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The Biological Neuron

> Human Nervous system - 1.3x10'9 neurons
o 10" are in brain i
» Each connected to ~10,000 other neurons
» Power dissipation ~20WV.

> Neuron Structure: ek e

:Cell E/sody—

!

Terminal branches
Cell body

Dendzites

The Biological Neuron

> Cell Body —

Includes Nucleus & Perikanyon
Metabolic Functions

Generates the transmission signall (action potential) —
through axon hillock -, when received signal threshold
reached

/
Conduction Component
1 per neuron
1mm to 1m
Myelin node of

Extends from axon hillock sheath  Ranvier
to terminal buttons

Smooth surface
No ribosome




The Biological Neuron

axons enclosed by
— many layers of cells
—> promote axon growth

Myelin sheath insulates axon from extracellular fluid:
thicker myelin =» faster propagation

Myelin sheath gaps:

~ Depolarization occurs sequentially

— trigger next node =» impulse propagates to next
hop & restored at each node (buffering)

The Biological Neuron

The receiver / input ports
Several Branched
Rough Surface (dendritic spines)
Have ribosomes

No myelin insulation

Mitochondria

Synaptic
Button

The branched ends of axons
Transmit the signal to other
neurons’ dendrites

with neuretransmitters




The Biological Neuron

> Inside of a Neuron:

- genetic material (chromosomes)
Nucleolus - Produces ribosomes : genetic
information > proteins

Niss| Bodies - groups of ribosomes >protein
synthesis

Nissl Bodies

- system of
[CSED':?]"’V tubes > material transport in cytoplasm
- membrane-bound structure
- packaging peptides and proteins
. (including neuretransmitters) into vesicles
Microtubules— : :
Neurofibrils Microfilaments/Neurotubules - transport for.
materials within neuron & structural support.
Mitochondria - Produce energy.

The Biological Neuron

> Neuron Types:
o Unipolar Neuron

One process from soma
- several branches

1 axon, several dendrites
No dendrites from soma
o PseudoUnipolar Neuron
2 axons
« Bipolar Neuron Bipolar Neuron
2 processes from soma
(PseudoUnipolar < bipolar)
o Multipolar'Neuron
Single axon
Several dendrites from soma

Pseudounipolar Neuron

Multipolar Neuron




The Biological Neuron

dendrite

» Junction of 2 neurons
» Signal communication Pebione
o [Two ways of transmission:
Coupling of ion channels > Electrical Synapse
Release of chemical transmitters = Chemical Synapse
> Chemical Synapse:

» Presynaptic neuron releases neurotransmitters through
at terminal button to the —
the gap between two neurons.

Dendrite receives the signal via its receptors
|Excitatory: & Inhibitery: Synapses — Later]

The Biological Neuron

Organic Anions Net positive
= charge

5nm thick, semipermeable ‘ © e §
Lipid bilayer controls ion diffusion e
Potential difference ~70 mV
Charge pump:
Na" >
&K'
B g
Net negative

When no signaling activity Charge

Outside potential defined O
= \Vr =~ -70m\V.




The Biological Neuron

> Membrane Potential — Charge Distribution:
« Inside: More K* & Organic Anions (acids & proteins)
« Outside: More Na” & CI
» 4 Mechanisms that maintain charge distribution =
membrane potential:
1) lon Channels:

» Gated | Nongated
» Selective to specific ions Net negative ||  pnet positive
T o Charge Charge
« lon distribution € channel distribution + 9
2) Chemical Concentration Gradient
« Move toward low gradient
3) Electrostatic Force
» Move along/against E-Field
4)
» Move Na & K against their net electrochemical gradients
» Requires Energy > ATP Hydrolysis (ATP > ADP)

The Biological Neuron

> Membrane Potential — Charge Distribution: it By
CI- . ] =

L] . cl-
Concentration gradient < = hamicénEonce

Electric Force
e I_
Electrostatic Force > Inside || Outside

Final concentration depends on membrane potential

-+ Net negative Net positive
K . Charge Charge

Concentration gradient -
Electrostatic Force & S harata rarce
Na-K pump & QOutside

-
o Na :
. . Net negative Net positive
Concentration gradient < Charge Charge

Electric Force

Electrostatic Force < +
—Na
Na-K pump. > Chemical Force

7In5ide Qutside




The Biological Neuron

> Excitatory & Inhibitory Synapses:

