PAGE
26
MSc Project: PRBS Generation and Signature Analysis

III-PRBS Generation and Signature analysis

In this project, we extensively investigate PRBS generation and signature analysis as BIST for multipliers. In the previous section, we have provided a general introduction to testing and various techniques. In this section, we specialize ourselves into PRBS generation using LFSRs and CA and into signature analysis, specifically multiple input signature analysis.

III.1 – PRBS Generation Using LFSRs

As described in section II, LFSR structure, basically, is a shift register configuration that propagates the stored patterns from left to right. The modification that provides the PRBS generation is due to the XOR feedback of the selected flip-flop outputs, named taps. When the taps are chosen properly, the LFSR will traverse through all possible states except for the all 0s state and will produce a maximum length PRBS sequence named M-sequence. In order for the desired operation, the LFSR should be first initialized to a well-known stage, which is usually referred to as seed. For an n stage LFSR, there are 2n-1 states, and the M-sequence is 2n-1 bits long. Hence, the M-sequence is periodic, and after the 2n-1 distinct values, it repeats itself in the next samples. The forbidden state, which the LFSR never traverses is usually referred to be 00..00, but if one of the feedback values are inverted, or XNOR instead of XORs are used, the forbidden state may be altered. The reason why the all 0s state is considered the forbidden state is, when all the flip-flop values are 0, the XOR of p<n outputs will reveal a 0 regardless of the location of the taps as: (0(0) (0 (0…(0 = 0 (0 …. = 0 = 0. Therefore, the fed back value is always 0, and the LFSR always stays in the 00….0 state.

Regarding the above described output generation scheme for the LFSR, the following listed properties can be deduced as the general characteristics of an n stage LFSR:

(1) A max-length LFSR generates a length 2n-1, periodic m-sequence, obviously, with period 2n-1. Consequently, the LFSR, traces all the corresponding 2n-1 states of n bit length periodically.

(2) In one period of the m-sequence, the number of 1s exceeds the number of zeros by exactly 1. Therefore, the total number of 1s in an m-sequence is 2n-1 and the total number of 0s is 2n-1-1. The reason for this is, as the LFSR traverses all the states except for all 0s for once within one period. All the m-sequence bits, which can be considered as, in practice, the LSBs or MSBs, more generally any single bit of the states, correspond to a single state and all the bits for possible state combinations, except for the all 0s state exist in the m-sequence, which would imply a final 0 in the m-sequence. Therefore, the missing 0 results in the number of 1s being 1 more than the number of 0s.

(3) (The Run Property) In the m-sequence, there will be a total of 2n-1 runs – bursts of the same bit – of each bit. Among these runs, ½ of the runs will have length 1, ¼ of the runs will have length 2, 1/8 of the runs will have length 3 and so on. In addition to these, there will be one additional run of 1s with length n.

(4) As a corollary to (3), the number of transitions in the m-sequence will be 2n-1.

(5) (Shift and Add Property) Every m-sequence has a cyclic shift and add property such that, if the original m-sequence is rotated and added to itself in mod2, the resulting sequence is also a rotated version of the original m-sequence.

(6) The autocorrelation of the m-sequence is constant for every shift value and the number of matching bits for any shift is ~½ of the total amount of bits = 2n-1. More specifically, if we define the autocorrelation function as ([13],[14]):

[image: image19.jpg]

(8)

where;

p:2n-1

(: shift between the 2 sequences (1(((2n-2)

a(: 1 if the two entries after the shift are the same

 -1 if the two compared entries are different

for all (, C(()=-1/p. Which reveals, for the n bit LFSR, 2n-1 –1 bits of the m-sequence always match and 2n-1 bits don’t match. Although this property does not have any significance in terms of testing, it indicates the randomness feature of the generated PRBS.

(7) (Window Property) If a sliding window of length n is moved along the m-sequence, the 2n-1consequtive n-tuples observed are seen exactly once in a period, which actually represent the 2n-1 unique states.

