
1

11/10/2003 Complexity Effective Superscalar
Processors

1

COMPLEXITY EFFECTIVE COMPLEXITY EFFECTIVE
SUPERSCALAR PROCESSORSSUPERSCALAR PROCESSORS
�Part-I:

Objective: Characterizing Complexity at architecture
level
Baseline Architecture
Sources of Complexity

µArchitecture components such that ILP ÊÎ complexity Ê
Models for quantifying component delays

�Part-II:
Objective: Propose a Complexity-Effective
µArchitecture

High IPC & High Clock Rate

11/10/2003 Complexity Effective Superscalar
Processors

2

CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity
�Analysis of Critical Structures

<Mostly from [2]>

2

11/10/2003 Complexity Effective Superscalar
Processors

3

BASELINE ARCHITECTUREBASELINE ARCHITECTURE
�Superscalar, o-o-o execute, in order

complete
�MIPS R10000, DEC Alpha 21264

11/10/2003 Complexity Effective Superscalar
Processors

4

BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Fetch:
Read Fetch-Width Instr-s/clk from I$
Predict Encountered Branches
Send to decoder

3

11/10/2003 Complexity Effective Superscalar
Processors

5

BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Decode:
Decode instructions into

op|subop|imm.|operands|etc.

11/10/2003 Complexity Effective Superscalar
Processors

6

BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Rename:
Rename the logical operand registers

Eliminate WAR and WAW

Logical register Æ physical register
Dispatch to Issue Window (Instruction Pool)

4

11/10/2003 Complexity Effective Superscalar
Processors

7

BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Issue Window & Wakeup-Select Logic:
Wait for source operands to be ready
Issue instructions to exec. Units if Î

Source operands ready & functional unit available
Fetch operands from Regfile – or bypass

11/10/2003 Complexity Effective Superscalar
Processors

8

BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Register File:
Hold the physical registers
Send the operands of currently issued
instructions to exec. Units – or bypass

5

11/10/2003 Complexity Effective Superscalar
Processors

9

BASELINE ARCHITECTUREBASELINE ARCHITECTURE

�Rest of Pipeline:
Bypass Logic
Execution Units
Data Cache

11/10/2003 Complexity Effective Superscalar
Processors

10

OTHER ARCHITECTURESOTHER ARCHITECTURES
�Reservation Station Model:

� Intel P6, PowerPC 604

6

11/10/2003 Complexity Effective Superscalar
Processors

11

Baseline Model:

All reg. values reside in
physical reg-file

Only tags of operands broadcast
to window
¾ Values go to physical reg-file

Res. Station Model:

Reorder buffer holds
speculative values; reg-file
holds commited values
Completing intsr-s broadcast
operand values to reservation
station
¾ Issued instr-s read values from

res. station

Baseline vs. Reservation StationBaseline vs. Reservation Station
�Two Major Differences:

11/10/2003 Complexity Effective Superscalar
Processors

12

CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity
�Analysis of Critical Structures

<Mostly from [2]>

7

11/10/2003 Complexity Effective Superscalar
Processors

13

CRITICAL STRUCTURESCRITICAL STRUCTURES
�Structures with Delay α

Issue Width(IW) | Issue Window(WinSize)
�Dispatch & Issue related structures
�Structures that broadcast over long wires
�Candidate Structures:

Instruction Fetch Logic
Rename Logic
Wakeup Logic
Select Logic
Register File
Bypass Logic
Caches

11/10/2003 Complexity Effective Superscalar
Processors

14

Instruction Fetch LogicInstruction Fetch Logic
�Complexity

α Dispatch/Issue Width
�As instr. Issue width Ê

Æ Predict Multiple branches
�Non contiguous cache blocks need to be

fetched and compacted
�Logic Described in [5]
�Delay Models to be developed

8

11/10/2003 Complexity Effective Superscalar
Processors

15

Register Rename LogicRegister Rename Logic

�Map Table: Logical to
Physical Register Mapping

IW ÊÎ Number of map table ports Ê
�Dependence Check Logic: Detects true

dependences within current rename group
IW ÊÎ Depth of Dep. Check LogicÊ

�Delay α Issue Width

11/10/2003 Complexity Effective Superscalar
Processors

16

Wakeup LogicWakeup Logic

�Part of Issue Window

�‘Wake up’ Instr-s when source operands ready
�When an instr. Issued, its result register tag

broadcast to all instructions in issue window
WinSize ÊÎ Broadcast Fanout Ê & Wire Length Ê
IW ÊÎ Size of each window entry Ê

