COMPLEXITY EFFECTIVE
SUPERSCALAR PROCESSORS

“» Part-I1:
+ Objective: Characterizing Complexity at architecture
level

+ Baseline Architecture
+ Sources of Complexity

@ pArchitecture components such that ILP 2 =» complexity 2
@ Models for quantifying component delays

“» Part-11:
4+ Objective: Propose a Complexity-Effective
uArchitecture
@ High IPC & High Clock Rate

11/10/2003 Complexity Effective Superscalar 1
Processors

CHARACTERIZING COMPLEXITY
s Complexity:

Delay through critical path
s»Baseline Architecture <
+*Defining Critical Structures
*»*Method for Quantifying Complexity
“*Analysis of Critical Structures

<Mostly from [2]>

11/10/2003 Complexity Effective Superscalar 2
Processors




BASELINE ARCHITECTURE

“»*Superscalar, 0-0-0 execute, in order

complete
<> , DEC Alpha 21264

+ =) w
= =z g o 5 % | =
— 2 | |+ Z Z=|0 8 o 2 = [ —
= z g5 P W] = < =
] = == ‘2” 4] | 5
e - RENAME WAKEUP ) . EXECUTE DCACHE REG WRITE
FETCH DECODE INSERT SELECT REG READ BYPASS ACCESS COMMIT
11/10/2003 Complexity Effective Superscalar 3
Processors

BASELINE ARCHITECTURE

-+ ) W

2 o sl . = P £
R R R ST == -

a z =z~ g & : g
o . RENAME | WAKEUP . EXECUTE | DCACHE | REG WRITE
E L0 3 . :
FETCH | DECODE ot arer | rEGREAD | ERECL s COMMIT

s Fetch:
+Read Fetch-Width Instr-s/clk from 1$
+Predict Encountered Branches
+Send to decoder

11/10/2003 Complexity Effective Superscalar
Processors




BASELINE ARCHITECTURE

+ ] o
= 2 o = o 2
— 2 = i— I B "N
- 2 == © é“ M : a
RENAME WAKEUP EXECUTE DCACHE REG WRITE
FETCH DECODE REG READ 3
INSERT SELECT ! BYPASS ACCESS COMMIT
**Decode:
%*pecode.

+Decode instructions into
op|subop|imm.|operands|etc.

11/10/2003

Complexity Effective Superscalar

Processors

BASELINE ARCHITECTURE

+*Rename:
+ Rename the logical operand registers
@ Eliminate WAR and WAW

+ Logical register > physical register
+ Digpatch to Issue Window (Instruction Pool)

11/10/2003

Complexity Effective Superscalar

Processors




BASELINE ARCHITECTURE

] -| W—, o
= 3 ] L5 o 2
- 3 5 AE D E
2 a
5 . RENAME WAKEUP EXECUTE DCACHE REG WRITE
peTen preont INSERT spLper | RPOREAD Y hypass ACCESS COMMIT

+» Issue Window & Wakeup-Select Logic:
+ Wait for source operands to be ready
+ Issue instructions to exec. Units if =»
Source operands ready & functional unit available
+ Fetch operands from Regfile

Complexity Effective Superscalar

11/10/2003
Processors

BASELINE ARCHITECTURE

o
= = ] =
— 2§ £ i
[ o = =
8 = ) =
e S RENAME | WAKEUP . EXECUTE | DCACHE | REG WRITE
E S CO) : . .
FETCH DECODE INSLRT ShLrct REGREAD | o0 TR COMMIT

s*Register File:
+Hold the physical registers

+Send the operands of currently issued
Instructions to exec. Units

Complexity Effective Superscalar

11/10/2003
Processors




BASELINE ARCHITECTURE

o @ o =
© 2 £ Z-=
— 2 = & — = 7=
@ o = =s
a e =
. RENAME WAKEUP : EXECUTE DCACHE REG WRITE
FETCH DECODE REG READ 3
INSERT SELECT ! BYPASS ACCESS COMMIT

**Rest of Pipeline:

&
&
&

11/10/2003

Complexity Effective Superscalar
Processors

OTHER ARCHITECTURES

+» Reservation Station Model:

P
.gﬁ
-4
~ Z o JI I§sup % ll: %::
— 2 2 | 2 e 5 = 5 e
3 ﬂ g 55 : = p
= a = ZE LI vindpw =} =
D‘é =
Wakeup +
Select
REG READ
WAKEUP EXECUTE | DCACHE | REG WRITE
FETCH DECODE RENAME ROB READ SELECT BYPASS ACCESS T
INSERT
o PowerPC 604
* )
11/10/2003 Complexity Effective Superscalar

Processors

10




Basaline vs. Reservation Station

+» Two Major Differences:
+ Baseline Model: + Res. Station Model:

@ All reg. values reside in @ Reorder buffer holds
physical reg-file speculative values; reg-file
holds commited values

@ Only tags of operands broadcast =@ Completing intsr-s broadcast

to window operand values to reservation
> Values go to physical reg-file station
> Issued instr-s read values from
res. station
11/10/2003 Complexity Effective Superscalar 11

Processors

CHARACTERIZING COMPLEXITY

s Defining Critical Structures <
*»*Method for Quantifying Complexity
“»*Analysis of Critical Structures

11/10/2003 Complexity Effective Superscalar 12
Processors




CRITICAL STRUCTURES

+ Structures with Delay o
Issue Width(IW) | Issue Window(WinSize)

+» Dispatch & Issue related structures
+ Structures that broadcast over long wires

++ Candidate Structures:
+ Instruction Fetch Logic

+ Rename Logic

+ Wakeup Logic r ]
\_ 2
=

+ Select Logic
+ Register File _
+ Bypass Logic =

11/10/2(303(: aCheS Complexity Effective Superscalar 13

Processors

Instruction Fetch Logic
s Complexity LG LE
o Dispatch/Issue Width

“*As instr. Issue width 7
—> Predict Multiple branches

“*Non contiguous cache blocks need to be
fetched and compacted

X Described in [5]
“»*Delay Models to be developed

11/10/2003 Complexity Effective Superscalar 14
Processors




Register Rename L ogic
“*Map Table: Logical to

Physical Register Mapping |
+IW 72 =» Number of map table ports 7

“»*Dependence Check Logic: Detects true
dependences within current rename group
+IW 722 =» Depth of Dep. Check Logic7