(8) (Decimation Property) Every proper decimation of an m-sequence is also an m-sequence ([14, p. 80]).

Having described the properties and PRBS generation outline for the LFSRs, one important concept which needs to be elucidated is how to choose the taps for max-length PRBS generation. The theory of how to choose the tap positions for max-length PRBS generation is discussed in the following subsection.

III.1.1 – Theory of LFSR Taps:

It might be easily verified that, not all combinations of the tap choices will provide an m-sequence. Therefore, the theory to determine the tap locations which can provide an m-sequence must be established and the requirements for the LFSR to generate the all possible 2n-1 states must be stated.

After the initial transition period, the values within the shift register can be considered as previous values of the feedback input at the first flip-flop. As shown in figure III-1, assigning the feedback input yi, the following flip-flop outputs can be named as yi-1,yi-2 and so on. As a general description, the taps can be described via switches ci, where ci=0 represents an open – nonexistent – connection and a 1 representing an existent connection. As XOR operation is a modulo 2 summation operation, all the multiple XORs to be performed can be combined as a modulo 2 adder.

[image: image1.wmf]å

=

p

a

p

C

1

1

)

(

t

t

Figure III-1, General Description of the LFSR Structure

With this description, the feedback value yi can be described with the following expression:

[image: image2.wmf]å

¥

=

-

=

1

j

j

i

j

i

y

c

y

(9)

where the sigma operator represents modulo 2 addition rather than base 10 addition. Although the summation is shown to be bounded by infinity, it will be truncated to the length of the LFSR, as all the following cj are intuitively zero afterwards.

As a preliminary to the rest of the discussion, a well-applied practice in coding theory is to represent a binary sequence as a polynomial, where the binary values represent the polynomial coefficients and the powers polynomial variables represent the timing or sequencing information. More formally, for the sequence described below:

[image: image17.jpg]

a0 a1 a2 a3 a4 a5 … am

ai ({0,1}

the corresponding polynomial, G(x) is:

G(x) = a0x0 + a1x1 + a2x2 + …+ amxm

Hence, all the algebra defined for the polynomials are in modulo 2 arithmetic, which are referred to as operations in Galois Field of 2 (GF(2)). In GF(2), addition and subtraction are equivalent as 0+1 = 1+0 = 0-1 = 1-0 = 1 and 1+1 = 0+0 = 1-1 = 0-0 = 0. Multiplication is performed as normal bitproduct and add fashion where the summation of partial products is done in GF(2). Division is also performed in the usual fashion, but the subtractions are performed in GF(2).

[image: image18.jpg]

Now returning back to the discussion of taps, when we consider the polynomial representation for yi input with respect to time, for time, t, 0 to time, m, tm, we reach the following set of relations:

	t0 (y0 = c1y-1 + c2y-2 + c3y-3 + … + cny-n

	t1 (y1 = c1y0 + c2y-1 + c3y-2 + … + cny1-n

	t2 (y2 = c1y1 + c2y0 + c3y-1 + … + cny2-n

	 (

	 (

	tm (ym = c1ym-1 + c2ym-2 + c3ym-3 + … + cnym-n

	 (

	 (

Now, if we write the corresponding polynomial, Gy(x) for the yi​ sequence,

Gy(x) = y0x0 + y1x1 + y2x2 + …+ ymxm + ..

which can be written in the compact form:

[image: image3.wmf]å

¥

=

=

0

)

(

m

m

m

y

x

y

x

G

(10)

and substituting ym with the feedback expression,
[image: image4.wmf]å

¥

=

-

=

1

j

j

m

j

m

y

c

y

,

[image: image5.wmf]å

å

¥

=

=

-

÷

÷

ø

ö

ç

ç

è

æ

=

0

1

)

(

m

m

n

j

j

m

j

y

x

y

c

x

G

(11)

further modification of this relation reveals:

[image: image6.wmf](

)

