COMPLEXITY EFFECTIVE
SUPERSCALAR PROCESSORS

“» Part-I1:
+ Objective: Characterizing Complexity at architecture
level

+ Baseline Architecture
+ Sources of Complexity

@ pArchitecture components such that ILP 2 =» complexity 2
@ Models for quantifying component delays

“» Part-11:
4+ Objective: Propose a Complexity-Effective
uArchitecture
@ High IPC & High Clock Rate

11/10/2003 Complexity Effective Superscalar 1
Processors

CHARACTERIZING COMPLEXITY
s Complexity:

Delay through critical path
s»Baseline Architecture <
+*Defining Critical Structures
*»*Method for Quantifying Complexity
“*Analysis of Critical Structures

<Mostly from [2]>
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BASELINE ARCHITECTURE

“»*Superscalar, 0-0-0 execute, in order

complete
<> , DEC Alpha 21264

+ =) w
= =z g o 5 % | =
— 2 | |+ Z Z=|0 8 o 2 = [ —
= z g5 P W] = < =
] = == ‘2” 4] | 5
e - RENAME WAKEUP ) . EXECUTE DCACHE REG WRITE
FETCH DECODE INSERT SELECT REG READ BYPASS ACCESS COMMIT
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BASELINE ARCHITECTURE
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o . RENAME | WAKEUP . EXECUTE | DCACHE | REG WRITE
E L0 3 . :
FETCH | DECODE ot arer | rEGREAD | ERECL s COMMIT

s Fetch:
+Read Fetch-Width Instr-s/clk from 1$
+Predict Encountered Branches
+Send to decoder
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BASELINE ARCHITECTURE

+ ] o
= 2 o = o 2
— 2 = i— I B "N
- 2 == © é“ M : a
RENAME WAKEUP EXECUTE DCACHE REG WRITE
FETCH DECODE REG READ 3
INSERT SELECT ! BYPASS ACCESS COMMIT
**Decode:
%*pecode.

+Decode instructions into
op|subop|imm.|operands|etc.
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BASELINE ARCHITECTURE

+*Rename:
+ Rename the logical operand registers
@ Eliminate WAR and WAW

+ Logical register > physical register
+ Digpatch to Issue Window (Instruction Pool)
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BASELINE ARCHITECTURE

] -| W—, o
= 3 ] L5 o 2
- 3 5 AE D E
2 a
5 . RENAME WAKEUP EXECUTE DCACHE REG WRITE
peTen preont INSERT spLper | RPOREAD Y hypass ACCESS COMMIT

+» Issue Window & Wakeup-Select Logic:
+ Wait for source operands to be ready
+ Issue instructions to exec. Units if =»
Source operands ready & functional unit available
+ Fetch operands from Regfile

Complexity Effective Superscalar
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BASELINE ARCHITECTURE

o
= = ] =
— 2§ £ i
[ o = =
8 = ) =
e S RENAME | WAKEUP . EXECUTE | DCACHE | REG WRITE
E S CO) : . .
FETCH DECODE INSLRT ShLrct REGREAD | o0 TR COMMIT

s*Register File:
+Hold the physical registers

+Send the operands of currently issued
Instructions to exec. Units
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BASELINE ARCHITECTURE

o @ o =
© 2 £ Z-=
— 2 = & — = 7=
@ o = =s
a e =
. RENAME WAKEUP : EXECUTE DCACHE REG WRITE
FETCH DECODE REG READ 3
INSERT SELECT ! BYPASS ACCESS COMMIT

**Rest of Pipeline:

&
&
&
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OTHER ARCHITECTURES

+» Reservation Station Model:

P
.gﬁ
-4
~ Z o JI I§sup % ll: %::
— 2 2 | 2 e 5 = 5 e
3 ﬂ g 55 : = p
= a = ZE LI vindpw =} =
D‘é =
Wakeup +
Select
REG READ
WAKEUP EXECUTE | DCACHE | REG WRITE
FETCH DECODE RENAME ROB READ SELECT BYPASS ACCESS T
INSERT
o PowerPC 604
* )
11/10/2003 Complexity Effective Superscalar

Processors

10




Basaline vs. Reservation Station

+» Two Major Differences:
+ Baseline Model: + Res. Station Model:

@ All reg. values reside in @ Reorder buffer holds
physical reg-file speculative values; reg-file
holds commited values

@ Only tags of operands broadcast =@ Completing intsr-s broadcast

to window operand values to reservation
> Values go to physical reg-file station
> Issued instr-s read values from
res. station
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CHARACTERIZING COMPLEXITY

s Defining Critical Structures <
*»*Method for Quantifying Complexity
“»*Analysis of Critical Structures
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CRITICAL STRUCTURES

+ Structures with Delay o
Issue Width(IW) | Issue Window(WinSize)

+» Dispatch & Issue related structures
+ Structures that broadcast over long wires

++ Candidate Structures:
+ Instruction Fetch Logic

+ Rename Logic

+ Wakeup Logic r ]
\_ 2
=

+ Select Logic
+ Register File _
+ Bypass Logic =
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Instruction Fetch Logic
s Complexity LG LE
o Dispatch/Issue Width

“*As instr. Issue width 7
—> Predict Multiple branches

“*Non contiguous cache blocks need to be
fetched and compacted

X Described in [5]
“»*Delay Models to be developed
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Register Rename L ogic
“*Map Table: Logical to

Physical Register Mapping |
+IW 72 =» Number of map table ports 7

“»*Dependence Check Logic: Detects true
dependences within current rename group
+IW 722 =» Depth of Dep. Check Logic7

“*Delay a Issue Width
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Wakeup Logic

«*Part of Issue Window

“* ‘Wake up’ Instr-s when source operands ready
“»*When an instr. Issued, its result register tag
broadcast to all instructions in issue window
+WinSize 7 =» Broadcast Fanout 2 & Wire Length 7
+ IW 22 =» Size of each window entry 2