« Neurotransmitters > Receptor sites at postsynaptic
membrane
« Neurotransmitter types
Increase Na-K pump efficiency

o = Hyperpolarization
Decrease Na-K pump efficiency

« =» Depolarization

Encourage depolarization
€ Activation decreases Na-K pump efficiency

Encourage hyperpolarization
€ Activation increases Na-K pump efficiency:

The Biological Neuron

» Short reversal in-membrane potential
=>» Current flow: Action Potential > Rest Potential
= Propagation of the depolarization along axon

action
putential_’

A
resting potential
e




The Biological Neuron

> Action Potential:

» Sufficient Excitatory Synapses Activation —
Depolarization of Soma
- trigger action potential:

Some Voltage gated Na Channels open_<->

Positive
Feedback

= Membrane Na Permeability Increases
> < Na' = Depolarization increases

Depolarization builds up exponentially...

=

HHt
R SR
-'23{_] *t
oy d +
Voltage sensitine Noit

Hat ion Ghannel Na' +

The Biological Neuron

> Action Potential:
o CI : Electrostatic Force ‘> decreases
=» more Clf &
K™ : Electrostatic Force ‘<’ decreases
= more K" >
These cannot cease depolarization

Resting
2 Processes: oo
Inactivation of Na Channels Ghannel
« Na channels have 2 types of gating mechanisms:
* Activation during depolarization = open Na Channels
* Inactivation after depolarization = close Na Channels
Delayed Activation of \Voltage gated K Channels
o D more K'’€” > more Na™ >’




The Biological Neuron

> Action Potential — Complete Story:
« Neurotransmitters > Dendrites Receptors

=> |nitiate synaptic potential

Potential spreads toward initial axon segments
Passive excitation — no voltage gated ion channels involved

Action potential initiation at axon hillock

€ highest voltage gated ion channel concentration
Happens if arriving potential > voltage gated channel threshold

Wave of depolarization/repolarization propagates

along axon

Turns on transmission mechanisms at axon terminal
Electrical or Chemical Synapse

The Biological Neuron

Once an action potential passes a region, the region
cannot be reexcited for a period ~1ms

Depolarized parts of neuron recover back to resting
potential € Na-K pumps

Max pulse rate ~1Khz

« = Electrical pulse propagates in a single direction
Inverse hysteresis?
Mexican wave

» Electrical signals propagate as pulse trains




The Biological Neuron

> Pulse Trains:
Non-digital signal transmission nature

Intensity of signal = frequency of pulses
Pulse Frequency Modulation
Almost constant pulse amplitude
Neuron can send pulses arbitrarily even
when not excited!
Much Less Frequency - Noise

The Biological Neuron

> Pulse Trains - Example:

t=0 = Neuron Excited
t=T [~50ms]—> Neuron fires a train of pulses
t=T+7 = Neuron fires a second set of pulses Due to
first excitation
Smaller # of pulses
Neuron sends random less frequent pulses

10



Biological Neuron:
Processing off Signals

> A cell at rest maintains an electrical Presynaptic
. . transmitter terminal
potential difference known as the
resting potential with respect to the
outside. :
Transmitier

> An incoming signal perturbs the e
potential inside the cell. Excitatory &
signals depolarizes the cell by g
allowing positive charge to rush in, A
inhibitory signals cause hyper- S
polarization by the in-rush of
negative charge.

Dendrite

http://www.ifisiol.unam.mx/Brain/neuron2.htm

Biological Neuron:
Processing of Signals

Shreng

> Voltage sensitive Exciatry

potertial

sodium channels trigger B,

cell
baody

possibly multiple “action e
potentials” or voltage m
spikes with amplitude of

about 110mV depending
on the input.

CeII
Body

/ Strong  AXon
inhixitory
|

it
petentia

http://www.ifisiol.unam.mx/Brain/neuron2.htm




Biological Neuron:
Conduction in' Axon

> Axon transmits the action

potential, regenerating
the signal to prevent
signal degradation.

Conduction speed ranges
from 1m/s to 100m/s. S
Axons with myelin ot

sheaths around them WWMJM
conduct signals faster. L =
Axons can be as long as ;

1 meter potential

potential

http://www.ifisiol.unam.mx/Brain/neuron2.htm

Biological Neuron:
Output of Signal

At the end of the axon,
chemicals known as

- Chemical
neurotransmitters are J1i Trarsriter
released when excited by > :
action potentials.