“*Delay a Issue Width

11/10/2003 Complexity Effective Superscalar 15
Processors

Wakeup Logic

«*Part of Issue Window

“* ‘Wake up’ Instr-s when source operands ready
“»*When an instr. Issued, its result register tag
broadcast to all instructions in issue window
+WinSize 7 =» Broadcast Fanout 2 & Wire Length 7
+ IW 22 =» Size of each window entry 2

** Delay o Issue Width & Window Size

11/10/2003 Complexity Effective Superscalar 16
Processors




Selection Logic

<Part of Issue Window __ H o
++ Select Instr-s from ones with all source operands
ready & if available FU exists
+ Selection Policies
+ WinSize 722 =» Search Space 7
+ # of FUs 722 =» # of Selections7
“ Delay a
Window Size & # of FUs & Selection Policy

11/10/2003 Complexity Effective Superscalar 17
Processors

Register File

“»*Previously studied in [6]
o o
# of Physical registers & # of read+write

ports
“*Delay a Issue Width

11/10/2003 Complexity Effective Superscalar 18
Processors




Data BypassLogic

“* Result Wires: Set of wires [ L&

to bypass results of completed
but not committed instr-s
+ # of FUs 22 =» wire lengthsA
+ Pipeline Depth7 = # of wires” & load on wires7
“» Operand MUXes: select appropriate values to FU
I/p ports
4+ # of FUs 72 =» Fan-in of MUXes?
+ Pipeline Depth 72 =» Fan-in of MUXes?

“* Delay o Pipeline depth & # of FUs

11/10/2003 Complexity Effective Superscalar 19
Processors

Caches

Studied in [7] & [8] )

“[7] gives
+“*[8] based on [7]’s methodology, with

“*Delay o Cache Size & Associativity

11/10/2003 Complexity Effective Superscalar 20
Processors

10



CHARACTERIZING COMPLEXITY

s Method for Quantifying Complexity <
+“»*Analysis of Critical Structures

11/10/2003 Complexity Effective Superscalar 21
Processors

QUANTIFYING COMPLEXITY

+*» Methodology:
+Key Pipeline Structures studied

+A representative CMOS design is
selected from published alternatives
+Implemented the circuits for 3
technologies:
@0.8y1, 0.351 & 0.18
@Optimize for speed
+Wire parasitics in delay model
@Rmetal, Cmetal

11/10/2003 Complexity Effective Superscalar 22
Processors

11



QUANTIFYING COMPLEXITY

«*Technoloqy Trends:

4 Shrinking Feature Sizes - Scaling

@Feature size scaling: 1/S
@Voltage scaling: 1/U

»Logic Delays: Delaygape = (CL 2 V)T

+C_: Load Cap.: 1> 1/S

+V: Supply Voltage: 1-> 1/U

+1. Average charge/discharge current: 1> 1/U
#Qverall Scale factor: 1/S

11/10/2003 Complexity Effective Superscalar 23

Processors

QUANTIFYING COMPLEXITY

+* Wire Delays:

+ L: wire length
+ Intrinsic RC delay =
Del&ywire = 0.5 X Rvmetml X Cmeta.i X L2

@ Rmetal: Resistance per unit length

Rietar = p/(width * thickness)

@ Cmetal: Capacitance per unit length

Omem.C = Cfri’nge + Cpamﬂe&—pmw
= 24 €% € * thickness/width 4+ 2 x € * €y * width/thickness
@ 0.5; 1%t order approximation of
11/10/2003 Complexity Effective Superscalar 24

Processors

12



QUANTIFYING COMPLEXITY

+*Scaling Wire Delays:
+Metal Thickness doesn’t scale much

+Width o 1/S
+ Rmetal o S

+Fringe Capacitance dominates in smaller
feature sizes

+Cmetal o S
4 (Length scales with 1/S)
#Qverall Scale factor: S.S.(1/S)2=1

11/10/2003 Complexity Effective Superscalar 25
Processors

CHARACTERIZING COMPLEXITY

s Analysis of Critical Structures <

11/10/2003 Complexity Effective Superscalar 26
Processors

13



COMPLEXITY ANALYSIS

+» Analyzed Structures:
+ Register Rename Logic
+ Wakeup Logic
+ Selection Logic
+ Data Bypass Logic
“» Analysis :
+ Logical function
+ Implementation Schemes

+ Delay in terms of pArchitecture Paramaters—>
@ Issue Width
@ Window Size

11/10/2003 Complexity Effective Superscalar 27
Processors

Register Rename L ogic

“*Map Table: Logical Name - Physical Reg.
+ Multiported
@ Multiple instr-s with multiple operands
“»* Dependence Check Logic: Compare each source
register to dest. Reg-s of earlier instr-s in current
set
+ Multiported
@ Multiple instr-s with multiple operands
+“» Shadow Table: Checkpoint old mappings to
recover from branch mispredictions

11/10/2003 Complexity Effective Superscalar 28
Processors

14



Register Rename L ogic

2h s If Src Reg, Read From Table
2 If Dest Reg, add to table =
S 1 S
[} - = PHYSICAL [
= —  —— DEST — B "
B ogm oW TR Sl mmm 3
= e i REG R S
= — — A
8 2
: :
A O
B
REGS 5 (SL\CEJ’
LOGICAL ——= ’
SOURCEREG R
11/10/2003 Complexity Effective Superscalar 29
Processors
Map Table I mplementation
“* Implementation > RAM or CAM
“*RAM: (Cross Coupled inverters)
+ Indexed by Logical reg-s = # of entries
+ Entries: Physical reg-s
+ Shift-Register for Checkpointing
“» CAM:
+ Associatively searched with logical reg designator
+ Entries: Logical Reg | Valid Bit
+ # of entries = # of physical registers
“»CAM vs RAM
+ Similar performance <Only RAM analyzed>
11/10/2003 Complexity Effective Superscalar 30
Processors

15



Dependence Check Logic

+» Accessed in Parallel with Map Table

“»Every Logical Reg compared against logical dest
regs of current rename group

“»For IW=2,4,8, delay less than map table

add [ 2.3 add pl. p3.p9
sub 14, 2.5 sub p3.p6
sub 12, 1'_"‘ sub pél,p\\)_@

r1 Wdregl

B ri— I Jsreak >C> pdreg? |

o 7 r 4 lsreg . MUX =
9 renaning 5] ldreg2. .