** Delay o Issue Width & Window Size
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Selection Logic

<Part of Issue Window __ H o
++ Select Instr-s from ones with all source operands
ready & if available FU exists
+ Selection Policies
+ WinSize 722 =» Search Space 7
+ # of FUs 722 =» # of Selections7
“ Delay a
Window Size & # of FUs & Selection Policy
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Register File

“»*Previously studied in [6]
o o
# of Physical registers & # of read+write

ports
“*Delay a Issue Width

11/10/2003 Complexity Effective Superscalar 18
Processors




Data BypassLogic

“* Result Wires: Set of wires [ L&

to bypass results of completed
but not committed instr-s
+ # of FUs 22 =» wire lengthsA
+ Pipeline Depth7 = # of wires” & load on wires7
“» Operand MUXes: select appropriate values to FU
I/p ports
4+ # of FUs 72 =» Fan-in of MUXes?
+ Pipeline Depth 72 =» Fan-in of MUXes?

“* Delay o Pipeline depth & # of FUs
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Caches

Studied in [7] & [8] )

“[7] gives
+“*[8] based on [7]’s methodology, with

“*Delay o Cache Size & Associativity
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CHARACTERIZING COMPLEXITY

s Method for Quantifying Complexity <
+“»*Analysis of Critical Structures
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QUANTIFYING COMPLEXITY

+*» Methodology:
+Key Pipeline Structures studied

+A representative CMOS design is
selected from published alternatives
+Implemented the circuits for 3
technologies:
@0.8y1, 0.351 & 0.18
@Optimize for speed
+Wire parasitics in delay model
@Rmetal, Cmetal
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QUANTIFYING COMPLEXITY

«*Technoloqy Trends:

4 Shrinking Feature Sizes - Scaling

@Feature size scaling: 1/S
@Voltage scaling: 1/U

»Logic Delays: Delaygape = (CL 2 V)T

+C_: Load Cap.: 1> 1/S

+V: Supply Voltage: 1-> 1/U

+1. Average charge/discharge current: 1> 1/U
#Qverall Scale factor: 1/S

11/10/2003 Complexity Effective Superscalar 23

Processors

QUANTIFYING COMPLEXITY

+* Wire Delays:

+ L: wire length
+ Intrinsic RC delay =
Del&ywire = 0.5 X Rvmetml X Cmeta.i X L2

@ Rmetal: Resistance per unit length

Rietar = p/(width * thickness)

@ Cmetal: Capacitance per unit length

Omem.C = Cfri’nge + Cpamﬂe&—pmw
= 24 €% € * thickness/width 4+ 2 x € * €y * width/thickness
@ 0.5; 1%t order approximation of
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QUANTIFYING COMPLEXITY

+*Scaling Wire Delays:
+Metal Thickness doesn’t scale much

+Width o 1/S
+ Rmetal o S

+Fringe Capacitance dominates in smaller
feature sizes

+Cmetal o S
4 (Length scales with 1/S)
#Qverall Scale factor: S.S.(1/S)2=1
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CHARACTERIZING COMPLEXITY

s Analysis of Critical Structures <
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COMPLEXITY ANALYSIS

+» Analyzed Structures:
+ Register Rename Logic
+ Wakeup Logic
+ Selection Logic
+ Data Bypass Logic
“» Analysis :
+ Logical function
+ Implementation Schemes

+ Delay in terms of pArchitecture Paramaters—>
@ Issue Width
@ Window Size
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Register Rename L ogic

“*Map Table: Logical Name - Physical Reg.
+ Multiported
@ Multiple instr-s with multiple operands
“»* Dependence Check Logic: Compare each source
register to dest. Reg-s of earlier instr-s in current
set
+ Multiported
@ Multiple instr-s with multiple operands
+“» Shadow Table: Checkpoint old mappings to
recover from branch mispredictions
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Register Rename L ogic

2h s If Src Reg, Read From Table
2 If Dest Reg, add to table =
S 1 S
[} - = PHYSICAL [
= —  —— DEST — B "
B ogm oW TR Sl mmm 3
= e i REG R S
= — — A
8 2
: :
A O
B
REGS 5 (SL\CEJ’
LOGICAL ——= ’
SOURCEREG R
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Map Table I mplementation
“* Implementation > RAM or CAM
“*RAM: (Cross Coupled inverters)
+ Indexed by Logical reg-s = # of entries
+ Entries: Physical reg-s
+ Shift-Register for Checkpointing
“» CAM:
+ Associatively searched with logical reg designator
+ Entries: Logical Reg | Valid Bit
+ # of entries = # of physical registers
“»CAM vs RAM
+ Similar performance <Only RAM analyzed>
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Dependence Check Logic

+» Accessed in Parallel with Map Table

“»Every Logical Reg compared against logical dest
regs of current rename group

“»For IW=2,4,8, delay less than map table

add [ 2.3 add pl. p3.p9
sub 14, 2.5 sub p3.p6
sub 12, 1'_"‘ sub pél,p\\)_@

r1 Wdregl

B ri— I Jsreak >C> pdreg? |

o 7 r 4 lsreg . MUX =
9 renaning 5] ldreg2. .