å

å

=

=

-

-

-

-

-

-

-

-

+

+

+

+

=

n

j

j

j

n

j

j

j

j

j

j

j

y

x

c

x

y

x

y

x

y

x

c

x

G

1

1

1

1

)

1

(

)

1

(

1

)

(

L

 (12)

Hence, the above equation describes how the initial conditions and the tap positions are related to the generated PRBS sequence yi. The parenthesized term in the numerator is equivalent to the initial condition sequence, and the cj terms in the denominator are equivalent to the feedback taps. Two immediate observations to be deduced from the above expression are:

(i) If all the initial conditions, y-1,…,y-n are 0, the Gy(x) polynomial is zero, independent of the denominator. This explains the all 0s forbidden state as the initial condition as the output sequence will be all 0s.

(ii) If all initial conditions are zero except for y-n – the seed for the last flip-flop -, then the numerator is:

cnxn.(y-nx-n) = cn
as a result, for an n stage LFSR, there should always be a feedback from the last flip-flop, in order to be able to produce all LFSR states that are expected to include 000…001. For cn = 1, the Gy(x) polynomial equals 1/(denominator polynomial).

The denominator polynomial,
[image: image7.wmf]å

=

+

n

j

j

j

x

c

1

1

, is referred to as the characteristic polynomial, P(x), of the LFSR, and together with the initial conditions, which are referred to as the seed, defines the generated PRBS sequence by the LFSR. As long as the LFSR is known to generate an m-sequence, the highest order of the characteristic polynomial defines the length of the LFSR. As described above, the PRBS sequence can be analytically derived for the LFSR, given the initial seed and the characteristic polynomial, however, this is usually not the practical approach as the notion of PRBS generation is also to reduce the time overhead for pattern generation. As an example ([13, pp.78-86]), for the 4 stage LFSR shown in figure III-2, the characteristic polynomial is:

P(x) = 1 + c1x1 + c2x2 + c3x3 + c4x4 = 1 + 1.x1 + 0.x2 + 0.x3 + 1.x4 = 1 + x1 + x4

and, as described in (ii), the polynomial representing the yi becomes
[image: image8.wmf])

(

1

)

(

x

P

x

G

y

=

 for the given seed = 0001.

Figure III-2, 4 stage Max-length LFSR

The resulting yi m-sequence can be computed by doing the above polynomial division in GF(2):

 1

 1 + x + x4
 1 + x + x4

1 + x + x2 + x3 + x5 + x7 + … = Gy(x)

 x + x4
 x + x2 + x5
 x2 + x4 + x5
 x2 + x3 + x6
 x3 + x4 + x5 + x6
 x3 + x4 + x7
 x5 + x6 + x7
 x5 + x6 + x9
 x7 + x9
 x7 + x8 + x11
 x8 + x9 + x11
 (
 (

Hence, as a result,

Gy(x) = 1.x0 + 1.x1 + 1.x2 + 1.x3 + 0.x4 + 1.x5 + 0.x6 + 1.x7 + …

and the generated PRBS is, from 1st output to last is,

PRBS Sequence: 1 1 1 1 0 1 0 1 …

Hence, the used characteristic polynomial is known to produce an m-sequence, therefore, the resulting sequence is expected to be periodic with 24-1=15, and if the above division process is continued up to x15, which is the 16th output sample, the sequence will be seen to repeat itself.

Regarding the above division process, it is proven ([1], [14]) that for Gy(x) to have maximum period, the characteristic polynomial must be not factorizable. Moreover, as Gy(x) will still be periodic with 2n-1, the characteristic polynomial must be a factor of
[image: image9.wmf]1

2

1

-

+

n

x

. The polynomials that satisfy above conditions are primitive polynomials, which are a special case of irreducible polynomials, and are used as the characteristic polynomial for maximum length LFSRs. Primitive polynomials have very interesting properties some of which also relate to PRBS generation ([13],[14]). In the next subsection, we discuss some of these properties briefly. The complete descriptions and proofs might be referred from the cited references.