C = 2 pregk —sf

r4—-» 2 7 >O*- p2
3 6 r4 lsregk P_\iul\l_\'

MAPTABLE MAPTABLE
Idregk-1
0 3 I ) :QJ
FREE REGS FREE REGS I 4 lsreg)
11/10/2003 Complexity Effective Superscalar 31
Processors

Rename Logic Delay Analysis
< Map Table > RAM scheme N

C |
¥

£k

+* Delay Components: A

+ Time to decode the logical reg index 0

+ Time to drive wordline o

+ Time to pull down bit line

+ Time for SenseAmp to detect pull-down

+ MUX time ignored as control from dep. Check logic comes in advance

Delay = Tgecode + Twordiine + Thitiine + Tsenseamp
11/10/2003 Complexity Effective Superscalar 32

Processors

16



Rename L ogic Delay Analysis

+»» Decoder Delay:
** Predecoding for speed \'
+ Length of R =

predecode lines:

4 Cellheight: Height of vl
single cell excluding wordlines

+ Wordline spacing
+ NVREG: # of virtual reg-s
+ x3: 3-operand instr-s

Ry 3 —_Y

PredeclineLength = (cellheight + 3 x ITW x word{inespmng) x NVREG

11/10/2003 Complexity Effective Superscalar 33
Processors

Rename Logic Delay Analysis

«» Decoder Delay:

Taecode = Tnand + Thor
% Tnand: Fall delay of NAND Thand = €0 X Req X Cgq
«» Tnor: rise delay of NOR

Reqg = Rpandpd + 0.5 X PredeclineLength X Rpetal
+» Rnandpd: NAND pull-down channel resistance
++ + Predecode line metal resistance (NAND --- NOR)

+ 0.5 due to distributed R&C model for delay

++ Ceq: diff-n Cap. Of NAND + gate Cap. Of NOR +

interconnect Cap.=>»
Ceq = Clif feap—nand + Cyatecap—nor + PredeclineLength x Cpetq

11/10/2003 Complexity Effective Superscalar 34
Processors

17



Rename L ogic Delay Analysis

«* Decoder Delay:

++ Substituting PredecodeLineLength, Req, Ceq 2>
Tdecode:
Tdecode =0 +¢ X IW + x TW?

+“+c2: intrinsic RC delay of predecode line
“»c2 very small =
s»*Decoder delay ~linearly dependent on IW

11/10/2003 Complexity Effective Superscalar 35
Processors

Rename Logic Delay Analysis

« Wordline Delay:
« Turn on all access transistors (N1 in cell schematic p.32)

wordline driver

F

®,
0.0

FC| = :\-u ! ; |_|_|
fom £ AY sord /- S S _...—"’
PREGwidth: = | d o el

phys. reg designator width

Rwldriver: _
pull-up res. Of driver g"
Rwldriver

®,
0.0

o
*

% Rwilres:

word

resistance of wordline )

% Cwilcap: Ruwlres T Culeap
capacitance on word line

R

11/10/2003 Complexity Effective Superscalar 36
Processors

18



Rename L ogic Delay Analysis
s Wordline Delay:

Twwdiine = Lylinv + Tw},'dv;-iyer (Fall Time of inv. + Rise time of driver)

Twldﬂ"ive’r =¢p X (Rwidriver + Ru).i'res) X Owlcap
Rypires = 0.5 x WordlineLength X Ryepa1 (0.5 for distributed RC)

++ Total Wordline Capacitance:
+ Total Gate Cap. of access transistors+ wordline wire cap.

WordlineLength = (cellwidth + 3 x TW x bitlinespacing + B x shi ftreguwiam) X PREGwig
+ B: maximum # of shadow mappings

11/10/2003 Complexity Effective Superscalar 37
Processors

Rename Logic Delay Analysis

<+ Wordline Delay:

++ Substituting WordLineLength, Rwlres, Cwlcap -
Twordline:

Twordiine = €0 +¢1 X IW + ¢ X w?

“»c2: intrinsic RC delay of wordline
% c2 very small =
“*Wordline delay ~linearly dependent on IW

11/10/2003 Complexity Effective Superscalar 38
Processors

19



Rename L ogic Delay Analysis

+ Bitline Delay:
++ Time from wordline going Hi (Turning on N1) - Bitline
going below sense Amp threshold
Thittine = €0 X (Rastack + Rbittine) X Chitline R
BitlineLength = (cellheight 4+ 3 x ITW x wordlinespacing) * NVREG Pk

Chittine = NVREG % Cyif feap—n1 + BitlineLength % Crpetal

Riittine = 0.5 % BitlineLength % Ryeiu

Trittine = o +¢1 X IW + ¢9 X mw?

>

“» c2 very small =
«¢ Bitline delay ~linearly dependent on W

L)

| sENs
AMPLIFIER
[
'

I.| | 39

*0

11/10/2003 Complexity Effective Superscalar
Processors

Rename Logic Delay Analysis

s Sense Amplifier Delay:
+» Sense Amp design from [7]
“* Implementation ind. of IW

+“* Delay varies with IW
+ >
+ Delay a bitline delay =
“» SenseAmp delay ~linearly dependent on IW

11/10/2003 Complexity Effective Superscalar 40
Processors

20



Rename L ogic Spice Results

W Scnsc Amp delay

ol B i +* Total delay increases
Wordiine delay linearly with IW

Decoder delay

1200 ++ Each Component shows
linear increase with IW

s <+ Bitline Delay > Wordline

Delay
T
+ Bitline length o # of
Logical reg-s

o P + Wordline length o width
o 3 18 of physical reg designator
+ Feature size N =» [increase in
bitline&wordline delay with increasing IW] 2
+ 0.8u: IW 2->8 => Bitline delay 7 37%

+ 0.18p: IW 2->8 = Bitline delay 71 53%
11/10/2003 Complexity Effective Superscalar 41
Processors

Wakeup Logic

“»*Updating source dependences for instr-s in
issue window

“*CAM, 1 instr-n per entry

“*When an instr-n produces its result, tag
associated with the result is broadcast to
Issue window

+Each instr-n checks the tag, if matches =
sets the corresponding operand flag

+2 operand/instr-n =» 2xIW comparators / entry

11/10/2003 Complexity Effective Superscalar 42
Processors

21



Overal Wakeup Logic

Wakeup L.ogie:

2 along for
il tag bits
OR =
|rd /L ‘ |¢«,§- Ll ,"g
| | OR[> rdy
A
|"d}’|- ‘ |opd tapl. |

11/10/2003 Complexity Effective Superscalar 43
Processors

Wakeup Logic Delay Analysis

+* Critical Path: Mismatch - Pull ready signal low
+» Delay Components:
+ Tag drivers - drive tag lines - vertical