C = 2 pregk —sf

r4—-» 2 7 >O*- p2
3 6 r4 lsregk P_\iul\l_\'

MAPTABLE MAPTABLE
Idregk-1
0 3 I ) :QJ
FREE REGS FREE REGS I 4 lsreg)
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Rename Logic Delay Analysis
< Map Table > RAM scheme N

C |
¥

£k

+* Delay Components: A

+ Time to decode the logical reg index 0

+ Time to drive wordline o

+ Time to pull down bit line

+ Time for SenseAmp to detect pull-down

+ MUX time ignored as control from dep. Check logic comes in advance

Delay = Tgecode + Twordiine + Thitiine + Tsenseamp
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Rename L ogic Delay Analysis

+»» Decoder Delay:
** Predecoding for speed \'
+ Length of R =

predecode lines:

4 Cellheight: Height of vl
single cell excluding wordlines

+ Wordline spacing
+ NVREG: # of virtual reg-s
+ x3: 3-operand instr-s

Ry 3 —_Y

PredeclineLength = (cellheight + 3 x ITW x word{inespmng) x NVREG
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Rename Logic Delay Analysis

«» Decoder Delay:

Taecode = Tnand + Thor
% Tnand: Fall delay of NAND Thand = €0 X Req X Cgq
«» Tnor: rise delay of NOR

Reqg = Rpandpd + 0.5 X PredeclineLength X Rpetal
+» Rnandpd: NAND pull-down channel resistance
++ + Predecode line metal resistance (NAND --- NOR)

+ 0.5 due to distributed R&C model for delay

++ Ceq: diff-n Cap. Of NAND + gate Cap. Of NOR +

interconnect Cap.=>»
Ceq = Clif feap—nand + Cyatecap—nor + PredeclineLength x Cpetq
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Rename L ogic Delay Analysis

«* Decoder Delay:

++ Substituting PredecodeLineLength, Req, Ceq 2>
Tdecode:
Tdecode =0 +¢ X IW + x TW?

+“+c2: intrinsic RC delay of predecode line
“»c2 very small =
s»*Decoder delay ~linearly dependent on IW

11/10/2003 Complexity Effective Superscalar 35
Processors

Rename Logic Delay Analysis

« Wordline Delay:
« Turn on all access transistors (N1 in cell schematic p.32)

wordline driver

F

®,
0.0

FC| = :\-u ! ; |_|_|
fom £ AY sord /- S S _...—"’
PREGwidth: = | d o el

phys. reg designator width

Rwldriver: _
pull-up res. Of driver g"
Rwldriver

®,
0.0

o
*

% Rwilres:

word

resistance of wordline )

% Cwilcap: Ruwlres T Culeap
capacitance on word line

R
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Rename L ogic Delay Analysis
s Wordline Delay:

Twwdiine = Lylinv + Tw},'dv;-iyer (Fall Time of inv. + Rise time of driver)

Twldﬂ"ive’r =¢p X (Rwidriver + Ru).i'res) X Owlcap
Rypires = 0.5 x WordlineLength X Ryepa1 (0.5 for distributed RC)

++ Total Wordline Capacitance:
+ Total Gate Cap. of access transistors+ wordline wire cap.

WordlineLength = (cellwidth + 3 x TW x bitlinespacing + B x shi ftreguwiam) X PREGwig
+ B: maximum # of shadow mappings
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Rename Logic Delay Analysis

<+ Wordline Delay:

++ Substituting WordLineLength, Rwlres, Cwlcap -
Twordline:

Twordiine = €0 +¢1 X IW + ¢ X w?

“»c2: intrinsic RC delay of wordline
% c2 very small =
“*Wordline delay ~linearly dependent on IW
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Rename L ogic Delay Analysis

+ Bitline Delay:
++ Time from wordline going Hi (Turning on N1) - Bitline
going below sense Amp threshold
Thittine = €0 X (Rastack + Rbittine) X Chitline R
BitlineLength = (cellheight 4+ 3 x ITW x wordlinespacing) * NVREG Pk

Chittine = NVREG % Cyif feap—n1 + BitlineLength % Crpetal

Riittine = 0.5 % BitlineLength % Ryeiu

Trittine = o +¢1 X IW + ¢9 X mw?

>

“» c2 very small =
«¢ Bitline delay ~linearly dependent on W

L)

| sENs
AMPLIFIER
[
'

I.| | 39

*0
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Rename Logic Delay Analysis

s Sense Amplifier Delay:
+» Sense Amp design from [7]
“* Implementation ind. of IW

+“* Delay varies with IW
+ >
+ Delay a bitline delay =
“» SenseAmp delay ~linearly dependent on IW
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Rename L ogic Spice Results

W Scnsc Amp delay

ol B i +* Total delay increases
Wordiine delay linearly with IW

Decoder delay

1200 ++ Each Component shows
linear increase with IW

s <+ Bitline Delay > Wordline

Delay
T
+ Bitline length o # of
Logical reg-s

o P + Wordline length o width
o 3 18 of physical reg designator
+ Feature size N =» [increase in
bitline&wordline delay with increasing IW] 2
+ 0.8u: IW 2->8 => Bitline delay 7 37%

+ 0.18p: IW 2->8 = Bitline delay 71 53%
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Wakeup Logic

“»*Updating source dependences for instr-s in
issue window

“*CAM, 1 instr-n per entry

“*When an instr-n produces its result, tag
associated with the result is broadcast to
Issue window

+Each instr-n checks the tag, if matches =
sets the corresponding operand flag

+2 operand/instr-n =» 2xIW comparators / entry
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Overal Wakeup Logic

Wakeup L.ogie:

2 along for
il tag bits
OR =
|rd /L ‘ |¢«,§- Ll ,"g
| | OR[> rdy
A
|"d}’|- ‘ |opd tapl. |
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Wakeup Logic Delay Analysis

+* Critical Path: Mismatch - Pull ready signal low
+» Delay Components:
+ Tag drivers - drive tag lines - vertical

+ Mismatched bit: pull down stack = pull matchline low
— horizontal
+ Final OR gate - or all the matchlines of an operand tag
Defay = de«ﬁm + Tmmm =+ TmﬂtchﬂR
% Tiagdrivea Driver Pullup R & Tagline length & Tagline Load C

| Toagdrive = 0.+ (¢_+2 X IW) x WINSIZE + (c3 + 4 x TW +¢_x IW?) x WINSIZE?|
+ Intermediate equations

4 Quadratic component significant for IW>2 & 0.18n
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Wakeup Logic Delay Analysis

* Ttagmatch o Pulldown Stack Pulldown R &
Matchline length & Matchline Load C

Tmmm =+ X Iw “+ ¢ X I .W'rz
+ Intermediate equaﬂons

% T machor o Fan-in (Delay of a gate o Fan-in2)
+ <Worst Case Fan-inz2 RC>

Tnatchor = co +c¢1 X IW +cp x mw?