�Delay α Issue Width & Window Size

9

11/10/2003 Complexity Effective Superscalar
Processors

17

Selection LogicSelection Logic

�Part of Issue Window

�Select Instr-s from ones with all source operands
ready & if available FU exists

Selection Policies
WinSize ÊÎ Search Space Ê
of FUs ÊÎ # of SelectionsÊ

�Delay α
Window Size & # of FUs & Selection Policy

11/10/2003 Complexity Effective Superscalar
Processors

18

Register FileRegister File

�Previously studied in [6]
�Access Time α

of Physical registers & # of read+write
ports
�Delay α Issue Width

10

11/10/2003 Complexity Effective Superscalar
Processors

19

Data Bypass LogicData Bypass Logic
�Result Wires: Set of wires

to bypass results of completed
but not committed instr-s

of FUs ÊÎ wire lengthsÊ
Pipeline DepthÊÎ # of wiresÊ & load on wiresÊ

�Operand MUXes: select appropriate values to FU
I/p ports

of FUs ÊÎ Fan-in of MUXesÊ
Pipeline Depth ÊÎ Fan-in of MUXesÊ

�Delay α Pipeline depth & # of FUs

11/10/2003 Complexity Effective Superscalar
Processors

20

CachesCaches
�Studied in [7] & [8]

�[7] gives detailed low
level access time analysis
�[8] based on [7]’s methodology, with finer

detail
�Delay α Cache Size & Associativity

11

11/10/2003 Complexity Effective Superscalar
Processors

21

CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity
�Analysis of Critical Structures

<Mostly from [2]>

11/10/2003 Complexity Effective Superscalar
Processors

22

QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Methodology:

Key Pipeline Structures studied
A representative CMOS design is
selected from published alternatives
Implemented the circuits for 3
technologies:

0.8µ, 0.35µ & 0.18 µ
Optimize for speed

Wire parasitics in delay model
Rmetal, Cmetal

12

11/10/2003 Complexity Effective Superscalar
Processors

23

QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Technology Trends:

Shrinking Feature Sizes Æ Scaling
Feature size scaling: 1/S
Voltage scaling: 1/U

�Logic Delays:
CL: Load Cap.: 1Æ 1/S
V: Supply Voltage: 1Æ 1/U
I: Average charge/discharge current: 1Æ 1/U
Overall Scale factor: 1/S

11/10/2003 Complexity Effective Superscalar
Processors

24

QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Wire Delays:

L: wire length
Intrinsic RC delay Æ

Rmetal: Resistance per unit length

Cmetal: Capacitance per unit length

0.5: 1st order approximation of distributed RC model

13

11/10/2003 Complexity Effective Superscalar
Processors

25

QUANTIFYING COMPLEXITYQUANTIFYING COMPLEXITY
�Scaling Wire Delays:

Metal Thickness doesn’t scale much
Width α 1/S

Rmetal α S
Fringe Capacitance dominates in smaller
feature sizes

Cmetal α S
(Length scales with 1/S)
Overall Scale factor: S.S.(1/S)2 = 1

11/10/2003 Complexity Effective Superscalar
Processors

26

CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY

�Complexity:
Delay through critical path

�Baseline Architecture
�Defining Critical Structures
�Method for Quantifying Complexity
�Analysis of Critical Structures

<Mostly from [2]>

14

11/10/2003 Complexity Effective Superscalar
Processors

27

COMPLEXITY ANALYSISCOMPLEXITY ANALYSIS
�Analyzed Structures:

Register Rename Logic
Wakeup Logic
Selection Logic
Data Bypass Logic

�Analysis :
Logical function
Implementation Schemes
Delay in terms of µArchitecture ParamatersÆ

Issue Width
Window Size

11/10/2003 Complexity Effective Superscalar
Processors

28

Register Rename LogicRegister Rename Logic
�Map Table: Logical Name Æ Physical Reg.