+ Mismatched bit: pull down stack = pull matchline low
— horizontal
+ Final OR gate - or all the matchlines of an operand tag
Defay = de«ﬁm + Tmmm =+ TmﬂtchﬂR
% Tiagdrivea Driver Pullup R & Tagline length & Tagline Load C

| Toagdrive = 0.+ (¢_+2 X IW) x WINSIZE + (c3 + 4 x TW +¢_x IW?) x WINSIZE?|
+ Intermediate equations

4 Quadratic component significant for IW>2 & 0.18n

11/10/2003 Complexity Effective Superscalar 44
Processors




Wakeup Logic Delay Analysis

* Ttagmatch o Pulldown Stack Pulldown R &
Matchline length & Matchline Load C

Tmmm =+ X Iw “+ ¢ X I .W'rz
+ Intermediate equaﬂons

% T machor o Fan-in (Delay of a gate o Fan-in2)
+ <Worst Case Fan-inz2 RC>

Tnatchor = co +c¢1 X IW +cp x mw?

+ Quadratic component Small for both cases
+ Both delays ~linearly dependent on W

11/10/2003 Complexity Effective Superscalar 45
Processors

Wakeup Delay (ps)

Wakeup L ogic Spice Results

v ser=— |+ 0.18u Process

3 e F < Quadratic dependence
Y 1 “¢lIssue width has greater
160 e e e "] effect > increase all 3
100 | : delay components

o 1 “AsIW & WinSize 7

s 6 2 .,,,,?.'I2_|,_;‘.I9 W 56 6 together > delay
o actually changes like:

11/10/2003 Complexity Effective Superscalar 46
Processors

23



Wakeup Logic Spice Results
8 way & 0.18u Process

400 M Match OR delay
i, + Tag drive delay
. | increases rapidly with
£ 00 WinSize 7
: +» Match OR delay
" constant
0:0
11/10/2003 Complexity Effective Superscalar 47
Processors
Wakeup L ogic Spice Results
N mmotas 8 way & 64 entry window
o +»Tag drive and Tag match
€ ol delays do not scale as well
Sl as MatchOR delay
2
% w0l - + Match OR - logic delay
o . + Others = also have wire
. delays
0:0
11/10/2003 Complexity Effective Superscalar 48
Processors

24



Wakeup Logic Spice Results

+»* All simulations have max WinSize 64

+Larger Window =» Tagline RC delay 72 7
(Tagline RC delay o WinSize?)

“*For larger windows =»
Use Window Banking

+Reduces Tagline length

Improves RC
Delay by ~x(1/4)

11/10/2003 Complexity Effective Superscal EANKD L al.C 49
Processors

Selection Logic

+» Chooses ready instructions to issue
+ Might be up to WinSize ready instr-s
+ Instr-s need to be steered to specific FUs
“*l/p > REQ:
+ Produced by wakeup logic when all operands ready
+ 1 per instr-n in issue window
% 0Olp 2> GRANT:
+ Grants issue to requesting instr-n
+ 1 per request
+ Selection Policy

11/10/2003 Complexity Effective Superscalar 50
Processors

25



Selection Logic

ISSUE WINDOW

For a Single FU

Treeof Arbiters

== a—)
EEEESERE
EEEEEERGR
= = =1 u
anyregenible anyreg enabld | anyreq enable amyreg enable
3
REQ Signals FEEEEREY GRANT S|gnals
EEEEEREE
[=}=3 -] £ & 5 =
2o CERR
T g BEEB
SEFEE Huba anyreg enable o
1 from/to other subtrees
- N
oR Priceity Fncoder || ARBITER CELL _1: ......
B
i =& ROOT el

AITyTeg

emble Anyreq raised if any req is Hi,
Grant Issued if arbiter enabled

Location based select policy

cnable

T

Root enabled if
FU available

51

Selection Logic
<*Handling M ultiple FUs of Same Type:

+Stack Select logic blocks
in series - hierarchy

+Mask the Request granted

to previous unit

grant0 _icl- ——= req0 grantd —s

FU1 arbiter
FU2 arbiter

+NOT Feasible for More than 2 FUs

+ Alternative: statically partition issue window
among FUs — MIPS R10000, HP PA 8000

11/10/2003

Complexity Effective Superscalar
Processors

52

] —

26



Selection Logic Delay Analysis

+» Delay: time to generate GRANT after REQ

+» Delay Components:
+ Time for REQ to propagate: instr-n = Root
+ Root Delay
+ Time for GRANT to propagate: Root = instr-n
Delay = (L — 1) X Treqpropd + Troot + (L — 1) X Tgranipropd
« (L: Depth of Arrbiter Tree)
4 1/p arbiter cells Optimum =» I = logs (WINSIZE)
=P |Delay=co+ ¢y X logs(WINSIZE)

+*Delay ~logarithmically dependent on WinSize

11/10/2003 Complexity Effective Superscalar 53
Processors

Selection delay {ps)

3000

2500

20004

1500

1000

Selection L ogic Spice Results

Root delay each WlnS'Ze 9

Request propagation delay

+LAX2 >
L=4  Delay? < x2

“Logic Delays =
+ Scale well with

L=3
L=2

<ol feature size
H ++ Caution!: Wire
16 31 o4 128 16 31 o4 118 16 31 64 128 delays nOt included!
0.8 035 0.1%
Window size
11/10/2003 Complexity Effective Superscalar 54

Processors

W Grant propagation delay 0:0 Root delay same for

27



Data Bypass L ogic

“*Result Forwarding
“*Number of possible bypasses:

+S pipestages after first result stage & 2 1/p FUs

2> IxIW2x S
“»Key Delay Component:

+Delay of result wires - bypass length & load

+Strongly layout dependent

11/10/2003 Complexity Effective Superscalar
Processors

55

Data Bypass L ogic

s Commonly Used L ayout:
mux | E r‘ﬁl _ﬁ Ii: - i o =
TETE
FLu2
| He—
Regfile |
FLUo
rr.sulr éf‘__:‘__qJ
Fu1 1B g
it-Slice
<H

Turnon Tri-
State A to pass
result of FU1
to left operand
of FUO

56

28



Data Bypass L ogic Delay Analysis
“*Delay = Generic wire delay:

Delaypire = 0.5 X Rinetar X Crneta X I?
+L is dependent on # of FUs (IW) & FU heights
+Pipeline depth? =» C 71 <not implemented in smulations!>

+* Typical FU heights:

