and without
the described techniques. The two curves are almost iéddbitween the two real-system
runs. This example showgi) the phases defined by Mem/Uop are DVFS invariant and
can be safely used for phase prediction under dynamic maregeesponses; arii) the
fixed instruction granularity phase definitions are restli® real-system variations. The

lower part of the top chart shows the actual phases and peeldihases with the GPHT.

The predictions with the GPHT predictor significantly oegrlwith the actual phase be-
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Figure 5.12: Observed overhead with our dynamic phase oramgtand prediction plat-
form.

havior of this highly varying application. The middle chattows the measured power
for appl u without any power management (baseline) and with GPHTébpseer man-
agement (GPHT). The shaded area between the two curves diates power savings
achieved with our approach. The lower chart shows the obdgrerformance as billions
of instructions per second (BIPS) for the two systems, wHezeshaded area demonstrates
the relatively small performance degradation induced byfiamework. These latter two
charts, together with the general results presented indpe6t6 clearly present the ad-
vantages brought by our framework for improving power/perfance efficiency. By effi-
ciently adapting processor execution to varying applceliehavior, we achieve significant

power savings with small degradations in performance.
5.5.5 Management Overhead

To evaluate the overhead of our dynamic management frankew@ need to separate
actual program execution from the phase prediction and reetfieg operations. Using the
previously described parallel port signaling mechanismmonitor the entrance and exit
of the interrupt handler, which performs all of the phasalmtgon, logging and dynamic

frequency setting actions. Figure 5.12 demonstrates ftesadion overhead. The upper
plot shows the duration of an individual phase (tracked bgraatingbitO values) and the

lower plot shows the interrupt timing (tracked by a higjtil value) as a short spike during

the phase change.
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This evaluation shows more than three orders of magnitufiereince between the
management overhead and phase durations. As a matter ph$aour data acquisition
system works at a sampling period of 4§ it cannot detect many of the overhead periods.
For example, no spike ihit1 is observed during the first phase change in the plot. This
corroborates the insignificant overhead of our runtime spharediction-driven dynamic
management strategy. On average, the observed cumulatvieead due to phase moni-
toring and prediction, logging and the application of dymamanagement actions is less

than 0.1%.

5.6 Phase-Driven Dynamic Power Management Results

The previous sections described our phase definitions aitldesfly phase prediction me-
thodology. They have presented a full-fledged deployedsysThis section evaluates the
final target of our complete framework, dynamic power manag@ with DVFS, guided
by on-the-fly, GPHT-based phase predictions. It preseetevRrall dynamic power man-
agement results for all the experimented benchmarks withetkets of information. Fig-
ure 5.13 depicts power and performance results with ourrerpatal system, using the
GPHT predictor, as normalized to baseline execution. Thegtaph of the figure shows
achieved billions of instructions per second (BIPS) as a onreas performance. The mid-
dle and bottom parts plot the power and energy-delay prddiiz®) as measures of power-
performance efficiency for the baseline unmanaged systehoandynamic management
framework. The benchmarks are shown in decreasing EDP witlelGPHT-based man-
agement.

The application categories that have been previously dsgmliin Section 5.2 also guide
our understanding of the dynamic power management reddésy of theQ1 benchmarks
experience little power saving and small performance dkgian. They have highly sta-
ble, non-varying execution behavior with little power saypotential and close to baseline

performance under dynamic management. Some of)heapplications, such aa&psi
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Figure 5.13: Runtime phase-prediction-guided dynamic pongnagement results. From
top to bottom, the charts show performance, power and erdaigy product achieved by
our framework with respect to baseline execution.

andamp, actually achieve significant power savings due to themtiedly higher vari-
ability. However, due to their lower power saving potentthese are also accompanied
by observable performance degradations. Thus, overall BipPovement remains less
significant. On the other han@2 andQ3 applications generally demonstrate substantial
power savings as well as EDP improvements. The tri@alapplicationsswi mandncf
exhibit above 60% EDP improvements. Our experimental systlso achieves EDP im-
provements as high as 34% for the highly variaQ®benchmarks, such aguake. One
exception to this isgri d. Although it shows high power savinggri d also experiences
comparable performance degradation. Therefore, its EDPowement remains smaller
than the otheQ3 applications. One probable reason for this is having ligbacurrent
execution at memory-bound regions. For@8, Q3 andQ4 applications, the average EDP

improvement is 27%, with an average performance degradafi6%.
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prediction forQ2, Q3 andQ4 benchmarks.