III.1.2 – Primitive Polynomials:

As described in the above section, the principal feature of the primitive polynomials is, they cannot be factorized into 2 or more smaller order polynomials. Other properties are described within this subsection.

As n – can be regarded as the length of LFSR or order of polynomial – increases, the number of possible primitive polynomials increase rapidly, most of the textbooks include one of the minimum term polynomials for each n, but there are also alternative polynomials with minimum number of terms for n (3 ([13]).

For any primitive polynomial, P(x), the reciprocal of the polynomial, which is defined as
[image: image10.wmf]÷

ø

ö

ç

è

æ

=

x

P

x

x

P

n

1

)

(

*

 is also a primitive polynomial, and the m-sequence generated by the reciprocal primitive polynomial is exactly the reverse of the m-sequence generated by the original polynomial.

III.1.3 – Alternative LFSR Configurations:

Although we have focused on a single type of LFSR configuration so far, other LFSR configurations also exist. Referring the so far described configuration as the TDL (Tapped Delay Line) configuration – with an analogy to DSP, another configuration is the TDA (Time Delay and Accumulate) structure, which is shown in figure III-3. This structure is also termed as true polynomial divider due to its algebraic properties.

Figure III-3, TDA – LFSR structure

This structure, when the same characteristic polynomial is used in the shown reversed order, produces the same output sequence as the TDL structure. However, the internal states in the 2 configurations are not always the same([13]). This structure is not the preferred structure as it incurs additional delay in the forward datapath and for manufacturing purposes ([13],[1]). However, the TDA structure also has an advantage in data compression as it performs true polynomial division and the remainder in the LFSR is the correct remainder only for TDA structure.

Another structure, aiming more control over generated test patterns is Nonlinear Feedback Shift Registers (Non-LFSR), which is described in figure III-4. This structure tries to achieve a more effective test set, without reverting to storing the test vectors in ROM, thus minimizing the test cost. Instead of the XOR functions, the feedback function is realized with NAND, NOR, etc. combinational functions. The major problem with this structure is the design overhead to define the combinational function, which might not even be realizable and to abide by predefined sequencing rules ([1, pp. 168-169]).

Figure III-4, Nonlinear Feedback shift Register

Further improvements on the TDL and TDA structures have also been investigated and hybrid structures to minimize the logic cost are proposed as cited in [13, p.88].

III.2 – PRBS Generation Using CA

A second less studied alternative for PRBS generation is cellular automata. As introduced in section II, the basic shift register structure also exists in CA, with the ultimate difference that all the cell interconnections have some XOR operation and that no global feedback is required. Therefore, the regular shifting of data within the shift register is not existent in CA ([13],[15]). The cells for CA are defined in terms of flip-flops and XOR combinations of neighbor cells. The input to any cell depends only on its adjacent neighbors and maybe itself depending on whether the cell is a 90 or 150 cell, as shown in figure III-5. Considering the possible inputs from the three stated cells, the input functions for the 90 and 150 cells are described in table 4.

	Qk-1
	Qk
	Qk+1
	90 Cell: Qk-1(Qk+1
	150 Cell: Qk-1(Qk(Qk+1

	0
	0
	0
	0
	0

	0
	0
	1
	1
	1

	0
	1
	0
	0
	1

	0
	1
	1
	1
	0

	1
	0
	0
	1
	1

	1
	0
	1
	0
	0

	1
	1
	0
	1
	0

	1
	1
	1
	0
	1

Table 4, 90 and 150 functions of CA

The terminology for 90 and 150 cells comes from the decimal value of the binary outputs for the two cells. As can be calculated, they sum up to 90 and 150 respectively.