Multiported
Multiple instr-s with multiple operands

�Dependence Check Logic: Compare each source
register to dest. Reg-s of earlier instr-s in current
set

Multiported
Multiple instr-s with multiple operands

�Shadow Table: Checkpoint old mappings to
recover from branch mispredictions

15

11/10/2003 Complexity Effective Superscalar
Processors

29

Register Rename LogicRegister Rename Logic
-

G
o

to
 is

su
e

w
in

do
w

D
ec

od
ed

 In
st

ru
ct

io
ns

If Src Reg, Read From Table
If Dest Reg, add to table

11/10/2003 Complexity Effective Superscalar
Processors

30

Map Table ImplementationMap Table Implementation
�Implementation Æ RAM or CAM
�RAM: (Cross Coupled inverters)

Indexed by Logical reg-s = # of entries
Entries: Physical reg-s
Shift-Register for Checkpointing

�CAM:
Associatively searched with logical reg designator
Entries: Logical Reg | Valid Bit
of entries = # of physical registers

�CAM vs RAM
Similar performance <Only RAM analyzed>

16

11/10/2003 Complexity Effective Superscalar
Processors

31

Dependence Check LogicDependence Check Logic
�Accessed in Parallel with Map Table
�Every Logical Reg compared against logical dest

regs of current rename group
�For IW=2,4,8, delay less than map table

r1

r4

r4

r4

r4

r1

r4 p2

p7
p1

11/10/2003 Complexity Effective Superscalar
Processors

32

Rename Logic Delay AnalysisRename Logic Delay Analysis
�Map Table Æ RAM scheme
�Delay Components:

Time to decode the logical reg index
Time to drive wordline
Time to pull down bit line
Time for SenseAmp to detect pull-down
MUX time ignored as control from dep. Check logic comes in advance

17

11/10/2003 Complexity Effective Superscalar
Processors

33

Rename Logic Delay AnalysisRename Logic Delay Analysis
�Decoder Delay:
�Predecoding for speed
�Length of

predecode lines:
Cellheight: Height of
single cell excluding wordlines

Wordline spacing
NVREG: # of virtual reg-s
x3: 3-operand instr-s

11/10/2003 Complexity Effective Superscalar
Processors

34

Rename Logic Delay AnalysisRename Logic Delay Analysis
� Decoder Delay:

� Tnand: Fall delay of NAND
� Tnor: rise delay of NOR

� Rnandpd: NAND pull-down channel resistance
� + Predecode line metal resistance (NAND --- NOR)

0.5 due to distributed R&C model for delay

� Ceq: diff-n Cap. Of NAND + gate Cap. Of NOR +
interconnect Cap.Î

18

11/10/2003 Complexity Effective Superscalar
Processors

35

Rename Logic Delay AnalysisRename Logic Delay Analysis
�Decoder Delay:
�Substituting PredecodeLineLength, Req, Ceq Æ

Tdecode:

�c2: intrinsic RC delay of predecode line
�c2 very small Î
�Decoder delay ~linearly dependent on IW

11/10/2003 Complexity Effective Superscalar
Processors

36

Rename Logic Delay AnalysisRename Logic Delay Analysis
�Wordline Delay:
� Turn on all access transistors (N1 in cell schematic p.32)

� PREGwidth:
phys. reg designator width

� Rwldriver:
pull-up res. Of driver

� Rwlres:
resistance of wordline

� Cwlcap:
capacitance on word line

19

11/10/2003 Complexity Effective Superscalar
Processors

37

Rename Logic Delay AnalysisRename Logic Delay Analysis
�Wordline Delay:

�Total Wordline Capacitance:
Total Gate Cap. of access transistors+ wordline wire cap.

B: maximum # of shadow mappings

(Fall Time of inv. + Rise time of driver)

(0.5 for distributed RC)

11/10/2003 Complexity Effective Superscalar
Processors

38

Rename Logic Delay AnalysisRename Logic Delay Analysis
�Wordline Delay:
�Substituting WordLineLength, Rwlres, CwlcapÆ

Twordline:

�c2: intrinsic RC delay of wordline
�c2 very small Î
�Wordline delay ~linearly dependent on IW

20

11/10/2003 Complexity Effective Superscalar
Processors

39

Rename Logic Delay AnalysisRename Logic Delay Analysis
� Bitline Delay:
� Time from wordline going Hi (Turning on N1) Æ Bitline

going below sense Amp threshold

� c2 very small Î
� Bitline delay ~linearly dependent on IW

11/10/2003 Complexity Effective Superscalar
Processors

40

Rename Logic Delay AnalysisRename Logic Delay Analysis
�Sense Amplifier Delay:
�Sense Amp design from [7]
�Implementation ind. of IW
�Delay varies with IW