5.6.1 Improvements with GPHT over Reactive Dynamic Managenrd

Many of the previous dynamic management techniques singsiyand to previously ob-
served application behavior. We refer to these as “redctipproaches. Although these
approaches perform well for many applications, they ara@ro significant misconfig-
urations for workloads with quickly-varying behavior. Cmetother hand, our on-the-fly,
GPHT-based dynamic management framework can respondde vaeations proactively,
providing better system adaptation. Here we compare theaah power/performance
trade-offs of our GPHT-based dynamic management frametwaitkose of a reactive sys-
tem. For the reactive method, we use last-value prediction.

Figure 5.14 shows the achieved EDP improvement and perfarendegradation with
both dynamic management methods. It shows the results éohighly variableQ3 and
Q4 benchmarks, as well as the high-power-savings and lowati@m Q2 benchmarks. For
many of theQ1 applications, the reactive approach performs similarlgur GPHT-based
approach. For these stable applications, responding teopisly seen behavior is already
the near-optimal approach.

Figure 5.14 depicts the advantage of employing dynamic gemant guided by on-
the-fly phase predictions. The tv@® benchmarks behave somewhat differently. $vm
which has virtually no variability (lying on theaxis in Figure 5.1) both approaches achieve

almost identical results. Forcf, which shows a small amount of variability, GPHT-based
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management achieves a slightly better EDP and less penm@endegradation. For the
highly-variable and memory-bour@3 benchmarks, GPHT-based, proactive management
achieves superior EDP improvements. The performance datpas experienced by our
GPHT framework are less than or comparable to those of the/ddise methods. As ex-
pected, the improvements with the less memory-bddhdpplications are usually less sig-
nificant than the other benchmarks. Nonetheless, whilegaetive approach provides al-
most no benefits for these applications, GPHT-based dynaamagement improves their
EDP by approximately 5%. On average, GPHT-based dynami@ge&ment achieves an
EDP improvement of 27%, with a performance degradation of 3¥e last-value-based
reactive approach achieves 20% EDP improvement and 6%rpefce degradation for
the same set of applications. Thus, applying dynamic manageunder the supervi-
sion of our on-the-fly phase predictions provides a 7% EDRavgment over the reactive
method, while inducing comparable or less performanceattsgion. These results show
the significant benefits of runtime phase prediction andpfdieation to dynamic power

management.
5.6.2 Alternative Phase Definitions

Section 5.5 claimed that in our real-system implementatiertan simply adjust our phase
definitions and the corresponding DVFS look-up table faralative implementations. For
example, the observed performance degradations that eeptable for some applications
may not be acceptable to others. In such a scenario, it m@glpréferable to reduce the
power savings to achieve better performance. Here, we mmggié such an alternative
dynamic management system that aims to limit performangeadation to 5%. For this
implementation, we redefine our phases to meet our perfarengoal with the help of
previousIPCxMEM experiments described in Section 5.4. We look at the actiBIBS
at each DVFS setting for each of the IPCXMEM grid points, arahdthe DVFS domains
on our grid that satisfy our performance target. After thepswe redefine our phases to

match these DVFS settings. Based on these phase definitioneew deployed system
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Figure 5.15: Power/Performance results for our consexvgihase definitions that aim to
bound performance degradation by 5%.
meets the target performance with less aggressive powgsav

Figure 5.15 shows the resulting performance degradatpoveer and energy savings,
and EDP improvements for the five benchmarks that origirtadig more than 5% perfor-
mance degradations. With the new conservative phase d&isiall of these applications
experience performance degradations significantly lotvan £%. Thus, our new system
can successfully sustain application performances wibhinspecified degradation limit.
On the other hand, due to smaller power savings, the EDP waprents are also reduced
significantly to meet the performance targets.

These results show the versatility of the phase-based dgmaanagement framework,
which can be simply configured for different targets undéfedent scenarios. These re-
configurations can even be performed at runtime, after sysieployment, with minimal
intrusion to overall system operation. Thus, our completd-system implementation, pre-
sented in this chapter, serves as an effective, genericrpoareagement framework, which

can be employed on a running system to support differentrdymemanagement goals.

5.7 Related Work

Several previous studies investigate methods to monitugitize application phases for
architectural and system adaptations. Dhodapkar and Sreé@happlication working set
information to guide dynamic hardware reconfigurationg.[Zhou et al. monitor memory

access patterns for energy-efficient memory allocatio®][1&nnavaram et al. identify
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sequential and parallel phases of parallel applicationfstinibute threads efficiently on an
asymmetric multiprocessor [5]. Weissel and Bellosa alsoitaothe memory boundedness
of applications to adapt processor execution to differdrases on the fly [176]. These
works show interesting applications for different aspesftapplication phase behavior.
However, they do not consider predicting future phase beha¥applications and perform

adaptive responses reactively, based on most recent lbehavi

Some earlier work also considers prediction of future ajaplon behavior. Duester-

wald et al. utilize performance counters to predict certagtric behavior such as IPC
and cache misses based on previous history [44]. They atso ttat table-based predic-
tors perform significantly better than statistical apphescto predict variable application

behavior. Lau et al. consider prediction of phase transstias well as sample phase du

rations using different predictors [109]. While these wopksvide significant insights
to predictability of application behavior, they do not exate the runtime applicability of
these predictions to dynamic management.