Functional unit Height (M) | Description

Adder 1400 64-bit adder

Shifter 1500 64-bit barrel shifter

Logic Unit 300 Performs logical operations

Complete ALU (ALUpen) | 3200 Comprises adder, shifter, and logic unit

Simple ALU (ALUsgnpte) | 1700 Comprises adder and logic unit

Load/Store (LDST) Unit 1400 Comprises adder for effective address caleulation
11/10/2003 Complexity Effective Superscalar 57

Processors

Data Bypass Logic Delay Analysis

“»Computed delays for hypothetical
machines:

Issue Functional unit Z;H;L FU height | Register file Wire Delay

width mix (A) height (X) | length (A} | (ps)
4 1 AL gen, | ALUgippe, 2 LDST 7700 12800 20500 184.9
8 2 ALUgen, 2 ALUsimple, 4 LDST 15400 33600 49000 1056.4

+(Delay independent of feature size)
% Delay dependent on (IW)2

11/10/2003 Complexity Effective Superscalar 58
Processors

29



Data Bypass L 0giC Alternative Layouts

“*Delay computation directly dependent on
layout
+Future - Clustered Organizations (DEC 21264)

-cycle bypass

+Each cluster of FUs with its own regfile

| +Intra-Cluster bypasses: 1 cycle

REGFILE

REGFILE

+Inter-Cluster bypasses: 2 or more cycles
4+ puArch & compiler effort to ensure inter

cluster bypasses occur infrequently

‘ FU1

FU3

single eyele bypass

11/10/2003

Complexity Effective Superscalar 59
Processors

CHARACTERIZING COMPLEXITY

sSummary:
Issue | Window | Rename | Wakeup+Select | Bypass
width size delay (ps) delay (ps) delay (ps)
0.8um technology
4 32 1577.9 2903.7 184.9
8 64 1710.5 3369.4 1036.4
0.35um technology
4 32 627.2 12484 184.9
8 64 726.6 1484.8 1056.4
0.18pm technology
4 32 351.0 578.0 184.9
8 64 427.9 724.0 1056.4

+4 Way - Window Logic is bottleneck
+8 Way - Bypass Logic is bottleneck

11/10/2003

Complexity Effective Superscalar 60
Processors

30



CHARACTERIZING COMPLEXITY

ss*Summary:
+Future - Window logic! & Bypass logic!

+Both are ‘atomic’ operations:

- dependent instr-s cannot issue consecutively if
pipelined

| ‘\’\, AKEUP | SELECT \ EXEC ‘ add rl0, rl.r2

‘ WAKEUP [\ SELECT EXEC ‘ bubble

v
| o WAKEUP | SELECT EXEC | T | subrl,rl0, 2

11/10/2003 Complexity Effective Superscalar
Processors

61

COMPLEXITY EFFECTIVE

MICROARCHITECTURE
*»*Brainiac & Maniac

#+High IPC & High CLK rate
“»*Simplify Wakeup & Selection Logics
“*Naturally extendable to clustering =

#Can solve bypass problem

“*Group dependent instr-s rather than
independent ones =

“*Dependence Based Architecture

11/10/2003 Complexity Effective Superscalar
Processors

62

31



DEPENDENCE ARCHITECTURE
1 <+““‘ )T
<

FIFOS
RENAME| WAKEUP [EXECUTE| DCACHE | REG WRITE
FETCH | DECODE | "speg | seLeCT [REG READRypASS | ACCESS | COMMIT

|
Fetch

Rename
Steer
ata-cache

Wakeop
Select
|
Begister file
1T
| [Bypass| |

+* Dependent instr-s cannot execute in parallel

+ Issue Window > FIFO buffers (issue inorder)
+ ‘Steer’ dependent instr-s to same FIFO

“+Only FIFO heads need check for ready operands

11/10/2003 Complexity Effective Superscalar 63
Processors

DEPENDENCE ARCHITECTURE

“SRC FIFO Table: _I_I__I<

4Similar to Map table

il il
[ [Bais] |
Eamcacha

+Indexed with logical L= [ ufimaluafamr

register designator

+Entries: SRC-FIFO(Rs)=FIFO where the instr-n
that will write Rs exists. <Invalid if instr-n
completed>

+Can be accessed parallel with map table

11/10/2003 Complexity Effective Superscalar 64
Processors

32



DEPENDENCE ARCHITECTURE

% Steering Heuristic: E E
+ If all operands of %

[[spiss( |

instr-n in regfile=>

Emmchc i

Steer to an empty FIFQ L= [oeoe| et it pecre SRR Re0EE T

+ Instr-n has a single outstanding operand to be written
by Inst0, in FIFO FO =
4 No instr-n behind Inst0 =» steer to Fa
4+ O/w =>» steer to an empty FIFO

+ Instr-n has 2 outstanding operands to be written by
InstO&Instl in Fa & Fb =
4 No instr-n behind Inst0 =» steer to Fa
4+ 0O/w > No instr-n behind Instl =» steer to Fb
4+ O/w => steer to an empty FIFO

+ |f all FIFOs full/N Emectr}(/eEl!;Ersgaa-) STALL

11/10/2003 Complexity E r
Processors

65

DEPENDENCE ARCHITECTURE

“»Steering Heuristic <Ex>: Steer Width: 4
e 4-way(IW)
p—1
1 l =
o m%iz =) Ol3ise
1: addi -1 f—
P NS o Lorr o
g?sii (ﬂ g J—
. X0 G 3 -
g Z5 e
H Y Ox
£ iz s —
10 e S0 9134 i
11: ddu $17,54,519 TS 5 10issue
R = s
14: beq $2.517,L3 p—
|
BT 44 12 issue
11/10/2( E 66

33



Per for mance Results

“*Dependence Arch. vs. Baseline
+ 8 FIFOs, 8 entries/ FIFO vs. WinSize=64
+8 —way, aggressive instr-n fetch (no block)

11/10/2003

+ SimpleScalar
Simulation >

+SPEC’95
+0.5B instr-s

Comj

Fetch width any 8 instructions

I-cache Perfect ion cache

Branch Fredictor McFarling’s gshare (13]
4K 2-bit counters, 12 bit history
unconditional control instructions
predicted perfectly

Issue window size 64

Max. in-fight 128

Retire width 16

Funetional Units 8 symmetrical unils

Functional Unit Latency | 1 cycle

Issue Mechanism out-of-order issue of up to 8 ops/cycle
Ioads may execute when all prior
store add, are known