Delay α slope of I/p (bitline Voltage) Î
Delay α bitline delay Î

�SenseAmp delay ~linearly dependent on IW

21

11/10/2003 Complexity Effective Superscalar
Processors

41

Rename Logic Spice ResultsRename Logic Spice Results

� Feature size ÌÎ [increase in
bitline&wordline delay with increasing IW] Ê

0.8µ: IW 2Æ8 Î Bitline delay Ê 37%
0.18µ: IW 2Æ8 Î Bitline delay Ê 53%

� Total delay increases
linearly with IW

� Each Component shows
linear increase with IW

� Bitline Delay > Wordline
Delay

Bitline length α # of
Logical reg-s
Wordline length α width
of physical reg designator

11/10/2003 Complexity Effective Superscalar
Processors

42

Wakeup LogicWakeup Logic
�Updating source dependences for instr-s in

issue window
�CAM, 1 instr-n per entry
�When an instr-n produces its result, tag

associated with the result is broadcast to
issue window

Each instr-n checks the tag, if matches Î
sets the corresponding operand flag
2 operand/instr-n Î 2xIW comparators / entry

22

11/10/2003 Complexity Effective Superscalar
Processors

43

1 Bit XNOR

Wakeup LogicWakeup LogicOverall
Wakeup Logic:

Single bit CAM cell
(Compares single bit of Tag –data-

with the newcoming result tags)

Go along for
all tag bits

DISCUSS
POSSIBLE

DELAY
ANALYSIS

11/10/2003 Complexity Effective Superscalar
Processors

44

�Critical Path: Mismatch Æ Pull ready signal low
�Delay Components:

Tag drivers Æ drive tag lines - vertical
Mismatched bit: pull down stack Æ pull matchline low
– horizontal
Final OR gate Æ or all the matchlines of an operand tag

� Ttagdriveα Driver Pullup R & Tagline length & Tagline Load C

Intermediate equations here

Quadratic component significant for IW>2 & 0.18µ

Wakeup Logic Delay AnalysisWakeup Logic Delay Analysis

23

11/10/2003 Complexity Effective Superscalar
Processors

45

�Ttagmatchα Pulldown Stack Pulldown R &
Matchline length & Matchline Load C

Intermediate equations here

�TmatchORα Fan-in (Delay of a gate α Fan-in2)
<Worst Case Fan-in2 RC>

Quadratic component Small for both cases
Both delays ~linearly dependent on IW

Wakeup Logic Delay AnalysisWakeup Logic Delay Analysis

11/10/2003 Complexity Effective Superscalar
Processors

46

Wakeup Logic Spice ResultsWakeup Logic Spice Results
�0.18µ Process
�Quadratic dependence
�Issue width has greater

effect Æ increase all 3
delay components

�As IW & WinSize Ê
together Î delay
actually changes like:
THIS�Delay wrt Window

size & Issue width

24

11/10/2003 Complexity Effective Superscalar
Processors

47

Wakeup Logic Spice ResultsWakeup Logic Spice Results
�8 way & 0.18µ Process
�Tag drive delay

increases rapidly with
WinSize Ê

�Match OR delay
constant

�Delay Breakups for
various WinSizes

11/10/2003 Complexity Effective Superscalar
Processors

48

Wakeup Logic Spice ResultsWakeup Logic Spice Results
�8 way & 64 entry window
�Tag drive and Tag match

delays do not scale as well
as MatchOR delay

Match OR Æ logic delay
Others Æ also have wire
delays

�Delay Breakups for
different feature sizes

25

11/10/2003 Complexity Effective Superscalar
Processors

49

Wakeup Logic Spice ResultsWakeup Logic Spice Results
�All simulations have max WinSize 64

Larger Window Î Tagline RC delay Ê Ê
(Tagline RC delay α WinSize2)

�For larger windows Î
Use Window Banking

Reduces Tagline length

Improves RC
Delay by ~x(1/4)

11/10/2003 Complexity Effective Superscalar
Processors

50

Selection LogicSelection Logic
�Chooses ready instructions to issue

Might be up to WinSize ready instr-s
Instr-s need to be steered to specific FUs

�I/p Æ REQ:
Produced by wakeup logic when all operands ready
1 per instr-n in issue window