Figure III-5, 90 and 150 CA cells

Other functions of the three outputs are also investigated and it is formally proven that, only 90 and 150 cells produce m-sequences for PRBS generation. Moreover, not all combinations of 90 and 150 cells can produce m-sequences. It is theoretically proven that, for n(150, at most 2 150 cells are sufficient to produce a configuration of 90 and 150 cells that produce m-sequences. An exemplary 4-stage max-length CA, copied from section II, is redisplayed here in figure III-6 and the corresponding m-sequence is also displayed and compared to the response of a 4 stage LFSR. As can be seen in the m-sequence, unlike the LFSRs, the CA do not exhibit the cyclic shift behavior. As demonstrated in the figure, the LFSR output follows a cyclic shift of 1s (and 0s) from left to right, while no such pattern is distinguishable in CA. As expected, the forbidden all 0s state also exists in CA.

(a). 4 stage max-length CA

	CA sequence
	
	LFSR sequence

	Q(1)
	Q(2)
	Q(3)
	Q(4)
	
	Q(1)
	Q(2)
	Q(3)
	Q(4)

	1
	0
	0
	0
	
	1
	0
	0
	0

	0
	1
	0
	0
	
	0
	1
	0
	0

	1
	1
	1
	0
	
	0
	0
	1
	0

	1
	1
	1
	1
	
	1
	0
	0
	1

	1
	1
	0
	0
	
	1
	1
	0
	0

	1
	0
	1
	0
	
	0
	1
	1
	0

	0
	0
	0
	1
	
	1
	0
	1
	1

	0
	0
	1
	1
	
	0
	1
	0
	1

	0
	1
	1
	0
	
	1
	0
	1
	0

	1
	0
	1
	1
	
	1
	1
	0
	1

	0
	0
	1
	0
	
	1
	1
	1
	0

	0
	1
	0
	1
	
	1
	1
	1
	1

	1
	1
	0
	1
	
	0
	1
	1
	1

	1
	0
	0
	1
	
	0
	0
	1
	1

	0
	1
	1
	1
	
	0
	0
	0
	1

(b). Output sequences of LFSR and CA

Figure III-6, A 4 stage maximum length CA and its output sequence compared with an LFSR output

The generated m-sequence for CA can be derived in a similar manner as LFSR, but the GF(2) operations are demonstrated rather using matrix relations. If we define a transition matrix T, which defines the next state from the current state such that:

[Qnext]=[Qpresent]*[T]

(13)

where, [Q] represents a length n – number of stages – array row vector with the above described Q outputs of CA and [T] represents a nxn state transition matrix
. As each output depends only itself – if 150 cell – and its adjacent neighbors, the transition matrix is a tridiagonal matrix with the 1st diagonals completely 1s and the main diagonal only 1 for the corresponding 150 cells. As an example, the next state for the CA in figure III-6 when the state is 1111 – line 4 – can be found as:

[image: image11.wmf][

]

[

]

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

´

=

1

1

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

1

0

0

1

1

(14)

which is in accordance with line 5. It is worth reemphasizing that all the arithmetic is performed in GF(2), due to mod2 operation of XOR gates. As a direct consequence, as the 2nd next output is [Qnext]*[T], the 2nd output is related to the current one as [Qpresent]*[T]2; and the argument can be easily furthered to the nth next output as:

[Qk]=[Q0]*[T]k

(15)

where Q0 represents the current state and Qk represents the output state after k clocks.

It is also proven that, CA and LFSRs are isomorphic, so that for every LFSR configuration there is a corresponding CA configuration and vice versa
.

In the previous section, a mathematical condition for the LFSR configuration was derived to achieve max-length PRBS, which had revealed the characteristic polynomial should be a primitive polynomial. A similar argument can be hold for the CA by considering the T matrix. For an n-stage CA, the output states must be different for 2n-1 clocks. Therefore, the state transition should never map the initial state back to itself before the (2n)th clock, which can be stated in GF(2) algebra as:

For k=1,…,2n-1,

 [T]k ([I]

and

For k=2n,

[T]k = [I]

where, [I] represents the identity matrix.

As demonstrated, the CA can be equally well applied as LFSRs, for PRBS generation, and their comparison therefore is important for the choice of the more appropriate one, which is the context of the following subsection.