Sherwood et al. describe a microarchitectural phase poedi@ased on the traversed
basic blocks [153]. They apply this prediction methodoltggynamic cache reconfigura-
tions and scaling of pipeline resources. This work dessriioe-grained, microarchitecture-
level phase monitoring and dynamic management, based bieattiral simulations, while
the work in this chapter describes a deployed real-systamdwork for on-the-fly phase
prediction of running applications and system-level mamagnt. Shen et al. detect repeti-
tive phases at runtime by monitoring reuse distance pattgith application to cache con-
figurations and memory remapping [150]. This work employsited program profiling
and instrumentation to detect repetitive phases. In csitoar work identifies recurrent
execution and predicts phases seamlessly during nativieatign execution without prior
instrumentation or profiling. Wu et al. also describe a satem implementation of a
runtime DVFS optimizer that monitors application memorgesses [179]. That work re-

quires the applications to execute from within a dynamit¢rureentation framework and
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relies on periodic dynamic profiling of code regions, inshgcadditional operation over-
heads. In comparison, our deployed system operates autwstyron any running appli-
cation, without necessitating any dynamic instrumentasiopport or prior profiling, and

with no observable overheads to application execution.

5.8 Summary

This chapter presented a fully-automated, real-systemewveork for on-the-fly phase pre-
diction of running applications. These runtime phase mtextis have been used to guide
dynamic voltage and frequency scaling (DVFS) as the unigylgynamic management
technique on a deployed system.

This work has experimented with different prediction methand proposed @lobal
Phase History Tabl¢GPHT) predictor, leveraged from a common branch preditolni-
tecture. Our GPHT predictor performs accurate on-the-flgsphpredictions for running
applications with no visible overheads. For highly vare@abpplications, our GPHT pre-
dictor could reduce mispredictions by 6X, compared to thgstical approach. This phase
prediction framework efficiently cooperates with DVFS tondynically adapt processor
execution to varying workload behavior. DVFS, guided bysth@hase predictions, has
improved the energy-delay product of variable workloada®ynuch as 34%, and on aver-
age by 27%. Compared to a reactive approach, our method hasvieakthe energy-delay
product of applications by as much as 20% and on average by 7%.

The results of this work show the promising benefits of rustiphase prediction and
its application to dynamic management. As power manageougrinues to be an increas-
ingly pressing concern, the necessity of such workloag#gatechniques also increases.
The fully-autonomous real-system solution presentedigapter, with its energy-saving
potential and negligible-overhead operation, can senafasindation for many dynamic

management applications in current and emerging systems.
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Chapter 6

Conclusions

The work in this thesis explores real-system techniquebaoacterize and predict dynami-
cally-varying workload power behavior. It develops workibadaptive dynamic power
management methods that proactively respond to the chamgpplication demands. The
techniques discussed in this thesis primarily operateah#drdware-software boundary.
They utilize architecture-level information to guide smstlevel monitoring and control.
The overarching contributions of this work &g the developed real-system frameworks
for runtime power monitoring, phase analysis, and phaseidynamic power manage-
ment; (i) proposed workload phase monitoring, detection and priedi¢echniques; and
(ii) their application to workload-adaptive power management.

In particular, this research has shown that hardware pegonce monitors that are
available in most architectures can effectively model ttohigectural power consumption
of processors. The prototype runtime power monitoring astdrmation implementation
presented in this work achieved power estimations withi¥h 1 actual processor power
dissipation. This work has demonstrated power-orienteas@hanalysis techniques that
utilize performance monitoring information to discernyiag workload power character-
istics. The small set of phases acquired with these techaigepresented overall power
characteristics of workloads on average within 5% of theaaneasured behavior. It has

evaluated the efficacy of control-flow-based applicaticatiees as well as performance
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monitoring information in characterizing workload powéracacteristics. While both ap-
proaches proved to be useful in understanding workload pbekavior, performance-
monitoring-based phases achieved on average 33% less.efFhis research has proposed
phase detection techniques that are resilient to systdoced variations in tracked work-
load features. It showed that representing runtime wotkkeecution in terms of phase
transitions improves the detection of repetitive phase®bpn average, compared to pre-
vious approaches. This thesis has also proposed a runtohalgihase history table pre-
dictor that can accurately predict future application @sasn a real system. This predictor
achieved 24X fewer average phase mispredictions than prior approadbest, this re-
search has demonstrated a complete implementation of a-oln@en, workload-adaptive
power management infrastructure. This infrastructursgmeed the significant benefits of
phase-based adaptations for power-efficient computatitn 2v% energy-delay product
improvements on a running system.