�O/p Æ GRANT:
Grants issue to requesting instr-n
1 per request

�Selection Policy

26

11/10/2003 Complexity Effective Superscalar
Processors

51

Selection LogicSelection Logic

Tree of Arbiters

For a Single FU

REQ Signals GRANT Signals

Location based select policy

Anyreq raised if any req is Hi,
Grant Issued if arbiter enabled

Root enabled if
FU available

11/10/2003 Complexity Effective Superscalar
Processors

52

Selection LogicSelection Logic
�Handling Multiple FUs of Same Type:

Stack Select logic blocks
in series - hierarchy
Mask the Request granted
to previous unit

NOT Feasible for More than 2 FUs
Alternative: statically partition issue window
among FUs – MIPS R10000, HP PA 8000

27

11/10/2003 Complexity Effective Superscalar
Processors

53

Selection Logic Delay AnalysisSelection Logic Delay Analysis
�Delay: time to generate GRANT after REQ
�Delay Components:

Time for REQ to propagate: instr-n Æ Root
Root Delay
Time for GRANT to propagate: Root Æ instr-n

� (L: Depth of Arrbiter Tree)

�4 I/p arbiter cells Optimum Î
Î

�Delay ~logarithmically dependent on WinSize

11/10/2003 Complexity Effective Superscalar
Processors

54

Selection Logic Spice ResultsSelection Logic Spice Results
�Root delay same for

each WinSize Î
LÊ x2 Æ
DelayÊ < x2

�Logic Delays Î
Scale well with
feature size

�Caution!: Wire
delays not included!

L=2
L=3

L=4

28

11/10/2003 Complexity Effective Superscalar
Processors

55

Data Bypass LogicData Bypass Logic
�Result Forwarding
�Number of possible bypasses:

S pipestages after first result stage & 2 I/p FUs
Î

�Key Delay Component:
Delay of result wires Æ bypass length & load
Strongly layout dependent

11/10/2003 Complexity Effective Superscalar
Processors

56

Data Bypass LogicData Bypass Logic
Commonly Used Layout:

1 Bit-Slice

Turn on Tri-
State A to pass
result of FU1

to left operand
of FU0

29

11/10/2003 Complexity Effective Superscalar
Processors

57

Data Bypass Logic Delay AnalysisData Bypass Logic Delay Analysis
�Delay Æ Generic wire delay:

L is dependent on # of FUs (IW) & FU heights
Pipeline depthÊÎ C Ê <NOT implemented in simulations!>

�Typical FU heights:

11/10/2003 Complexity Effective Superscalar
Processors

58

Data Bypass Logic Delay AnalysisData Bypass Logic Delay Analysis
�Computed delays for hypothetical

machines:

(Delay independent of feature size)
� Delay dependent on (IW)2

30

11/10/2003 Complexity Effective Superscalar
Processors

59

Data Bypass Logic Data Bypass Logic Alternative LayoutsAlternative Layouts

�Delay computation directly dependent on
layout

Future Æ Clustered Organizations (DEC 21264)

Each cluster of FUs with its own regfile
Intra-Cluster bypasses: 1 cycle
Inter-Cluster bypasses: 2 or more cycles

µArch & compiler effort to ensure inter
cluster bypasses occur infrequently

11/10/2003 Complexity Effective Superscalar
Processors

60

CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY
�Summary:

4 Way ÆWindow Logic is bottleneck
8 Way Æ Bypass Logic is bottleneck

31

11/10/2003 Complexity Effective Superscalar
Processors

61

CHARACTERIZING COMPLEXITYCHARACTERIZING COMPLEXITY
�Summary:

Future ÆWindow logic! & Bypass logic!
Both are ‘atomic’ operations:
- dependent instr-s cannot issue consecutively if
pipelined

11/10/2003 Complexity Effective Superscalar
Processors

62

COMPLEXITY EFFECTIVE COMPLEXITY EFFECTIVE
MICROARCHITECTUREMICROARCHITECTURE

�Brainiac & Maniac
High IPC & High CLK rate

�Simplify Wakeup & Selection Logics
�Naturally extendable to clustering Î

Can solve bypass problem
�Group dependent instr-s rather than

independent ones Æ
�Dependence Based Architecture

32

11/10/2003 Complexity Effective Superscalar
Processors

63

DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE

�Dependent instr-s cannot execute in parallel
�Issue Window Æ FIFO buffers (issue inorder)

