PAGE
39
MSc Project: Design/Simulation Tools and Data Management

IV-Design/Simulation Tools and Data Management

Although chronologically the importance of design data management and variety of used tools is emphasized after the end of design entry phase, it is more appropriate to describe design data and tool flow prior to any design phase in order to provide a better comprehension of the whole design process. As described in the introduction section, the primary goal of the project is the design of a parameterizable multiplier in VHDL and to investigate input pattern generation and output compression techniques using a fault simulator. However, the nature of fault simulation and the scarce compatibility of design entry tool and fault simulator require meticulous data management and design-test flow.

IV.1 – Generic Design Flow

A general description to Design (Fault Simulation flow can be stated as follows. The design entry is done either with a Hardware Description Language (HDL) or manual component placement and routing. For HDL entry, the design must then be synthesized regarding a vendor specific component library. After then, in both methods, the rawest description of the design data can be obtained in terms of a netlist. Which can then be applied to the fault simulator. With a plausible modification to our specific process, the overall design flow can be outlined as shown in figure IV-1.

In this project, we have chosen the track through HDL design entry. Nevertheless, both methodologies have their own pros and cons. With the HDL design entry, the process is quicker and has the advantage of automating several designs with parametric VHDL definitions, yet it lacks a desired amount of control on the multiplier structure. Though the hierarchy and multiplier strategy is well preserved with Register Transfer Level (RTL) level descriptions, the laying out process is still dependent upon the mercy of the synthesizer used. On the other hand, manual placing and routing benefits the advantage of complete control on the multiplier, yet this process is much slower, burdensome and errorprone.

[image: image1.jpg]

IV.2 – Project Tools and Data Management

In this project, a key factor for progress has been data management, which includes managing VHDL design data, source codes, libraries, compilation for simulation and synthesis, source compile dependencies and documentation.

The used input design entry tool is Mentor Graphics’ Renoir®, which generates pure HDL code from a semi-schematic design entry format. The VHDL level simulator used is Mentor Graphics’ Modelsim®, which acquires the simulation data from Renoir via compilation for simulation. The output acquired from Renoir® is pure VHDL, and as stated in [20, p. 1-20], the used fault simulator, Mentor’s QuickFaultII®, does not support VHDL as input data type. Therefore the acquired VHDL sources are compiled for synthesis using Mentor’s QuickHDL® compiler
 with synthesis tag and Mentor’s AutologicII® is used to synthesize the design and save in Electronic Design Data Model
 (EDDM) format, which can then be input to QuickFaultII. EDDM format is the storage format used by many mentor graphics and a typical EDDM object is a schematic([21, p. 1-6]). Before applying the generated EDDMs to QuickFault, an intermediate step is to invoke Mentor’s Design Architect®, in order to convert the hierarchical symbols generated by Autologic to meaningful symbols to improve design readability, i.e. to make an XOR look like an XOR and a full adder like a full adder. Hence, though this looks rather redundant at the early considerations, as design complexity increases, this turns out to be the only rational way to understand the generated schematic structure. Finally, the synthesized and modified EDDM designs are then opened in Quickfault and fault simulation results are documented from Quickfault. The overall design and tool flow can be [image: image2.jpg]

summarized as shown in figure IV-2:

Hence in figure IV-2, we used an almost compatible format with [21, pp. 2-1 – 2-2] and [20, pp.1-6 – 1-11], which comprise several other design pathways for synthesis and fault simulation. The design units described in figure IV-2 are defined as shown in figure IV-3:

The faded tools and processes, and dashed flowlines are not performed during the design flow, yet are included for the sake of completeness.

As a reference to included CD, the physical paths to the available design data and libraries are as tabulated in table 6:

	RENOIR

	Design Data
	CD>MSc/DesignFiles/Renoir/DesignData/

	Generated HDL
	CD>MSc/DesignFiles/Renoir/HDL/

	Downstream1
	CD>MSc/DesignFiles/Renoir/CompiledData/

	Inifile
	CD>MSc/DesignFiles/Renoir/CopyofRenoirINIfile

	AUTOLOGIC

	VHDL lib. For synthesis
	CD>MSc/DesignFiles/Renoir/SynthCompiledData/

	EDDM design lib.
	CD>MSc/DesignFiles/Renoir/Eddm_sch/

	Inifile
	CD>MSc/DesignFiles/Renoir/quickhdl.ini

Table 6, Physical Paths to Design Data

IV.2.1 – Auxiliary Project Tools:

Besides the design flow described in IV.2, there are a few other tools used for auxiliary purposes during the design progress. These tools are not directly related to design flow, but are rather utilized for simple tasks such as writing automatically generated data into files, converting file formats and automated comparison of resultant data.

These tools are listed in table 7 with their intended tasks.

	Tools
	Function

	HPUX-XV
	Capture pictorial data and edit colors for a printer friendly format

	Matlab
	Produce stimuli for simulation

	HPUX shell scripts
	Convert ASCII file formats and compare ASCII files

Table 7, Auxiliary tools and functions

The locations of written Matlab scripts are: “CD>MSc/DesignFiles/matlab/”, and the generated output stimuli are referenced in several locations generally under “CD>MSc/results/”. The XV outputs constitute most of the imported pictures in the report as well as the .gif files under “CD>MSc/results/”. Unix scripts are referred usually from “CD>MSc/results/”.

Synthesis

Fault

Simulator

Manual

Place & Route

Design

Specification

Vendor Specific Cell Library

Basic Cells

NETLIST

HDL

Design Entry

Figure IV-1, Generic Design (Fault Simulation Flow Chart

Figure IV-2, Design and Tool flow

Downstream2

qvhcom

QuickHDL

VHDL library

for simulation

WORK

Renoir.ini

VHDL library

for synthesis

RENOIR

HDL

Design Entry

Design Data

VHDL library

for simulation

Downstream1

Compile for

Simulation

HDL

Generate

MODELSIM

Simulate

VHDL

QhSIM

qvhcom -synth

alcom

Compile for

Synthesis*

quickhdl.ini

AUTOLOGIC

Synthesize and

Convert to EDDM

Netlist

Synthesize

EDDM design

Library

Save EDDM/sch.

Design Architect

Edit schematic

and

Modify symbols

QuickSIM

Simulate

schematic

QuickFAULT

Fault Simulate

schematic

External

Stimuli

Documentation of Results

* Although the compile for synthesis option is setup for Autologic, Renoir was unable to perform the synthesis, yet it could display the downstream synthesized by qvhcom -synth

Figure IV-3, Key to Design and Tool flow units

Command

Compiler Commands provided by the attached tools

Default Library Names for the attached libraries assigned by the corresponding tools

Descriptions of attached processes

Process

LibName

Library

Design Data

Design and Simulation Libraries

inifile.ini

TOOL

Initialization files for the attached tools, which include logical to physical library mappings for the tool inputs and outputs; and some other user modified or required startup configurations

Design and Simulation Tools

Design and Simulation Data Formats

� Autologic II has a synthesis compiler ALCOM, but QuickHDL compiler QVHCOM with –synth tag reveals much elucidating error messages

� In all the compilation and EDDM write steps, logical library management should be taken extensive care of in order to make each data format able to identify the physical mappings of its dependencies