+ Quadratic component Small for both cases
+ Both delays ~linearly dependent on W
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Wakeup Delay (ps)

Wakeup L ogic Spice Results

v ser=— |+ 0.18u Process

3 e F < Quadratic dependence
Y 1 “¢lIssue width has greater
160 e e e "] effect > increase all 3
100 | : delay components

o 1 “AsIW & WinSize 7

s 6 2 .,,,,?.'I2_|,_;‘.I9 W 56 6 together > delay
o actually changes like:
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Wakeup Logic Spice Results
8 way & 0.18u Process

400 M Match OR delay
i, + Tag drive delay
. | increases rapidly with
£ 00 WinSize 7
: +» Match OR delay
" constant
0:0
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Wakeup L ogic Spice Results
N mmotas 8 way & 64 entry window
o +»Tag drive and Tag match
€ ol delays do not scale as well
Sl as MatchOR delay
2
% w0l - + Match OR - logic delay
o . + Others = also have wire
. delays
0:0
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Wakeup Logic Spice Results

+»* All simulations have max WinSize 64

+Larger Window =» Tagline RC delay 72 7
(Tagline RC delay o WinSize?)

“*For larger windows =»
Use Window Banking

+Reduces Tagline length

Improves RC
Delay by ~x(1/4)
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Selection Logic

+» Chooses ready instructions to issue
+ Might be up to WinSize ready instr-s
+ Instr-s need to be steered to specific FUs
“*l/p > REQ:
+ Produced by wakeup logic when all operands ready
+ 1 per instr-n in issue window
% 0Olp 2> GRANT:
+ Grants issue to requesting instr-n
+ 1 per request
+ Selection Policy
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Selection Logic

ISSUE WINDOW

For a Single FU

Treeof Arbiters

== a—)
EEEESERE
EEEEEERGR
= = =1 u
anyregenible anyreg enabld | anyreq enable amyreg enable
3
REQ Signals FEEEEREY GRANT S|gnals
EEEEEREE
[=}=3 -] £ & 5 =
2o CERR
T g BEEB
SEFEE Huba anyreg enable o
1 from/to other subtrees
- N
oR Priceity Fncoder || ARBITER CELL _1: ......
B
i =& ROOT el

AITyTeg

emble Anyreq raised if any req is Hi,
Grant Issued if arbiter enabled

Location based select policy

cnable

T

Root enabled if
FU available

51

Selection Logic
<*Handling M ultiple FUs of Same Type:

+Stack Select logic blocks
in series - hierarchy

+Mask the Request granted

to previous unit

grant0 _icl- ——= req0 grantd —s

FU1 arbiter
FU2 arbiter

+NOT Feasible for More than 2 FUs

+ Alternative: statically partition issue window
among FUs — MIPS R10000, HP PA 8000

11/10/2003
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Selection Logic Delay Analysis

+» Delay: time to generate GRANT after REQ

+» Delay Components:
+ Time for REQ to propagate: instr-n = Root
+ Root Delay
+ Time for GRANT to propagate: Root = instr-n
Delay = (L — 1) X Treqpropd + Troot + (L — 1) X Tgranipropd
« (L: Depth of Arrbiter Tree)
4 1/p arbiter cells Optimum =» I = logs (WINSIZE)
=P |Delay=co+ ¢y X logs(WINSIZE)

+*Delay ~logarithmically dependent on WinSize
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Selection delay {ps)

3000

2500

20004

1500

1000

Selection L ogic Spice Results

Root delay each WlnS'Ze 9

Request propagation delay

+LAX2 >
L=4  Delay? < x2

“Logic Delays =
+ Scale well with

L=3
L=2

<ol feature size
H ++ Caution!: Wire
16 31 o4 128 16 31 o4 118 16 31 64 128 delays nOt included!
0.8 035 0.1%
Window size
11/10/2003 Complexity Effective Superscalar 54
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W Grant propagation delay 0:0 Root delay same for
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Data Bypass L ogic

“*Result Forwarding
“*Number of possible bypasses:

+S pipestages after first result stage & 2 1/p FUs

2> IxIW2x S
“»Key Delay Component:

+Delay of result wires - bypass length & load

+Strongly layout dependent

11/10/2003 Complexity Effective Superscalar
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Data Bypass L ogic

s Commonly Used L ayout:
mux | E r‘ﬁl _ﬁ Ii: - i o =
TETE
FLu2
| He—
Regfile |
FLUo
rr.sulr éf‘__:‘__qJ
Fu1 1B g
it-Slice
<H

Turnon Tri-
State A to pass
result of FU1
to left operand
of FUO

56
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Data Bypass L ogic Delay Analysis
“*Delay = Generic wire delay:

Delaypire = 0.5 X Rinetar X Crneta X I?
+L is dependent on # of FUs (IW) & FU heights
+Pipeline depth? =» C 71 <not implemented in smulations!>

+* Typical FU heights:

Functional unit Height (M) | Description

Adder 1400 64-bit adder

Shifter 1500 64-bit barrel shifter

Logic Unit 300 Performs logical operations

Complete ALU (ALUpen) | 3200 Comprises adder, shifter, and logic unit

Simple ALU (ALUsgnpte) | 1700 Comprises adder and logic unit

Load/Store (LDST) Unit 1400 Comprises adder for effective address caleulation
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Data Bypass Logic Delay Analysis