Physical Registers 120in/120 fp

D-cache 32KB, 2-way SA
write-back, write-allocate
32 byte lines, 1 cyele hit,6 eycle miss
four load/s ports

67

Instructions Per Cycle

Per for mance Results

“*Dependence Arch. vs. Basdline:

4.0
35
3.04
2.5
2.0
1.5
1.0-
0.5-

[ Baseline microarch.
I Dependence-based microarch,

Instr-s committed per cycle

Max

0.0
COmpress gcc g0

i

perl m8Bksim vortex

Performance
Degradation
8% in li

68

34



Complexity Analysis

<*Wakeup Loqgic:

+Need not to broadcast result tags to all window
entries - only to FIFO heads

#Reservation Table:
+1 bit per reg—~> “Waiting for data’
4 Set result reg when instr-n dispatched
4 Clear when instr-n executes

#Instr-n at FIFO head checks its operands’ bits
+ Delay of Wakeup logic >
Delay of Reservation table access

11/10/2003 Complexity Effective Superscalar 69
Processors

Complexity Analysis
“*Reservation Station vs. Baseline Wakeup:
*»Reservation Station: 80 Regs, 0.18u:

Issue | No. physical | No. table | Bits per Total
| width Tegisters entries entry | delay (ps)

4 80 10 8 192.1

8 128 | 16 8 251.7

+Window-Based arch. 32&64 Regs:

Issue | Window | Rename | Wakeup+Select | Bypass
width | size | delay(ps) | delay (ps) delay (ps)

0.18um technology
4 32 351.0 578.0 184.9
3 64 4279 724.0 1056.4
11/10/2003 Complexity Effective Superscalar 70

Processors

35



Complexity Analysis

“*Instruction Steering:

“»*Done parallel with renaming

**SRC-FIFO table smaller than rename table
+Smaller delay

cSummary:
+Woakeup-Select Delay reduced

+Faster clock rate ~39%

+|PC Performance degrade < 8%
+=» ~ 27% execution speed advantage

11/10/2003 Complexity Effective Superscalar 71
Processors

Clustered Architecture

“»2x4 way:

o I—,__ﬂ’,—.“’ffi *» Local Bypass 2>
% 5 =, — single cycle
/ZI]]]—- = = < Inter cluster
: Ul T =T0lllg  bypass >
g 8 |/ | cwsrmeo 5 >1lcycle
2 = o, .
g E I g * Regfiles

identical, within
a cycle delay

\:lIn—H
10 &
1+ 8

-

72




Clustered Architecture

“*Advantages:
+Wakeup-Select Function already simplified

4 Steer Heuristic - Dependent instr-s to same
FIFO =» less inter cluster bypasses

+Critical bypass logic delay reduced — Main
motivation of clustering

+Regfile Access delay reduced as # of ports N
“»Heuristic Modified:
+Two separate free FIFO lists for each cluster

11/10/2003 Complexity Effective Superscalar 73
Processors

Instructions Per Cycl

Clustered Architectur e Performance

“»2x4 way Dependence Arch. vs. 8-way
baseline architecture
#2x4 8-entry FIFOs vs. 64 entry window

#|nter-cluster bypass = 2 cycles vs. all single
cycle bypasses

18] O sremywmiowredty | NStr-s committed per cycle
g.g: M 2-cluster dependence-based 8-way

3.2

3.0

by

%gi Max Performance
?‘é Degradation 12%
s in m88ksim

o8]

0.6

E:é: tive Superscalar 74

compress gec go li mB8Bksim perl vortex SOIS

37



Clustered Architecture Performance

“*Dependence Arch will have higher clock
rate: > 4-way, WinSize 32, baseline =

Speed pengencearsn _ Delay of 8 way 64 entry window 724

= =—=125
Speedyingomarsy ~ Delay of 4 way 32 entry window 578

“»Potential Speedup over Window based
architecture > 88% x 125% = 110%

*Morethan 10% performance
Improvement over baseline

11/10/2003 Complexity Effective Superscalar 75
Processors

Other Clustered Architectures

“In all cases, inter cluster bypass = 2 cycles
1) Single Window, Execution Driven Steering:
4 Steer to cluster which oL o

provides the source

/ CLUSTERO

operands first

N\

CLUSTER |

INSTRUCTION STREAM

#Higher IPC than

double window
+Back to the complex wakeup-select logic ®

11/10/2003 Complexity Effective Superscalar 76
Processors

38



Other Clustered Architectures
% 2) 2Windows, Dispatch Driven Steering:

= 5 l—_ CLUSTER O
-

AN .

g ‘ - CLUSTER {

+Similar to dependence architecture

+Random access windows rather than FIFOs
+Steer with a similar dependence heuristic
+Still somewhat complex wakeup-select logic ®

11/10/2003 Complexity Effective Superscalar 77
Processors

Other Clustered Architectures

s 3) 2 Windows, Random Steering:

= 5 l—_ CLUSTER O
i \I .
§ - CLUSTER {

+Same as dispatch driven architecture
+Steer randomly
+For Theoretical baseline comparison

11/10/2003 Complexity Effective Superscalar 78
Processors

39



Other Clustered Architectures

s 4) Clustered Dependence Ar chitecture—>
2 Set of FIFOs, Dispatch Driven Steering:

RERAMED INSTRUCTIONS

LOCAL DYPASSES

T
INTER-CLUSTER BYPASSES

+Simple Wakeup Select Logic ©

11/10/2003 Complexity Effective Superscalar 79
Processors

Perfor mance Comparison

4.0 I-cluster.1window
3.6 1°} 2-cluster.FIFOs.dispatch_steer
32 B 2-cluster.windows.dispatch_steer
W 2-cluster.twindow.exec_steer
7‘;2‘8' M 2-cluster.windows.random_steer
S i
Saal |
G20] |
Ll Wl
El.& i ! il
H :
A1z | ¢ i
4 LB :
| t
os{ /i M |
4] |if i |
wol 1 l i
compress £0 li  m88ksim
-
€ @,
g‘as.
§.30.
£ 2.
£ ]
5‘ 15+
P
§ 10
£ ol =
£  compress gec go li  m88ksim

perl  vorlex

perl  vortex

+¢ ldeal = 64 entry window, single
bypass all

++ Others - WinSize:1) 64x1
2)32x2 3)32x2 4)(4x8)x2

+¢» Max performance degradation
26% (Mm88Kksim)

¢ Almost always as well as 2
windows dispatch driven steer

ffective Superscalar 80
Cessors

40



Conclusions

s Window & bypass logic are future (for 1997)
performance bottlenecks

+» Clustered Dependence Based Architecture
Performs with little IPC degradation, additional
clock speed aggregates 16% speedup over current
baseline model.