Amount released is a .
function of the frequency i —
of the action potentials. MJN Tl
Type of neurotransmitter s

released varies by type of

neuron.

http://www.ifisiol.unam.mx/Brain/neuron2.htm
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Artificial Neuron Abstraction

> Neuron has multiple inputs
> Inputs are weighted

> Neuron “fires” when a function of the
Inputs exceed a certain threshold

» Neuron has multiple copies of same output
going to multiple other neurons

Artificiall Neuron Abstraction

» McCulloch-Pitts Model (1943)
o I/ps:[ul...uN]
o Weights:[w1...wN]

» 0:Threshold/bias
6 <0 > Threshold
0>0 - Bias_
« Activation:|: ||:
o O/p: x
« O/p function/Activation function: x=f(a)

13



Artificial Neuron Abstraction

> McCulloch-Pitts Model vs. Blologlcal Neuron

I/ps < Electrical signals received at dendrites
Amplitude < Amount of Neurotransmitters € Pulse Frequency:
« + < Excitory & - < inhibitory
Weights < Synaptic strength
Dendrite receptors

0 < Resting Potential
6 < 0 always in neuron
Activation < Sum, of all synaptic excitations + resting potential

Activation| Function < Voltage gated Na Channel Threshold
function

O/p < Action| potential initiation/repression at axon hillock

Artificiall Neuron Abstraction

> McCulloch-Pitts Model — Formulation
Activation | é‘\|||||\
Augmented weights
u0=1 & w0=0 L]

\ector Notation HHHI

O/p function

Threshold m
Sigmoid |H HH H H .I|H

14



Artificial Neuron Abstraction

> McCulloch-Pitts Model — Example
e 4 I/p neuron >

18
AND| \ OR|U \ NDTIOII

« XOR? —linear separation!

Neural Network Types

> Feedforward
» (Multicategory) Perceptron
« Multilayer — Error Backpropagation
> Competitive
« Hemming
o Maxnet
> Variations of Competitive
» Adaptive Resonance Theory (ART)
« Kohonen

> Hopfield

15



Hopfield Networks

> First developed by John Hopfield in 1982
> Content-Addressable Memory

» Pattern recognizer

> Two Types: Discrete and Continuous

> Common Properties:

Every neuron is connected to every other neuron.
Output of neuron i is weighted with weight w;; when it
goes to neuron j.

Symmetric weights: w; = w;;
No self-loops: w;; = 0
Each neuron has a single input from the outside world

Discrete Hopfield Network:
Training / Initalization

> Training: (Storing bipolar patterns)
» Simultaneous, Single-step

 Patterns: s(p) = {s4(p), s»(P), --- ,S,(P)}
» Weight Matrix W = {w;}

Fausett, Laurene. Fundamentals of Neural Networks: Architectures,
Algorithms and Applications. Prentice Hall, Englewood Cliffs, NJ, 1994.

16



Discrete Hopfield Networks:
Execution / Pattern Recall

> Asynchronous update of neurons
« Neurons are updated sequentially at random

> Compute netinput: KRR
> Determine activation/output:

1ifV _in >0,
V. ={V, if V_in ==
0ifV _in <@

> Broadcast output'V; to alllother neurons.

Hopfield, J.J.”"Neurons with graded response have collective computational Properties
like those of two-state neurons” in Proc.Natl.Acad.Sci, USA. Vol.81, pp3088-3092

Discrete Hopfield Network

> Binary Hopfield Network Demo:

http://www.techhouse.org/~dmorris/JOHN/StinterNet.html




Discrete Hopfield Networks:
Proof of Convergence
> Output of neuron i: LYY, >4

» Consider the following Energy function:
E =-%Z_Z:Tijvivj =2 WV 20V,

This implies...
AE = {ZTijVi +1, —Hi}[AVi]S 0
i#]j
because [] always has the same sign

Hopfield, J.J.”"Neurons with graded response have collective computational Properties
like those of two-state neurons” in Proc.Natl.Acad.Sci, USA. Vol.81, pp3088-3092

Discrete Hopfield Networks:

Proof of Convergence (2)

» Furthermore, the energy function is
bounded...since T s are all fixed, V. Is
either V,, or V., (typlcally 1 or 0), and ©.’'s
are also fixed

:——ZZT,J V-2 Vi + 6V,

Joi#]
> Since AE<=0 and E is bounded, the
system must eventually settle down at a
locall or global minimum;in terms of E.