“»Computed delays for hypothetical
machines:

Issue Functional unit Z;H;L FU height | Register file Wire Delay

width mix (A) height (X) | length (A} | (ps)
4 1 AL gen, | ALUgippe, 2 LDST 7700 12800 20500 184.9
8 2 ALUgen, 2 ALUsimple, 4 LDST 15400 33600 49000 1056.4

+(Delay independent of feature size)
% Delay dependent on (IW)2
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Data Bypass L 0giC Alternative Layouts

“*Delay computation directly dependent on
layout
+Future - Clustered Organizations (DEC 21264)

-cycle bypass

+Each cluster of FUs with its own regfile

| +Intra-Cluster bypasses: 1 cycle

REGFILE

REGFILE

+Inter-Cluster bypasses: 2 or more cycles
4+ puArch & compiler effort to ensure inter

cluster bypasses occur infrequently

‘ FU1

FU3

single eyele bypass

11/10/2003
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CHARACTERIZING COMPLEXITY

sSummary:
Issue | Window | Rename | Wakeup+Select | Bypass
width size delay (ps) delay (ps) delay (ps)
0.8um technology
4 32 1577.9 2903.7 184.9
8 64 1710.5 3369.4 1036.4
0.35um technology
4 32 627.2 12484 184.9
8 64 726.6 1484.8 1056.4
0.18pm technology
4 32 351.0 578.0 184.9
8 64 427.9 724.0 1056.4

+4 Way - Window Logic is bottleneck
+8 Way - Bypass Logic is bottleneck

11/10/2003
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CHARACTERIZING COMPLEXITY

ss*Summary:
+Future - Window logic! & Bypass logic!

+Both are ‘atomic’ operations:

- dependent instr-s cannot issue consecutively if
pipelined

| ‘\’\, AKEUP | SELECT \ EXEC ‘ add rl0, rl.r2

‘ WAKEUP [\ SELECT EXEC ‘ bubble

v
| o WAKEUP | SELECT EXEC | T | subrl,rl0, 2

11/10/2003 Complexity Effective Superscalar
Processors

61

COMPLEXITY EFFECTIVE

MICROARCHITECTURE
*»*Brainiac & Maniac

#+High IPC & High CLK rate
“»*Simplify Wakeup & Selection Logics
“*Naturally extendable to clustering =

#Can solve bypass problem

“*Group dependent instr-s rather than
independent ones =

“*Dependence Based Architecture

11/10/2003 Complexity Effective Superscalar
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DEPENDENCE ARCHITECTURE
1 <+““‘ )T
<

FIFOS
RENAME| WAKEUP [EXECUTE| DCACHE | REG WRITE
FETCH | DECODE | "speg | seLeCT [REG READRypASS | ACCESS | COMMIT

|
Fetch

Rename
Steer
ata-cache

Wakeop
Select
|
Begister file
1T
| [Bypass| |

+* Dependent instr-s cannot execute in parallel

+ Issue Window > FIFO buffers (issue inorder)
+ ‘Steer’ dependent instr-s to same FIFO

“+Only FIFO heads need check for ready operands

11/10/2003 Complexity Effective Superscalar 63
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DEPENDENCE ARCHITECTURE

“SRC FIFO Table: _I_I__I<

4Similar to Map table

il il
[ [Bais] |
Eamcacha

+Indexed with logical L= [ ufimaluafamr

register designator

+Entries: SRC-FIFO(Rs)=FIFO where the instr-n
that will write Rs exists. <Invalid if instr-n
completed>

+Can be accessed parallel with map table
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DEPENDENCE ARCHITECTURE

% Steering Heuristic: E E
+ If all operands of %

[[spiss( |

instr-n in regfile=>

Emmchc i

Steer to an empty FIFQ L= [oeoe| et it pecre SRR Re0EE T

+ Instr-n has a single outstanding operand to be written
by Inst0, in FIFO FO =
4 No instr-n behind Inst0 =» steer to Fa
4+ O/w =>» steer to an empty FIFO

+ Instr-n has 2 outstanding operands to be written by
InstO&Instl in Fa & Fb =
4 No instr-n behind Inst0 =» steer to Fa
4+ 0O/w > No instr-n behind Instl =» steer to Fb
4+ O/w => steer to an empty FIFO

+ |f all FIFOs full/N Emectr}(/eEl!;Ersgaa-) STALL

11/10/2003 Complexity E r
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DEPENDENCE ARCHITECTURE

“»Steering Heuristic <Ex>: Steer Width: 4
e 4-way(IW)
p—1
1 l =
o m%iz =) Ol3ise
1: addi -1 f—
P NS o Lorr o
g?sii (ﬂ g J—
. X0 G 3 -
g Z5 e
H Y Ox
£ iz s —
10 e S0 9134 i
11: ddu $17,54,519 TS 5 10issue
R = s
14: beq $2.517,L3 p—
|
BT 44 12 issue
11/10/2( E 66
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Per for mance Results

“*Dependence Arch. vs. Baseline
+ 8 FIFOs, 8 entries/ FIFO vs. WinSize=64
+8 —way, aggressive instr-n fetch (no block)

11/10/2003

+ SimpleScalar
Simulation >

+SPEC’95
+0.5B instr-s

Comj

Fetch width any 8 instructions

I-cache Perfect ion cache

Branch Fredictor McFarling’s gshare (13]
4K 2-bit counters, 12 bit history
unconditional control instructions
predicted perfectly

Issue window size 64

Max. in-fight 128

Retire width 16

Funetional Units 8 symmetrical unils

Functional Unit Latency | 1 cycle

Issue Mechanism out-of-order issue of up to 8 ops/cycle
Ioads may execute when all prior
store add, are known