III.2.1 – LFSR vs. CA:

As presented, either LFSRs or CA can be used as on chip PRBS pattern generators. In terms of area penalty, CA are inferior to LFSRs due to the requirement of at least 1 2 input XOR gate per flip-flop. The hardware difference becomes extremely significant as the number of stages increases as the total number of required XORs is at most 4 for max-length PRBS with LFSRs. Hence, regarding the MVSD2 ILP, the circuit area of a flip-flop is not predominantly larger than a 2 input XOR and it cannot be confidently stated that the XOR areas are insignificant compared to flip-flops. However, on the other hand, the LFSR configuration requires a global feedback that runs through the length of the LFSR, which is very undesirable in terms of interconnect delays and capacitances. Therefore, this feedback might be a serious critical path bottleneck in long LFSRs. Conversely, the interconnect length in CA is just between the adjacent cells and it is independent of the length of the CA. Moreover, the output of the CA compared to the output of LFSR – as shown in figure 6 – is seen to be more naturally random, with no cyclic shift behavior. Analytically, CA output does not possess the high cross correlation between individual output bits that LFSR output bears, which is inherent in any shift register action. Consequently, it can be suggested that the CA output will provide a better approximation for the fault coverage relation
[image: image12.wmf][

]

%

100

1

)

log

(

10

´

-

=

-

N

e

FC

l

 described in section II. However, although intuitively it would be expected that CA serves better to the notion of PRBS generation and therefore it must be more effective than LFSR, it is not a concept that can be verified quantitatively in general.

III.3 – Signature Analysis

As described in section II, signature analysis was first developed by HP® to test PCBs using a probe, which was connected to the nodes within the circuit and applied to the input of the LFSR through an XOR gate. Therefore, the signature analyzer works like an LFSR, following the LFSR output sequence as long as the input is zero and inverses the feedback bit if the input bit is 1. As the input 1 will produce a 1 input from 0 feedback, there is no deadlock for all 0s and the signature analyzer can be reset to all 0s state initially. The error coverage probability of the signature analyzer had been derived in section II.

Due to the fundamentals being the same as in LFSRs, the polynomial relation in the signature analyzer can be developed in a similar manner. Recalling the discussion in section III.1 about the true polynomial divider, for the signature analyzer, a Divisor Polynomial is defined instead of the characteristic polynomial of LFSRs. Divisor polynomial is the same as characteristic polynomial defined for the TDA LFSR. In relation to the characteristic polynomial of TDL type LFSR, the divisor polynomial is reciprocal of the characteristic polynomial, P(x), or simply, the same bitstream read in reverse order, first bit representing the highest order of magnitude. An example is demonstrated in table 5.

	Characteristic Polynomial
	1
	1.X1
	0.X2
	0.X3
	0.X4
	1.X5
	1.X6
	0.X7
	1.X8

	Bitstream Representation
	1
	1
	0
	0
	0
	1
	1
	0
	1

	Divisor Polynomial
	1.X8
	1.X7
	0.X6
	0.X5
	0.X4
	1.X3
	1.X2
	0.X1
	1

Table 5, P(x) and D(x) relation

Hence, the divisor polynomial is defined by the same bit sequence, with the sequence of orders reversed. This is also achieved by taking the reciprocal of P(x), but used in reverse order for polynomial division in signature analysis. Upon this distinction between D(x) and P(x), the polynomial relation for the signature analyzer can be expressed as:

[image: image13.wmf])

(

)

(

)

(

)

(

)

(

x

D

x

R

x

G

x

D

x

I

+

=

(16)

where,

I(x): data input bit stream expressed as a polynomial

R(x): The residue – signature – remaining in the signature analyzer

D(x): divisor polynomial, G(x): output sequence

As an example, considering the same LFSR configuration in figure III-2, with an additional XOR input to the first flip-flop, where the serial input is incorporated, the divisor polynomial will be D(x) = x4 + x3 + 1, as easily deduced from table 5. Assuming a bit stream of 1010011
, the I(x) polynomial will be x6 + x4 + x1 + 1. Doing the polynomial division in GF(2) as described in page 7 will reveal:

 x6 + 0 + x4 + 0 + 0 + x1 + 1 x4 + x3 + 1

 x6 + x5 + x2 x2 + x1 + 0 = G(x)

 x5 + x4 + 0 + x2 + x1 + 1

 x5 + x4 + 0 + 0 + x1

 0 + 0 + x2 + 0 + 1 = R(x)