‘Steer’ dependent instr-s to same FIFO

�Only FIFO heads need check for ready operands

11/10/2003 Complexity Effective Superscalar
Processors

64

DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE
�SRC_FIFO Table:

Similar to Map table
Indexed with logical
register designator
Entries: SRC-FIFO(Rs)=FIFO where the instr-n
that will write Rs exists. <Invalid if instr-n
completed>
Can be accessed parallel with map table

33

11/10/2003 Complexity Effective Superscalar
Processors

65

DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE
�Steering Heuristic:

If all operands of
instr-n in regfileÎ
Steer to an empty FIFO
Instr-n has a single outstanding operand to be written
by Inst0, in FIFO F0 Î

No instr-n behind Inst0 Î steer to Fa
O/w Î steer to an empty FIFO

Instr-n has 2 outstanding operands to be written by
Inst0&Inst1 in Fa & FbÎ

No instr-n behind Inst0 Î steer to Fa
O/w Æ No instr-n behind Inst1 Î steer to Fb
O/w Î steer to an empty FIFO

If all FIFOs full/No Empty FIFOs Î STALL

11/10/2003 Complexity Effective Superscalar
Processors

66

DEPENDENCE ARCHITECTUREDEPENDENCE ARCHITECTURE
�Steering Heuristic <Ex>: Steer Width: 4

4-way(IW)

34

11/10/2003 Complexity Effective Superscalar
Processors

67

Performance ResultsPerformance Results
�Dependence Arch. vs. Baseline

8 FIFOs, 8 entries/ FIFO vs. WinSize=64
8 –way, aggressive instr-n fetch (no block)
SimpleScalar
Simulation Æ
SPEC’95
0.5B instr-s

11/10/2003 Complexity Effective Superscalar
Processors

68

Performance ResultsPerformance Results
�Dependence Arch. vs. Baseline:

Instr-s committed per cycle

Max
Performance
Degradation

8% in li

35

11/10/2003 Complexity Effective Superscalar
Processors

69

Complexity AnalysisComplexity Analysis
�Wakeup Logic:

Need not to broadcast result tags to all window
entries Æ only to FIFO heads
Reservation Table:

1 bit per regÆ ‘Waiting for data’
Set result reg when instr-n dispatched
Clear when instr-n executes

Instr-n at FIFO head checks its operands’ bits
Delay of Wakeup logic Æ

Delay of Reservation table access

11/10/2003 Complexity Effective Superscalar
Processors

70

Complexity AnalysisComplexity Analysis
�Reservation Station vs. Baseline Wakeup:
�Reservation Station: 80 Regs, 0.18µ:

�Window-Based arch. 32&64 Regs:

36

11/10/2003 Complexity Effective Superscalar
Processors

71

Complexity AnalysisComplexity Analysis
�Instruction Steering:
�Done parallel with renaming
�SRC-FIFO table smaller than rename table

Smaller delay
�Summary:

Wakeup-Select Delay reduced
Faster clock rate ~39%
IPC Performance degrade < 8%
Î ~ 27% execution speed advantage

11/10/2003 Complexity Effective Superscalar
Processors

72

Clustered ArchitectureClustered Architecture
�2x4 way:

�Local Bypass Æ
single cycle

�Inter cluster
bypass Æ
> 1 cycle

�Regfiles
identical, within
a cycle delay

37

11/10/2003 Complexity Effective Superscalar
Processors

73

Clustered ArchitectureClustered Architecture
�Advantages:

Wakeup-Select Function already simplified
Steer Heuristic Æ Dependent instr-s to same
FIFO Î less inter cluster bypasses
Critical bypass logic delay reduced – Main
motivation of clustering
Regfile Access delay reduced as # of ports Ì

�Heuristic Modified:
Two separate free FIFO lists for each cluster

11/10/2003 Complexity Effective Superscalar
Processors

74

Clustered Architecture Clustered Architecture PerformancePerformance

�2x4 way Dependence Arch. vs. 8-way
baseline architecture

2x4 8-entry FIFOs vs. 64 entry window
Inter-cluster bypass Æ 2 cycles vs. all single
cycle bypasses