Physical Registers 120in/120 fp

D-cache 32KB, 2-way SA
write-back, write-allocate
32 byte lines, 1 cyele hit,6 eycle miss
four load/s ports

67

Instructions Per Cycle

Per for mance Results

“*Dependence Arch. vs. Basdline:

4.0
35
3.04
2.5
2.0
1.5
1.0-
0.5-

[ Baseline microarch.
I Dependence-based microarch,

Instr-s committed per cycle

Max

0.0
COmpress gcc g0

i

perl m8Bksim vortex

Performance
Degradation
8% in li

68
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Complexity Analysis

<*Wakeup Loqgic:

+Need not to broadcast result tags to all window
entries - only to FIFO heads

#Reservation Table:
+1 bit per reg—~> “Waiting for data’
4 Set result reg when instr-n dispatched
4 Clear when instr-n executes

#Instr-n at FIFO head checks its operands’ bits
+ Delay of Wakeup logic >
Delay of Reservation table access

11/10/2003 Complexity Effective Superscalar 69
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Complexity Analysis
“*Reservation Station vs. Baseline Wakeup:
*»Reservation Station: 80 Regs, 0.18u:

Issue | No. physical | No. table | Bits per Total
| width Tegisters entries entry | delay (ps)

4 80 10 8 192.1

8 128 | 16 8 251.7

+Window-Based arch. 32&64 Regs:

Issue | Window | Rename | Wakeup+Select | Bypass
width | size | delay(ps) | delay (ps) delay (ps)

0.18um technology
4 32 351.0 578.0 184.9
3 64 4279 724.0 1056.4
11/10/2003 Complexity Effective Superscalar 70
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Complexity Analysis

“*Instruction Steering:

“»*Done parallel with renaming

**SRC-FIFO table smaller than rename table
+Smaller delay

cSummary:
+Woakeup-Select Delay reduced

+Faster clock rate ~39%

+|PC Performance degrade < 8%
+=» ~ 27% execution speed advantage
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Clustered Architecture

“»2x4 way:

o I—,__ﬂ’,—.“’ffi *» Local Bypass 2>
% 5 =, — single cycle
/ZI]]]—- = = < Inter cluster
: Ul T =T0lllg  bypass >
g 8 |/ | cwsrmeo 5 >1lcycle
2 = o, .
g E I g * Regfiles

identical, within
a cycle delay

\:lIn—H
10 &
1+ 8

-
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Clustered Architecture

“*Advantages:
+Wakeup-Select Function already simplified

4 Steer Heuristic - Dependent instr-s to same
FIFO =» less inter cluster bypasses

+Critical bypass logic delay reduced — Main
motivation of clustering

+Regfile Access delay reduced as # of ports N
“»Heuristic Modified:
+Two separate free FIFO lists for each cluster

11/10/2003 Complexity Effective Superscalar 73
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Instructions Per Cycl

Clustered Architectur e Performance

“»2x4 way Dependence Arch. vs. 8-way
baseline architecture
#2x4 8-entry FIFOs vs. 64 entry window

#|nter-cluster bypass = 2 cycles vs. all single
cycle bypasses

18] O sremywmiowredty | NStr-s committed per cycle
g.g: M 2-cluster dependence-based 8-way

3.2

3.0

by

%gi Max Performance
?‘é Degradation 12%
s in m88ksim

o8]

0.6

E:é: tive Superscalar 74

compress gec go li mB8Bksim perl vortex SOIS
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Clustered Architecture Performance

“*Dependence Arch will have higher clock
rate: > 4-way, WinSize 32, baseline =

Speed pengencearsn _ Delay of 8 way 64 entry window 724

= =—=125
Speedyingomarsy ~ Delay of 4 way 32 entry window 578

“»Potential Speedup over Window based
architecture > 88% x 125% = 110%

*Morethan 10% performance
Improvement over baseline
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Other Clustered Architectures

“In all cases, inter cluster bypass = 2 cycles
1) Single Window, Execution Driven Steering:
4 Steer to cluster which oL o

provides the source

/ CLUSTERO

operands first

N\

CLUSTER |

INSTRUCTION STREAM

#Higher IPC than

double window
+Back to the complex wakeup-select logic ®
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Other Clustered Architectures
% 2) 2Windows, Dispatch Driven Steering:

= 5 l—_ CLUSTER O
-

AN .

g ‘ - CLUSTER {

+Similar to dependence architecture

+Random access windows rather than FIFOs
+Steer with a similar dependence heuristic
+Still somewhat complex wakeup-select logic ®
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Other Clustered Architectures

s 3) 2 Windows, Random Steering:

= 5 l—_ CLUSTER O
i \I .
§ - CLUSTER {

+Same as dispatch driven architecture
+Steer randomly
+For Theoretical baseline comparison
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Other Clustered Architectures

s 4) Clustered Dependence Ar chitecture—>
2 Set of FIFOs, Dispatch Driven Steering:

RERAMED INSTRUCTIONS

LOCAL DYPASSES

T
INTER-CLUSTER BYPASSES

+Simple Wakeup Select Logic ©
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Perfor mance Comparison

4.0 I-cluster.1window
3.6 1°} 2-cluster.FIFOs.dispatch_steer
32 B 2-cluster.windows.dispatch_steer
W 2-cluster.twindow.exec_steer
7‘;2‘8' M 2-cluster.windows.random_steer
S i
Saal |
G20] |
Ll Wl
El.& i ! il
H :
A1z | ¢ i
4 LB :
| t
os{ /i M |
4] |if i |
wol 1 l i
compress £0 li  m88ksim
-
€ @,
g‘as.
§.30.
£ 2.
£ ]
5‘ 15+
P
§ 10
£ ol =
£  compress gec go li  m88ksim

perl  vorlex

perl  vortex

+¢ ldeal = 64 entry window, single
bypass all

++ Others - WinSize:1) 64x1
2)32x2 3)32x2 4)(4x8)x2

+¢» Max performance degradation
26% (Mm88Kksim)

¢ Almost always as well as 2
windows dispatch driven steer

ffective Superscalar 80
Cessors
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Conclusions

s Window & bypass logic are future (for 1997)
performance bottlenecks

+» Clustered Dependence Based Architecture
Performs with little IPC degradation, additional
clock speed aggregates 16% speedup over current
baseline model.

