PAGE
4
MSc Project: Testing and Built in Self Test

II-Testing and Built in Self Test

Since the electronics technology accomplished higher levels of integration into a single silicon chip that led to Large Scale Integration (LSI), which preceded VLSI, the applications of electronic systems have experienced an almost unlimited expansion. However, despite the many advantages provided by VLSI, the inherent high integration level started to necessitate very sophisticated testing strategies in order to verify the correct device operation. As the electronics market stimulated the use of VLSI in a variety of tasks from critical military applications to consumer products, the reliability of the products’ functioning gained an escalating importance. The expanding demand for ASIC applications led to development of more sophisticated Computer Aided Design (CAD) tools; which have shown most significant progress in layout and simulation, with yet more inferior improvement in testing. This consequently leads to designs with superior complexity, but which are in contrast extremely difficult to test effectively. Moreover, due to the low volume attribute of ASICs, the high test costs cannot be retaliated with large amounts of mass production. Thereupon, despite the traditional design point of view, that design and test can be considered as two different aspects of development, current design processes consider testing as an integral part of design rather than design and test being two mutually exclusive processes. At present, as the number of gates per chip exceeds millions, not only the design process is resolutely bound to the designed circuits’ being testable, but also some percentage of auxiliary device circuitry is intentionally included on devices, in order to assure the functionality of the ‘actual’ circuit is verified to an adequate level. The two concepts mentioned in the last argument, the former leading to Design for Testability (DfT), while the latter to BIST, are extensively scrutinized in this section, with the exception of fault models and fault simulation techniques which are discussed in section VI for the sake of clarity.

II.1 – Evolution of Testing

In the early times of electronics engineering, when systems were constituted from discrete components, testing of digital systems comprised three distinct phases:

1- Each discrete component was tested for concordance to its specifications

2- The components were assembled into more complex digital elements (i.e. flip flops etc.), and these were tested for correct functionality

3- The higher level system was built up and was tested for functionality

As the systems acquired higher complexity, the 3rd phase began to become increasingly difficult to accomplish and other means of system verification were begun to be sought. In [16], R.D. Eldred suggested another way, which is well-known and used as structural test at present, in order to test the hardware of a system instead of the burdensome functional test. The first applications of the proposed structural test was to discrete components on Printed Circuit Boards (PCBs), which then began to be applied to ICs as the electronics technology developed into higher levels of integration([14]). Though the problems of IC testing was not very much different from that of the PCBs, the objective of testing had then changed to discard the faulty units rather than locating the defective components and replace them. In the case of Small Scale Integration (SSI) and Medium Scale Integration (MSI), the problems were relatively as simple as PCB testing, since ([1]):

1- Internal nodes of the devices were easily controlled and observed from the primary inputs and outputs of the devices.

2- The simplicity of circuit functions permitted the use of exhaustive testing

3- More complex systems were constructed from basic, thoroughly tested components.

As LSI and VLSI advanced as the prominent technologies, the gate/pin ratios increased rapidly, thus reducing the controllability and observability of internal nodes drastically. Consequently, the testing problems exacerbated by VLSI circuits can be stated as ([1]):

1- Increased testing costs, which depend on test time and therefore circuit complexity

2- Increased time overhead for efficient test pattern generation and verification

3- Increase in the volume of test data

Recently, rapid changes in VLSI technology and more extensive use of ASICs have even worsened these problems. Certain features of ASIC applications make VLSI testing even more demanding ([1]):

1- ASIC designs generally require a short design time overhead due to the competitive nature of the market, and hence they have a short product lifetime. Therefore, immense efforts for efficient testing strategies may yet diminish the market value due to time overhead.

2- As ASICs are by definition application specific, they generally have a low production volume which cannot compensate for significant test costs.

3- The uniqueness of ASICs requires unique testing strategies for each specific application.