Compared to the LFSR case, one subtle difference is, the G(x) polynomial generated in the signature analysis case is not continuing indefinitely, as the applied input stream is finite length. Quantitatively, a length ‘L’ input stream produces a signature of length ‘n’ – obviously as the length of LFSR is n – and length L-n output sequence. This conclusion applied to the above example will compel the output stream to be ‘110’ and the residue to be ‘0101’. Recalling subsection II.1.3, these results must be noted to be valid for only the TDA LFSR, as stated, being the true polynomial divider.

However, originally being developed for PCB testing, where the probe can access internal circuit nodes, the application of signature analysis to embedded VLSI systems is not realistic as each output requires a separate signature analyzer. In today’s practical BIST circuits, multiple input signature analyzers (MISRs) are used to serve as a solution for multiple outputs.

III.3.1 – Multiple Input Signature Registers:

For BIST of multiple output circuits, MISR are extensively utilized in practice due to their easy and low cost implementation and efficient fault coverage. MISR, in principle is not different from the single input signature analyzer, but instead of taking one serial input from the first flip-flop, every flip-flop in the MISR has one input coming from the primary outputs of the to be tested circuit as shown in figure III-7. Therefore, for an n output circuit, at least an n stage MISR is used. In figure III-7, the cn switches define the divisor polynomial D(x) and the Q outputs show the internal stages. The residue is usually clocked out serially through one of the flip-flop outputs.

Figure III-7, Multiple Input Signature analyzer

Considering Ii(x) the current set of primary outputs to be compressed, and current state of the MISR as Si(x), the next state output of the MISR can be represented as:

Si+1(x) = [Ii(x) + x.Si(x)] mod D(x)

(17)

If the initial state of the MISR is known, for instance to be S0(x), then, the kth state can be computed as below, from repetitive application of above relation.

Sk(x) = [xk-1I0(x) + xk-2I1(x) + … + x1Ik-2(x) + x0Ik-1(x)] mod D(x)

(18)

where, the Ii(x) polynomials represent the Ith set of inputs to the signature analyzer.

Consequently, the expected signature can be analytically derived from the expected outputs of the circuit, prior to application of signature analysis. In terms of fault masking properties, MISR is scrutinized similarly as the single input signature analyzer, and again under the same assumptions – uniform distribution of error within bits, the fault masking probability is found to be ([14]):

[image: image14.wmf]1

2

1

2

1

1

-

-

=

-

+

-

L

n

L

fm

P

(19)

where,

L: length of the input test set

n: number of signature analyzer stages

A more comprehensive description of fault coverage stated in [1], where the length of signature analyzer, ‘n’, might be larger than the width of the test vectors, ‘m’ is:

[image: image15.wmf]1

2

1

2

1

-

-

=

-

-

mL

n

mL

fm

P

(20)

which reduces to
[image: image16.wmf]n

fm

P

2

1

=

 for large L. Hence, this expression is the same as the one found for single input signature analyzer in section II. Signature analyzers own some important error masking properties. These are not derived in this text due to space limitations, but the outcomes will be shortly stated. Further reference could be found in ([13] and [14]).

- Single Cycle Errors:

All errors that occur within a single cycle are always detected.

- Single Bit Errors:

As a direct consequence of the first statement, all single bit errors are detected

- Single Output Errors:
If the error occurs at only one circuit primary output, the fault masking probability is the same as that of a single input signature analyzer.