18



Continuous Hopfield Networks

> and
outputs instead of discrete binary or
bipolar values.

> instead of serial
asynchronous update of discrete network

> can emulate continuous
hopfield nets

Continuous Hopfield Networks
How do they work?
» Can be modeled as the following electrical

IV VY

Neurcn

v amplifier
res

in Tjj networl

19



Continuous Hopfield Networks
Proof of Convergence
> Consider the foIIowing Energy Function:

Hopfield, J. J. “Neurons with graded response have collective computational properties

like those of two-state neurons”, Proceedings of the National Academy of Science, USA.

Vol 81, pp. 3088-3092, May 1984, Biophysics.

Continuous Hopfield Networks
Proof of Convergence

> The bracket inside the time derivative of
the energy function is the same as that in
the original function describing the system.

E_ s dv ZT,V ——+|
a4\
d_E=_ o .
dt dt A dt

. dv dE dvi
“SN'C.ag (V. < =0 =>—=0 forVi
>.Co; (V.)(d J o ”

Hopfield, J. J. “Neurons with graded response have collective computational properties

like those of two-state neurons”, Proceedings of the National Academy of Science, USA.

Vol 81, pp. 3088-3092, May 1984, Biophysics.
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Chemical Implementation of
Neural Networks
> Single Chemical Neuron i:
o I"#C; €2X;;+ G Jii=k Cr-k 1 CKy;
e X, #BEDX A, Jy=koX,Bi-k_2Ai

» Ci is the Input

> Al + Bi = constant
« Aiis high, Bi'is low if Ci'is above threshold
o Bilis high, Ai'is low: ifi Ci is below threshold

Hjelmfelt, Allen, etal. “Chemical Implementation of neural networks and Turing machines”
Proceedings of the National Academy of Science, USA. Vol 88, pp10983-10987, Dec. 1991

Chemical Implementation of
Neural Networks

> Construction of Interneuronal Connections:

« Species A, and B; may affect the concentration of the

catalyst C; of other neurons

> Each neuron uses a different set of chemicals
and occupy the same container
« Similar to logic networks using gene networks

21



Chemical Implementation of
Neural Networks: AND gate
> Al and Aj are output

Computing with
Action Potential Timing

> [Alternative to Neural Network Communication Model]

> Neurons communicate with action potentials=>»

> Engineering models for neuron activity use
continuous variables to represent neural activity
« Activity > <rate of action potential generation>

> Traditional neurobiology: same model->
» “short term mean firing rate”

> Average pulse rate is inefficient in neurobiology
» Single neuron=» Wait for several pulses > slow.

« Multiple eguivalent neurons=» average over -
redundant ‘wetware’ & error

22



Action Potential Timing

> New examples in Biology:

» Information - Timing of action potentials
(Rather than pulse rate)

Ex: Moustache Bat

» Uses timing to discriminate its sonar from environmental
noise

Application: Analog match of odour identification
» Solved more efficiently using action potential timing

Action Potentiall Timing

> Moustache Bat Sonar:

» Generates 10 ms ultrasonic pulse with
frequency increasing with time (‘chirp’)

« Chirp is received back in cochlea

23



Action Potential Timing

> Moustache Bat Sonar:
« In cochlea, cells with different freq. Selectivity
(Filter bank)
Produce a single action potential if signal is within the pass-
band

No action potential otherwise
» Seguential response to different frequencies

.

Action Potentiall Timing

> Moustache Bat Sonar:
» Pulses leave cochlea cells in order
« Length and propagation speeds of axons different -
all pulses arrive at target cell simultaneously
» High aggregate action potential at target cell reaches
threshold |

24



Action Potential Timing

> Analog match
o Odour > Mixture of molecules with different

concentrations: N.
» Matching odour :
Intensity () varies

Concentration ratios similar

« = normalized concentrations n, similar:
(A: intensity)

Whether stimulus, s, has the similar concentratlon ratios of
constituents to a prescribed target ratio n et

Formulation:
Conceptually:
» Similarity of ratios (N1:N2:
» Similarity ofi vector direction

Action Potentiall Timing

> Analog Match — Neural network implementation:

« Unknown odour vector I: [I1 12 ...1k]
Check if matches [LlErE LIS R g

Target odour vector n:

n
W = —
Define weight vector W: I

Normalize | to unit length vector: m

Recognition: Inorm oW > threshold (i.e. 0.95)