This thesis shows a complete flow of methods from runtime p@me performance
monitoring to phase analysis and workload-adaptive powenagement. While this re-
search describes specific implementations and applicatibe techniques proposed in this
thesis are applicable to a broad range of computing systaehsignamic management
applications that can be employed at both microarchitecand system level. These in-
clude workload-adaptive microarchitectural resourcdirsgadynamic thermal control, and

runtime management of computing systems for fault and trandolerant execution.

6.1 Future Directions

There are several future avenues of research that aredétatbe techniques presented
in this work. One fundamental observation that drives thiesearch directions is that the
potential of the emerging systems is defined around meeértgin workload or platform

demands and adapting to the technology challenges in thetterms. For example, these

demands indicate when to enable cores or specialized enigineulticore architectures or
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how to manage processing elements with varying power-pegoce characteristics due
to process variations and heterogeneous system impletiomstaProjecting and adapting
to the varying workload and platform demands is key for aghgethe potential and goals
of these evolving trends.

One immediate research path for phase characterizationvaridoad-adaptive man-
agement is considering multiple management response®mdioation. Most of the prior
work focuses on isolated management schemes for singutstramts. However, com-
prehensive control strategies that account for the noatnmteraction of different man-
agement responses are necessary for efficient dynamic evaeag This is particularly
important in emerging processor architectures that arehhignited by power and tem-
perature constraints. Efficient operation of these platforequires runtime adaptations
that can respond to the power and thermal demands of workleigettively. This research
direction faces two important challenges. First, elal®pdiase classification methods that
can mutually express the power, thermal and other charstatsrof applications must be
developed. Second, intelligent control schemes must effilyi coordinate multiple man-
agement responses that correspond to these runtime phapéngg While this can be a
challenging process, future architectures include irginggy more adaptive components
and demand such control mechanisms.

An important trend in current architectures is the wideagdradoption of chip mul-
tiprocessors as the common design choice. Very interesitng challenges come with
this new direction, where dynamic adaptations that opexatess multiple cores become
at least as important as the management of individual coregse multicore platforms
require hierarchical monitoring and control techniques thistinguish between local, per-
core adaptations and global, chip-level management. Atimkpproach towards efficient
management of these systems is a three-tier framework paatssoth architectural and
system-level responses. At the higher level, this includege-scale, system-level ap-

proaches such as thread migration and parallelizatiomigols. Chip-level management
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requires global monitoring and control mechanisms foredsloop management driven by
chip power and thermal constraints. At the core level, l@cae monitoring and control
tracks per-core workload phase behavior and drives opgméotions that can be employed
without the knowledge of the workload characteristics imeotcores. There are many in-
teresting open questions in this management strategy sutble acalability and implemen-
tation of such control at the hardware-software boundaiwt joptimization of local and
global actions, and a generalized management solution éitiprogrammed and parallel
multithreaded workloads. The runtime workload phase ambgnd adaptation techniques
presented in this thesis provide a useful foundation fod#nelopment of the hierarchical
monitoring and control required for this future researafection.

The adaptive management strategies that are discussasd ihdhkis are also applicable
in the embedded and real-time systems domain. An integedtrection in this domain is
extending the phase-based dynamic adaptation technigubsde application platforms.
In such a framework, mappings of phases to dynamic adapsatian be reconfigured at
runtime based on the imposed deadlines. Such adaptive nggppogether with runtime
phase predictions, can enable more efficient schedulingeobperations to the available
processing elements in real-time embedded computingophas.

Another important future direction for this work is congiahg adaptive management
techniques to mitigate the emerging technology challengessemiconductor technolo-
gies scale down to nanometer dimensions, integrated tsrexhibit highly variable char-
acteristics and reduced functional reliability. Understaeonditions, variation and defect
tolerance must become an integral component of archieeeind systems design. Part of
this translates into efficient dynamic management of varyirocessing resources. This
research direction shares certain similarities with waeikll phase prediction at its basis.
In addition to projecting workload demands at runtime, wiolves extending the predic-
tion models for predicting processor behavior across miffeoperating modes. Moreover,

dynamically changing mappings between workload phasesraagement actions are
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required for adapting execution with varying power and terafure envelopes, as well as
with changing architectural capabilities.

Overall, this thesis provides a roadmap to effective onfiynphase monitoring and pre-
diction on real-systems and lays the ground work for theptiaption to workload-adaptive
dynamic management techniques. The outcomes of my reseaesd the potential of such
workload-adaptive management for improving processorgp@ifficiency. As adaptive and
autonomous management strategies become increasingiyties$or power-efficient and
reliable computing, my research offers promising pratteehniques that can be integral

components of emerging computing systems.
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