- Error Cancellation:
Different from the case of single input signature analyzers, error cancellation is a probable incident in MISRs. Error cancellation occurs when an error occurs at one input of signature analyzer and while this error is propagated to the first feedback on the shift register path, another error on another input ‘collides’ with the propagated error and they are XORed together. As a result, in GF(2), the difference between the original and error-prone output drops back to null. One solution to this is, using characteristic polynomials with high number of coefficients – low hamming distance -, and feeding the error as soon as possible before it can be cancelled. However, as stated in [14], the probability of error cancellation in a MISR is 21-n-L, which is quite low for large set of test vectors.

As a result, since error correction is very unlikely, the MISR has almost equivalent fault coverage as a single input signature analyzer, under the same condition stated in [1]’s derivation; large number of applied test vectors, L.

F-F

yi-1

seed(2)

Q(2)

2

F-F

yi-2

seed(3)

Q(3)

3

F-F

yi-3

Q(n-1)

cn

yi-(n-1)

c1

cn-3

cn-2

cn-1

yi

yi-(n-1)

CK

seed(1)

Q(1)

1

F-F

yi-1

seed(2)

CK

seed=0

Q(1)

1

F-F

c1=1

seed=0

Q(2)

2

F-F

c2=0

seed=0

Q(3)

3

F-F

c3=0

seed=1

Q(4)

4

F-F

c4=1

Q(2)

((((((

2

F-F

yi-2

seed(3)

y2

Q(3)

3

F-F

yi-3

y1

Q(n-1)

CK

seed(1)

Q(1)

1

F-F

yi-1

seed(2)

Q(2)

2

F-F

yi-2

seed(3)

Q(3)

3

F-F

yi-3

seed(n)

c2

seed(n)

Q(n)

y0

n

Combinational Logic Function

CK

seed(1)

Q(1)

1

c1

F-F

yi-n

yi

feedback taps

yi

cn

Increasing time

last in time

c(n-1)

c3

c2

c1

1st in time

yi

cn

Q(n-1)

c(n-1)

c3

yi-(n-1)

seed(n)

Q(n)

n

F-F

yi-n

Modulo 2 sum

(XOR)

Q(n)

n

F-F

yi-n

Q(2)

Q(4)

Qk+1

Qk

Qk-1

Q(2)

Q(4)

Q(4)

Qk+1

Q(3)

Q(3)

Q(2)

Q(1)

0

150cell

Q(4)

4

F-F

Qk

Qk-1

CK

90 cell

CK

150cell

F-F

Qk

90 cell

Q(3)

3

F-F

Qint(3)

4

F-F

Qint(4)

0

CK

90 cell

Q(1)

1

F-F

Qint(1)

150cell

Q(2)

2

F-F

Qint(2)

y0

y1

y2

cn

yi-(n-1)

c1

cn-3

cn-2

cn-1

yi

CK

seed(1)

Q(1)

1

F-F

yi-1

seed(2)

Q(2)

2

F-F

yi-2

seed(3)

Q(3)

3

F-F

yi-3

Q(n-1)

seed(n)

Q(n)

n

F-F

yi-n

Input0

Input1

Input2

Input3

Inputn-1

� I use a slightly different notation than the described notations from [13] and [15], which is more convenient to associate with the drawn hardware structure. However, the reader should be aware that, the given relation holds as the T matrix is symmetric matrix

� As stated in [13] this isomorphism is a rather loosely used term, as it does not guarantee the same output sequence, but the same states with a different order

� In polynomial division, the first received bit is on the left. Thus, the first bit in time has the highest order in the polynomial

�PAGE \# "'Page: '#'�'" ��

_1063410767.unknown

_1063419290.unknown

_1063424226.unknown

_1064572976.unknown

_1064591112.unknown

_1064591278.unknown

_1064590287.unknown

_1064509945.unknown

_1063423335.unknown

_1063416903.unknown

_1063416933.unknown

_1063410878.unknown

_1063345206.unknown

_1063410736.unknown

_1063338047.unknown

_1062703534.unknown