Result of inner product=>-

o Cos(lom, W) = [-1,1]; actually [0,1] as both vectors in 15t
guadrant (concentrations > 0))

» Closer to 1 =» vectors alignibetter

25



Action Potential Timing

> Analog Match — Neural network implementation:

« 4 weaknesses:
Euclidean normalization expensive
If weak component (in conc.) has importance or strong| is
unreliable, we cannot represent this — weights describe only
concentration of comp-s
« We can have ‘weighted” weights
[wA]: conc. Ratios & [w2]: priorities=» W=wA1.*w2
No Hierarchical design = normalization problem
No tolerance to missing) i/ps or highly wrong i/ps

o l.e. n1:n2:n3:n4:n5 1:7:1.5:0.4:0.1 (/10)
->{l1,12,13,14,15}: {1, ¢, 1.5, 0.4, 0.1}
->{I1,12,13,14,15}: {1, 7, ¢, 0.4, 0.1}

Action Potentiall Timing

> Analog match — Action Potential Method

a Iag/l\( L s 7y 9

b log | recognition unit sums
e EPSPs then thresholds

. S log ! —

Imin Imax 0 T

Delays set Weights set relative
prototype pattern feature importance

« 3i/ps la,lb,lc 2> log(lx) define advance before
reference time T n,
» Target odour in [n] > ":{”b]
Delays:
« ![n]should be upscaled to have n.> 1 (o/w advancer!)
» Analog Match =»
Alllpulses arrive at target simultaneously.
Scaling doesn’t change relative timing|— all shift
log(Ael,)=1log(l,)+log(1)

c

26



Action Potential Timing

> Analog match — Action Potential Method

. Ex:
n, 1 A, =log(n,)=0
n=n,|=|2|=A,=log(n,)=0.31
n, 3 A, =log(n,)=0.48
I=[l, 1, 1.]=[10 20 30]= Perfect Match
log(1)=[1 1.31 1.48]=
|, starts at: T-1 I, ends at: T-1+0=T-1
I, starts at: T-1.31 )I, ends at: T-1.31+0.31=T-1
|C starts at: T —1.48 |C ends at: T-1.48+0.48=T -1

Action Potentiall Timing

> Analog match — Action Potential Method
» All 4 weaknesses removed
e (1) No normalization required

e (2) Pulse advances w.r.t. T
= concentration/scaling
Synaptic Weights = importance

o (3) Hierarchy can exist
— all neurons independent

o (4) Tolerates missing/grossly inaccurate info
=>




Action Potential Timing

> Analog match

> Error Tolerance Comparison of 2 Methods:

o Target=n=[111]
Spike Timing

thresh =0.7 0.6 thresh = 0.99 0.95

Normalize, Dot Product

« Neural Net Model >

The cone around [1 1 1] vector defines tolerance: projects a ~circle on

unit circle
» Action Potential Timing = makes bisectors > star shape
Finds individual scalings: pulses with: same scaling overlap
o Received l/p=1=[1 1 0]=
Neural net needs to accept almost eveny. i/p
Action potential timing detects similarity:

Action Potentiall Timing

> Analog match — Action Potential Method

« Reference Time T
Reference time T known by all neurons
» Externally generated > bat example
« Internally generated periodically

28



Neural Network Hardware: TOTEM

> Developed by

s R
o A A

Neural Network Hardware:
IBM ZISC

29



Index of Terms

body of a nerve cell as distinguished from the
nucleus, axon, and dendrites M

a specialized region of the soma called the
axon hillock where the action potential is initiated once a
critical threshold is reached m

The larger ends of axons at the
synapse, where the neurotransmitters are released —
same as presynaptic terminals m

Index of Terms

specialized cellular devices
that can transport ions in and out of the
cell thru the membrane

. are always open and are
not influenced significantly by extrinsic factors

. open and close in response to spe
mechanical, or chemical signals

small molecules that are liberated by
a presynaptic neuron into the synaptic cleft and cause a
change in the postsynaptic membrane potential m
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Index of Terms

Reduction of membrane charge
separation = Increase inlMembrane potential (less

negative) m

Increase inimembrane charge
separation = Decrease in Membrane potential (more

negative) m

small molecules that are liberated by
a presynaptic neuron into the synaptic cleft and cause a
change in the postsynaptic membrane potential
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