X/
0’0

11/10/2003 Complexity Effective Superscalar 81
Processors

ADDITIONAL
SLIDES

11/10/2003 Complexity Effective Superscalar 82
Processors

41



MI1PS R10000 PIPELINE

che refill and write-back

External interface

Syslem B-bit physical register numbers
interiace - — Y N —
(64 bits) .

.t Align

FP adder

Secondary g e
| (128 bits) ‘ (g (84+54) = i
Register renaming | | enfries) =1 5 read multip o
Aot ‘ Free e
o egister
| lists
| entries)
i " Address
nsir. .
Insty ! cache T urﬂ(je
B (32 |, ——
decode | Kpytes) | | Branch
- -
Instruction
e Instruction fatch nstruction decode
\ ~ : (16
5-bit logical register nymhers ontrics)
(a) Instruction issue 5 pipelined execution units |
Slagel | Slgs2 | Siage3 | Saged | Swapes Stages | stage7 |
11/10/2003 Complexity Effective Superscalar 83
Processors
System Bus (External)
L2 Cache
I Cachs Bus
| Bus Interface Unit [
|Instruclior| Feich Unit v Instruction Cacha L1} |¢—- Nilxr}'rtlp
Mamory
Reordar
Instruction Decoder Buffar
Simple Simple Complex
Instruction Instruction Instruction
Decoder Decoder Decodar From
] ] 111 Integer|
) T Y S
[ Register Alias Tabla
Refirement
Retirement Linit Register Fila Data Cache
—————————————— Infal A
Rearder Buffer (Insiruction Pool) (Rnegimnlfs] drit (1)
| Resarvation Station ‘
Fieating- | | Floating- Mamory
pontUnit| |Romtuni | =08 || Infeger Interiace we—1,
{FPLUy (FPU) d i Unit
To Branch
3 Target Buffer
Internal Data-Results Buses
11/10/2003 Complexity Effective Superscalar 84

Processors

42



INSTRUCTION FETCH LOGIC

Feke
ackl

CORE FETCH UNIT

TRACE CACHE

INSTRUCTION CACHE

BRANCH
TARGET
BUFFER
PREDICTOR
ﬂ BTE logic
m nest s
ackiress

FILL
CONTROL

nimtrctions

from i
PREDICTOR i

+ Trace cache can fétch past multiple ™
branches: merged in line-fill buffer
<% Core unit: Predictor + BTB + RAS

11/10/2003 Complexity Effective Superscalar 85
Processors

Register File Complexity Analysis|[6]

+“» Analysis for 4 way & 8 way processors
+4 way -> 32 Entry Issue Window
+ 8 way > 64 Entry Issue Window

+ Different Register File Organizations

Write bitline #1

+ |ssue Width - # of Read/Write Ports == & : e

Write wordline 1w
@4 way - Integer Redfile:
8 Read & 4 Write Ports

4 Read & 2 Write Ports A
@ 8 way > Integer Redfile:
16 Read & 8 Write Ports
Floating Point Regfile:
8 Read & 4 Write Ports . Tosense
+ Different Regfile sizes R S
11/10/2003 Complexity Effective Superscalar \ 86

Processors Ly

_|

Floating Point Regfile: . 45

i

Read wordline #1

43



Register File Complexity Analysis[6]

average BIPS cycle time (ns) average BIPS cycle time (ns)
7] W BIPS for imprecise exceptions [ S:‘ 7
0.9 10 BIPS for precise exceptions F32 0.9
0.8 | O integer register timing 5.0 0.8
A floating—point register timing 48
0.7 r 0.7
B 46
0.6 o T 0.6
4.4
0.5 0.5
4.2
04 Loe 04
03] L as 03
0.2 L3s6 024
0.14 L34 0.1
0 T LI 3.2 0 T LI B 3.2
32 48 64 BO 96 128 160 250 32 48 64 8O 96 128 160 256
number of registers number of registers
(a) Four—way issue processor (b) Eight—way issue processor

0

< FP Regfile faster than Int Regfile < Less Ports

<+ Doubling number of ports =
Double # of wordlines and bitlines
% Quadruple Regfile Area
+ Doubling number of Registers =»
Double # of wordlines
4+ Double Regfile Area

0

11/10/2003 Complexity Effective Superscalar 87
Processors
S}'mhc!!s Meanings Parameters & Equations
B Block size 4, B, 16, and 32 bytes
A Associativity 1.2,4,8
§ Number of scts 256, 512, 1K, 2K. 4K, 3K, 16K
Newi # of segments per word line {data) 1,2, 4, ---
Nelbl # of segments per bit line (data) l.2,4---
Newl # of scgments per word line (iag) 1,2,4:--¢
Nabl # of segments per bit line (tag) .24+
Rows Number of rows in a subarray 5,/ Wbt
Cols Number of columns in a subarray 8- B - A/ Ndwl
Subs MNumber of subarrays Ndwi - Ndb
c Cache size B-A-5=S/Ndbl - B - A/Nawl - Nelwl - Ndbl
«» Ndwl, Ndbl, Ntwl, Nthl = Layout parameters
«» Access Time = Decoder Delay + Word-line delay + Bit-line/Sense
Amplifier Delay + Data Bus Delay
«» Formula & Derivations in paper
«» Time breakdown plots not descriptive of cache parameters
+ l.e Twl vs. (B.8).A/Ndwl
11/10/2003 Complexity Effective Superscalar =-le) 88

Processors

44



Cache Access Time [7]

| BLOCKSE  # OF SUB-ARRAY = |
- = ASSOCIATVITY = 2

a. 2-Way Set Assoc.