Instr-s committed per cycle

Max Performance
Degradation 12%

in m88ksim

38

11/10/2003 Complexity Effective Superscalar
Processors

75

Clustered Architecture Clustered Architecture PerformancePerformance

�Dependence Arch will have higher clock
rate: > 4-way, WinSize 32, baseline Î

�Potential Speedup over Window based
architecture > 88% x 125% = 110%

�More than 10% performance
improvement over baseline

25.1
578
724

324
648

≅==
windowentrywayofDelay
windowentrywayofDelay

Speed
Speed

WindowArch

Archdependence

11/10/2003 Complexity Effective Superscalar
Processors

76

Other Clustered ArchitecturesOther Clustered Architectures
�In all cases, inter cluster bypass Æ 2 cycles
�1) Single Window, Execution Driven Steering:

Steer to cluster which
provides the source
operands first
Higher IPC than
double window
Back to the complex wakeup-select logic /

39

11/10/2003 Complexity Effective Superscalar
Processors

77

Other Clustered ArchitecturesOther Clustered Architectures
�2) 2 Windows, Dispatch Driven Steering:

Similar to dependence architecture
Random access windows rather than FIFOs
Steer with a similar dependence heuristic
Still somewhat complex wakeup-select logic /

11/10/2003 Complexity Effective Superscalar
Processors

78

Other Clustered ArchitecturesOther Clustered Architectures
�3) 2 Windows, Random Steering:

Same as dispatch driven architecture
Steer randomly
For Theoretical baseline comparison

40

11/10/2003 Complexity Effective Superscalar
Processors

79

Other Clustered ArchitecturesOther Clustered Architectures
�4) Clustered Dependence ArchitectureÆ

2 Set of FIFOs, Dispatch Driven Steering:

Simple Wakeup Select Logic ☺

11/10/2003 Complexity Effective Superscalar
Processors

80

Performance ComparisonPerformance Comparison
� Ideal Æ 64 entry window, single

bypass all
� Others ÆWinSize:1) 64x1

2)32x2 3)32x2 4)(4x8)x2
�Max performance degradation

26% (m88ksim)
� Almost always as well as 2

windows dispatch driven steer

� Suspicion: m88ksim FIFO does
better than 2 window dispatch
driven steer?

41

11/10/2003 Complexity Effective Superscalar
Processors

81

ConclusionsConclusions
�Window & bypass logic are future (for 1997)

performance bottlenecks
�Clustered Dependence Based Architecture

Performs with little IPC degradation, additional
clock speed aggregates 16% speedup over current
baseline model.

�Wider IW and smaller feature sizes will empasize
this speedup

11/10/2003 Complexity Effective Superscalar
Processors

82

ADDITIONALADDITIONAL
SLIDESSLIDES

42

11/10/2003 Complexity Effective Superscalar
Processors

83

MIPS R10000 PIPELINE

Back

11/10/2003 Complexity Effective Superscalar
Processors

84

INTEL P6 PIPELINE

Back

43

11/10/2003 Complexity Effective Superscalar
Processors

85

INSTRUCTION FETCH LOGIC

Back

� Trace cache can fetch past multiple
branches: merged in line-fill buffer

� Core unit: Predictor + BTB + RAS

11/10/2003 Complexity Effective Superscalar
Processors

86

Register File Complexity Analysis [6]

Back

�Analysis for 4 way & 8 way processors
4 way Æ 32 Entry Issue Window
8 way Æ 64 Entry Issue Window

�Different Register File Organizations
Issue Width Æ # of Read/Write Ports

4 way Æ Integer Regfile:
8 Read & 4 Write Ports

Floating Point Regfile:
4 Read & 2 Write Ports

8 way Æ Integer Regfile:
16 Read & 8 Write Ports

Floating Point Regfile:
8 Read & 4 Write Ports

Different Regfile sizes

44

11/10/2003 Complexity Effective Superscalar
Processors

87

� FP Regfile faster than Int Regfile Å Less Ports
� Doubling number of ports Î

Double # of wordlines and bitlines
Quadruple Regfile Area

� Doubling number of Registers Î
Double # of wordlines

Double Regfile Area

Register File Complexity Analysis [6]

Back

11/10/2003 Complexity Effective Superscalar
Processors

88

� Ndwl, Ndbl, Ntwl, Ntbl Æ Layout parameters
� Access Time = Decoder Delay + Word-line delay + Bit-line/Sense

Amplifier Delay + Data Bus Delay
� Formula & Derivations in paper
� Time breakdown plots not descriptive of cache parameters