X/
0’0
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ADDITIONAL
SLIDES
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MI1PS R10000 PIPELINE

che refill and write-back

External interface

Syslem B-bit physical register numbers
interiace - — Y N —
(64 bits) .

.t Align

FP adder

Secondary g e
| (128 bits) ‘ (g (84+54) = i
Register renaming | | enfries) =1 5 read multip o
Aot ‘ Free e
o egister
| lists
| entries)
i " Address
nsir. .
Insty ! cache T urﬂ(je
B (32 |, ——
decode | Kpytes) | | Branch
- -
Instruction
e Instruction fatch nstruction decode
\ ~ : (16
5-bit logical register nymhers ontrics)
(a) Instruction issue 5 pipelined execution units |
Slagel | Slgs2 | Siage3 | Saged | Swapes Stages | stage7 |
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System Bus (External)
L2 Cache
I Cachs Bus
| Bus Interface Unit [
|Instruclior| Feich Unit v Instruction Cacha L1} |¢—- Nilxr}'rtlp
Mamory
Reordar
Instruction Decoder Buffar
Simple Simple Complex
Instruction Instruction Instruction
Decoder Decoder Decodar From
] ] 111 Integer|
) T Y S
[ Register Alias Tabla
Refirement
Retirement Linit Register Fila Data Cache
—————————————— Infal A
Rearder Buffer (Insiruction Pool) (Rnegimnlfs] drit (1)
| Resarvation Station ‘
Fieating- | | Floating- Mamory
pontUnit| |Romtuni | =08 || Infeger Interiace we—1,
{FPLUy (FPU) d i Unit
To Branch
3 Target Buffer
Internal Data-Results Buses
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INSTRUCTION FETCH LOGIC

Feke
ackl

CORE FETCH UNIT

TRACE CACHE

INSTRUCTION CACHE

BRANCH
TARGET
BUFFER
PREDICTOR
ﬂ BTE logic
m nest s
ackiress

FILL
CONTROL

nimtrctions

from i
PREDICTOR i

+ Trace cache can fétch past multiple ™
branches: merged in line-fill buffer
<% Core unit: Predictor + BTB + RAS
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Register File Complexity Analysis|[6]

+“» Analysis for 4 way & 8 way processors
+4 way -> 32 Entry Issue Window
+ 8 way > 64 Entry Issue Window

+ Different Register File Organizations

Write bitline #1

+ |ssue Width - # of Read/Write Ports == & : e

Write wordline 1w
@4 way - Integer Redfile:
8 Read & 4 Write Ports

4 Read & 2 Write Ports A
@ 8 way > Integer Redfile:
16 Read & 8 Write Ports
Floating Point Regfile:
8 Read & 4 Write Ports . Tosense
+ Different Regfile sizes R S
11/10/2003 Complexity Effective Superscalar \ 86

Processors Ly

_|

Floating Point Regfile: . 45

i

Read wordline #1
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Register File Complexity Analysis[6]

average BIPS cycle time (ns) average BIPS cycle time (ns)
7] W BIPS for imprecise exceptions [ S:‘ 7
0.9 10 BIPS for precise exceptions F32 0.9
0.8 | O integer register timing 5.0 0.8
A floating—point register timing 48
0.7 r 0.7
B 46
0.6 o T 0.6
4.4
0.5 0.5
4.2
04 Loe 04
03] L as 03
0.2 L3s6 024
0.14 L34 0.1
0 T LI 3.2 0 T LI B 3.2
32 48 64 BO 96 128 160 250 32 48 64 8O 96 128 160 256
number of registers number of registers
(a) Four—way issue processor (b) Eight—way issue processor

0

< FP Regfile faster than Int Regfile < Less Ports

<+ Doubling number of ports =
Double # of wordlines and bitlines
% Quadruple Regfile Area
+ Doubling number of Registers =»
Double # of wordlines
4+ Double Regfile Area

0
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S}'mhc!!s Meanings Parameters & Equations
B Block size 4, B, 16, and 32 bytes
A Associativity 1.2,4,8
§ Number of scts 256, 512, 1K, 2K. 4K, 3K, 16K
Newi # of segments per word line {data) 1,2, 4, ---
Nelbl # of segments per bit line (data) l.2,4---
Newl # of scgments per word line (iag) 1,2,4:--¢
Nabl # of segments per bit line (tag) .24+
Rows Number of rows in a subarray 5,/ Wbt
Cols Number of columns in a subarray 8- B - A/ Ndwl
Subs MNumber of subarrays Ndwi - Ndb
c Cache size B-A-5=S/Ndbl - B - A/Nawl - Nelwl - Ndbl
«» Ndwl, Ndbl, Ntwl, Nthl = Layout parameters
«» Access Time = Decoder Delay + Word-line delay + Bit-line/Sense
Amplifier Delay + Data Bus Delay
«» Formula & Derivations in paper
«» Time breakdown plots not descriptive of cache parameters
+ l.e Twl vs. (B.8).A/Ndwl
11/10/2003 Complexity Effective Superscalar =-le) 88
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Cache Access Time [7]

| BLOCKSE  # OF SUB-ARRAY = |
- = ASSOCIATVITY = 2

a. 2-Way Set Assoc.