BLOCK 25 # OF SUB-ARRAY = 2
WL ASSOCIATIVITY = 2
DrrVE

OF SETS|

{NUMEBER
OF SETS)H2

11/10/2003 Complexity Effective Superscalar
Processors

“» Ndwl, Ndbl, Ntwl, Ntbl
Layout parameters:

(A=2), Ndwl=Ndbl=1
h. A=2, Ndwl=2, Ndbl=1
- c. A=1, Ndwl=Ndbl=1
gy d. A=1, Ndwl=1, Ndbl=2

89

Cache Access Time [ 7]

14
o
1
2 Newie1
—_ w0
z a— =
E ¢ —f— fidiad H
= —O— Nt ]
A - £
E N —— e
< Access Time o el ,
i log(Cache Size) for Associatiyity doesnt ¢ . s
[ small caches change agcess time if ~ Seksa-ane
o R e R optimum Ndbl,Ndwl *
Cacha Size (ke) used?? Associativity

ceass Time (ns)

Larger Block sizes  Direct mapped
give smaller access it
times if dptrmum = g
Ndbl,Ndwl used steox sizs eye)
11/10/2003 Complexity Effective Superscalar
Processors

TErgpEy

PRiE

% With correct layout parameters:
Delay o Access Time, 1/(Block
Size), and NOT Associativity

90

45



Cache Access Time [8]

+» Additional Layout parameters: Nspd & Ntsbd
4+ How many sets are mapped to a single wordline

8xBxA

- 16xBxA —m

S sz §
l = T
I
a) Original Array b) Nspd =2

“»optimum Ndwl, Ndbl, and Nspd depend on cache
and block sizes, and associativity.

Iikns 4

Time

s 4

11/10/2003 Complexity Effective Superscalar N 91
Processors sy
Cache Access Time[§]
Markers

«»» Cache Size vs. Access Time:
+ Block size=16 Bytes
+ Direct Mapped Cache

+ For each size, optimum
layout parameters used

4+ Access time breakdowns are
shown

+ Comparator delay significant
# Cache Size 72 = Access

Mabw Nl Nl
Miwl Nk Mgl

Time?
Ll 16384 65536 262144 . .
ilexity Effective Superscalar ) 92
Cache Size (B=16, A=1) Processors 4

46



Cache Access Time [8]

ns o

Markers:
b |- Nelbl: Nsped
|- Nispul

Block Size (C=16K, A=1)

+* Block Size vs. Access Time:

+ Cache size=16 KBytes

+ Direct Mapped Cache

+ For each block size, optimum
layout parameters used

+ Access time breakdowns are
shown

+ Access time N due to drop in
decoder delay

+ Block Size 72 = Access
Time N

d . .
plexity Effective Superscalar

Back s
Processors

liins 4

iins <

Cache Access Time[§]

Associativity (C=16K, B=16)

«»» Associativity vs. Access Time:
+ Cache size=16 KBytes
+ Block Size 16 bytes

+ For each case, optimum
layout parameters used

+ Access time breakdowns are
shown

+ Associativity 727 =» Access
Time 72

dlexity Effective Superscalar

Back 2%
Processors

47



Distributed RC M odel

Distributed Model

Elmore’s Formula

J-stage Distributed RC Circuil

+ Assume a 3-section RC network
+ Time-constant 7

C=06TRC < RO

« Mote that the distributed model has a lower ¢ than
that of lumpead model.

+ Time-constant r:
T=LGR
where '
C;1is the * capacitance
£z is the resistance of the path that is the intersection of:
(1) the direct path from the input to the output, and(2)
the path from the input to ¢
+ Mole: all capacitances contribute to the delay at the
output {except one. Which one?)
+ Elmore's formula gives the dominant time-constant
« Now, can you see why r=(2/3)8C for the example
in the pravious slide?

ogyeight 200 Naresh Sunbbug

ight 2008 Harwoh Shasd g

Distributed Interconnect Model

Distributed Interconnect Model

Ic

Distributed RC Madel

= Consider a wire of length L, with total resistance &
and total capacitance ¢

* Madel this wire as a cascade of ¥V equal sized RC
segments

r=BC g spe =t
where - -
r = R4 (resistance-per-unit length) and
¢ — /L {capacitance-per-unit length).

e e Sl

e

Sense Amplifier [7]

av i
Al .
Vsense /-:"I'-__—__
" [£ —>
T
(a} ma
AV A
Rl-le
Vaanze —---m—l
-
1 3
b
4 (L]
51,51
-
RAlle.G 0.5-Alle:G
¥ L
t1 12 3 >
()
af
vad |—
Rlsie GG
o

11/10/2003

Fig. 9. Sense amplifier. {a) Bit-line voltage difference (A V). (b} Approx-

imation of AV, (c) Waveforms of $, and §,. (d) Waveforms of 5.

48



Wakeup Logic Tagline Equations

Delay = Typgdrive + Tiagmateh + TmatchOR

TaglineLength = (camheight + IW x matchline_spacing) x WINSIZE
Tiagarive = €0 % (Riagdriver—pup + Ritres) > Citcap

Rytres = 0.5 x TaglineLength X Rypagar

Clteap = TaglineLength X Cypeiar + Coatecap—comp X WINSIZE + Cif feap—tagdriver

Tyaadrive = Co+ (¢ +ea x TW) x WINSTZE + (c3 4 ¢y x TW +¢ x IW?) x WINSIZE?

97

11/10/2003 Complexity Effective Superscalar

Processors

Wakeup Logic Matchline Equations
Thagmateh = €0 X (Rpastack + Rmires) X Crteap

Runires = 0.5 x MatchlineLength X Ryetal

MatchlineLength = (camwidth + TW > tagline gacing) X PREGuig

Crnteap = 2 X PREG wigin, % Cif feap—rrp1 + MatehlineLength x Coneiar + Coatocap_matehine
Tiagmateh = co+c1 X IW + ¢z x Iw?

Complexity Effective Superscalar 98
Processors

11/10/2003

49



REFERENCES

S. Palacharla, N. Jouppi, and J. Smith, "

", in Proceedings of the 24th
International Symposium on Computer Architecture, June
1997.
S. Palacharla, N.P. Jouppi, and J.E. Smith, *

”, Technical Report CS-

TR-96-1328, University of Wisconsin-Madison, November
1996.
K. C. Yeager, “ ", IEEE
Micro, April 1996.
Linley Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design”
Microprocessor Report, 9(2), February 1995.
Eric Rotenberg, Steve Bennet, and J. E. Smith.

Proccedings of the 29th Annual International Symposium on
Microarchitecture, December, 1996

11/10/2003 Complexity Effective Superscalar 99

Processors

REFERENCES
Keith I. Farkas, Norman P. Jouppi and Paul Chow.

".In 2nd IEEE
Symposium on High-Performance Computer
Architecture, February 1996

T. Wada, S. Rajan, and S. A. Przybylski, “

” |EEE Journal of Solid-State
Circuits, 27(8):1147-1156, August 1992.

Steven J., E. Wilton and N. P. Jouppi, *

Technical Report 93/5, DEC Western Research
Laboratory, July 1994.

11/10/2003 Complexity Effective Superscalar 100

Processors

50