I.e Twl vs. (B.8).A/Ndwl

Cache Access Time [7]

Back

45

11/10/2003 Complexity Effective Superscalar
Processors

89

� Ndwl, Ndbl, Ntwl, Ntbl
Layout parameters:

a. 2-Way Set Assoc.
(A=2), Ndwl=Ndbl=1

b. A=2, Ndwl=2, Ndbl=1
c. A=1, Ndwl=Ndbl=1
d. A=1, Ndwl=1, Ndbl=2

Cache Access Time [7]

Back

11/10/2003 Complexity Effective Superscalar
Processors

90

� With correct layout parameters:
Delay α Access Time, 1/(Block
Size), and NOT Associativity

Cache Access Time [7]

Back

Access Time α
log(Cache Size) for
small caches

Direct mappedLarger Block sizes
give smaller access
times if optimum
Ndbl,Ndwl used

Associativity doesn’t
change access time if
optimum Ndbl,Ndwl
used??

46

11/10/2003 Complexity Effective Superscalar
Processors

91

�Additional Layout parameters: Nspd & Ntsbd
How many sets are mapped to a single wordline

�optimum Ndwl, Ndbl, and Nspd depend on cache
and block sizes, and associativity.

Cache Access Time [8]

Back

11/10/2003 Complexity Effective Superscalar
Processors

92

� Cache Size vs. Access Time:
Block size=16 Bytes
Direct Mapped Cache
For each size, optimum
layout parameters used
Access time breakdowns are
shown
Comparator delay significant
Cache Size ÊÎ Access
TimeÊ

Cache Access Time [8]

Back

47

11/10/2003 Complexity Effective Superscalar
Processors

93

� Block Size vs. Access Time:
Cache size=16 KBytes
Direct Mapped Cache
For each block size, optimum
layout parameters used
Access time breakdowns are
shown
Access time Ì due to drop in
decoder delay
Block Size ÊÎ Access
Time Ì

Cache Access Time [8]

Back

11/10/2003 Complexity Effective Superscalar
Processors

94

� Associativity vs. Access Time:
Cache size=16 KBytes
Block Size 16 bytes
For each case, optimum
layout parameters used
Access time breakdowns are
shown
Associativity ÊÎ Access
Time Ê

Cache Access Time [8]

Back

48

11/10/2003 Complexity Effective Superscalar
Processors

95

Distributed RC Model

Back

11/10/2003 Complexity Effective Superscalar
Processors

96

Sense Amplifier [7]

Back

49

11/10/2003 Complexity Effective Superscalar
Processors

97

Wakeup Logic Tagline Equations

Back

11/10/2003 Complexity Effective Superscalar
Processors

98

Wakeup Logic Matchline Equations

Back

50

11/10/2003 Complexity Effective Superscalar
Processors

99

REFERENCESREFERENCES
1. S. Palacharla, N. Jouppi, and J. Smith, "Complexity-Effective

Superscalar Processors", in Proceedings of the 24th
International Symposium on Computer Architecture, June
1997.

2. S. Palacharla, N.P. Jouppi, and J.E. Smith, “Quantifying the
Complexity of Superscalar Processors”, Technical Report CS-
TR-96-1328, University of Wisconsin-Madison, November
1996.

3. K. C. Yeager, “MIPS R10000 Superscalar Microprocessor”, IEEE
Micro, April 1996.

4. Linley Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design”
Microprocessor Report, 9(2), February 1995.

5. Eric Rotenberg, Steve Bennet, and J. E. Smith. “Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching”,
Proccedings of the 29th Annual International Symposium on
Microarchitecture, December, 1996

11/10/2003 Complexity Effective Superscalar
Processors

100

REFERENCESREFERENCES
6. Keith I. Farkas, Norman P. Jouppi and Paul Chow.

"Register File Design Considerations in
Dynamically Scheduled Processors". In 2nd IEEE
Symposium on High-Performance Computer
Architecture, February 1996

7. T. Wada, S. Rajan, and S. A. Przybylski, “An
Analytical Access Time Model for On-Chip
CacheMemories” , IEEE Journal of Solid-State
Circuits, 27(8):1147–1156, August 1992.

8. Steven J., E. Wilton and N. P. Jouppi, “An Enhanced
Access and Cycle Time Model for On-Chip Caches”
Technical Report 93/5, DEC Western Research
Laboratory, July 1994.