BLOCK 25 # OF SUB-ARRAY = 2
WL ASSOCIATIVITY = 2
DrrVE

OF SETS|

{NUMEBER
OF SETS)H2

11/10/2003 Complexity Effective Superscalar
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“» Ndwl, Ndbl, Ntwl, Ntbl
Layout parameters:

(A=2), Ndwl=Ndbl=1
h. A=2, Ndwl=2, Ndbl=1
- c. A=1, Ndwl=Ndbl=1
gy d. A=1, Ndwl=1, Ndbl=2

89

Cache Access Time [ 7]

14
o
1
2 Newie1
—_ w0
z a— =
E ¢ —f— fidiad H
= —O— Nt ]
A - £
E N —— e
< Access Time o el ,
i log(Cache Size) for Associatiyity doesnt ¢ . s
[ small caches change agcess time if ~ Seksa-ane
o R e R optimum Ndbl,Ndwl *
Cacha Size (ke) used?? Associativity

ceass Time (ns)

Larger Block sizes  Direct mapped
give smaller access it
times if dptrmum = g
Ndbl,Ndwl used steox sizs eye)
11/10/2003 Complexity Effective Superscalar
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TErgpEy

PRiE

% With correct layout parameters:
Delay o Access Time, 1/(Block
Size), and NOT Associativity

90
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Cache Access Time [8]

+» Additional Layout parameters: Nspd & Ntsbd
4+ How many sets are mapped to a single wordline

8xBxA

- 16xBxA —m

S sz §
l = T
I
a) Original Array b) Nspd =2

“»optimum Ndwl, Ndbl, and Nspd depend on cache
and block sizes, and associativity.

Iikns 4

Time

s 4
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Cache Access Time[§]
Markers

«»» Cache Size vs. Access Time:
+ Block size=16 Bytes
+ Direct Mapped Cache

+ For each size, optimum
layout parameters used

4+ Access time breakdowns are
shown

+ Comparator delay significant
# Cache Size 72 = Access

Mabw Nl Nl
Miwl Nk Mgl

Time?
Ll 16384 65536 262144 . .
ilexity Effective Superscalar ) 92
Cache Size (B=16, A=1) Processors 4
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Cache Access Time [8]

ns o

Markers:
b |- Nelbl: Nsped
|- Nispul

Block Size (C=16K, A=1)

+* Block Size vs. Access Time:

+ Cache size=16 KBytes

+ Direct Mapped Cache

+ For each block size, optimum
layout parameters used

+ Access time breakdowns are
shown

+ Access time N due to drop in
decoder delay

+ Block Size 72 = Access
Time N

d . .
plexity Effective Superscalar

Back s
Processors

liins 4

iins <

Cache Access Time[§]

Associativity (C=16K, B=16)

«»» Associativity vs. Access Time:
+ Cache size=16 KBytes
+ Block Size 16 bytes

+ For each case, optimum
layout parameters used

+ Access time breakdowns are
shown

+ Associativity 727 =» Access
Time 72

dlexity Effective Superscalar

Back 2%
Processors
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Distributed RC M odel

Distributed Model

Elmore’s Formula

J-stage Distributed RC Circuil

+ Assume a 3-section RC network
+ Time-constant 7

C=06TRC < RO

« Mote that the distributed model has a lower ¢ than
that of lumpead model.

+ Time-constant r:
T=LGR
where '
C;1is the * capacitance
£z is the resistance of the path that is the intersection of:
(1) the direct path from the input to the output, and(2)
the path from the input to ¢
+ Mole: all capacitances contribute to the delay at the
output {except one. Which one?)
+ Elmore's formula gives the dominant time-constant
« Now, can you see why r=(2/3)8C for the example
in the pravious slide?

ogyeight 200 Naresh Sunbbug

ight 2008 Harwoh Shasd g

Distributed Interconnect Model

Distributed Interconnect Model

Ic

Distributed RC Madel

= Consider a wire of length L, with total resistance &
and total capacitance ¢

* Madel this wire as a cascade of ¥V equal sized RC
segments

r=BC g spe =t
where - -
r = R4 (resistance-per-unit length) and
¢ — /L {capacitance-per-unit length).

e e Sl

e

Sense Amplifier [7]

av i
Al .
Vsense /-:"I'-__—__
" [£ —>
T
(a} ma
AV A
Rl-le
Vaanze —---m—l
-
1 3
b
4 (L]
51,51
-
RAlle.G 0.5-Alle:G
¥ L
t1 12 3 >
()
af
vad |—
Rlsie GG
o

11/10/2003

Fig. 9. Sense amplifier. {a) Bit-line voltage difference (A V). (b} Approx-

imation of AV, (c) Waveforms of $, and §,. (d) Waveforms of 5.
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Wakeup Logic Tagline Equations

Delay = Typgdrive + Tiagmateh + TmatchOR

TaglineLength = (camheight + IW x matchline_spacing) x WINSIZE
Tiagarive = €0 % (Riagdriver—pup + Ritres) > Citcap

Rytres = 0.5 x TaglineLength X Rypagar

Clteap = TaglineLength X Cypeiar + Coatecap—comp X WINSIZE + Cif feap—tagdriver

Tyaadrive = Co+ (¢ +ea x TW) x WINSTZE + (c3 4 ¢y x TW +¢ x IW?) x WINSIZE?

97
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Wakeup Logic Matchline Equations
Thagmateh = €0 X (Rpastack + Rmires) X Crteap

Runires = 0.5 x MatchlineLength X Ryetal

MatchlineLength = (camwidth + TW > tagline gacing) X PREGuig

Crnteap = 2 X PREG wigin, % Cif feap—rrp1 + MatehlineLength x Coneiar + Coatocap_matehine
Tiagmateh = co+c1 X IW + ¢z x Iw?

Complexity Effective Superscalar 98
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