At present the objectives of VLSI testing can be described as follows ([13],[1]):

1- To ensure the circuit is functionally correct, free of design errors before fabrication

2- To ensure the device is free of fabrication errors after fabrication (fault detection)

(i) To locate the source of a fault within an IC (Physical fault location)

(ii) To locate a faulty component or connection within the complete system (Component Fault Location)

In order to comply with the above objectives, VLSI testing consists of several phases, which require the involvement of both the IC manufacturer (vendor), and the Original Equipment Manufacturer (OEM)([13]):

1- IC Fabrication Checks: Tests by vendor to ensure all fabrication steps have been performed correctly during wafer production

2- IC Design Checks: Tests to ensure prototype ICs perform correctly.

3- IC Production Checks: Tests to ensure produced ICs are defect free

4- Acceptance Tests: Tests by OEM to ensure the incoming ICs are functionally correct

5- Product Tests: Tests by OEM for final manufactured products.

The 1st and 3rd phases is the sole responsibility of vendor, while the 2nd step is either verified by the vendor in the case of standard ICs or by the OEM in the case ASICs. The last 2 phases are only relevant to OEM, who should verify their concordance
.

II.1.1 – Functional and Structural Testing:

Before structural testing was proposed, digital systems were tested to verify their compliance with their intended functionality, i.e. in this philosophy, a multiplier would be tested whether it would multiply and so forth. This testing philosophy is termed as functional testing, which can be defined as, applying a series of determined meaningful inputs to check for the correct output responses in terms of the device functionality ([13]). Although this methodology imparts a good notion of circuit functionality, under the presence of a definitive fault model, it is very difficult to isolate certain faults in the circuits in order to verify their detection ([14]). With the proposal of structural testing, which might be defined as, consideration of possible faults that may occur in a digital circuit and applying a set of inputs tailored for detecting these specified faults. In [16], the suggested technique was to define the digital system as a combination of primitive/common basic blocks such as AND, OR, XOR, etc. and inject faults to each gate of the circuit consecutively and generate input test patterns to propagate these faults to observable outputs. As obvious structural testing relies on the fault models described for the Device Under Test (DUT), and any result obtained in this manner is unworthy without a proper description of used fault models. Fault models and fault simulation techniques developed as a result of the above described technique will be elaborated in section VI.

II.1.2 – Controllability and Observability:
[image: image1.wmf])

,..,

,..,

(

)

,..,

,..,

(

)

(

1

1

n

i

n

i

i

x

x

x

f

x

x

x

f

x

f

dx

d

Å

=

These terms, which are mentioned in section II.1, were introduced in 1970s in order to describe the ease – or difficulty – of testing the nodes of a digital circuit. Controllability is a measure of how easily – or hardly – can a node of a digital circuit can be driven from the accessible (primary) inputs. Observability, is a measure of how easily the logical value of a given node can be propagated to the observable (primary) outputs. In general, controllability decreases as the distance between the to be controlled node and primary inputs – i.e. the number of internal gates between primary inputs and the node – increases, and observability decreases as the distance from primary outputs increases([13]). A representative plot for observability and controllability can be demonstrated as in figure II-1.

Figure II-1, General Characteristics of Controllability and Observability([13])

There have been various proposed schemes in order to quantify controllability and observability, to identify circuits with low controllability and/or observability during the design phase and modify these accordingly. Some of these include A Testability Measurement Program (TMEAS), TESTSCREEN, Sandia Controllability Observability Analysis Program (SCOAP), Computer-Aided MEasure for LOgic Testability (CAMELOT), VLSI testability analysis program (VICTOR) and COMET
.
II.2 – Online vs. Offline Test

The formerly described VLSI testing phases are usually performed to guarantee a designed digital system conform to their design specifications during the prototype and final production and post-production checks. During these tests, the system is not actually yet operated to perform its normal intended operation, i.e. for a microprocessor, is not yet placed on a motherboard to perform as the CPU of a computer. Regarding the description in [14, p.6], the system is termed online in the latter described situation, while is termed offline, during the initial production check phases as described in the former case. Obviously, the tests described previously all refer to offline tests, and as a matter of fact, most of the testing effort in digital testing is geared toward offline testing. Nevertheless, occasionally the digital device is required to be tested during the online mode to assure correct operation and state of the device before the initiation of a critical task as well as for error recovery purposes. If the testing of system is performed while the device continues its normal operation, the performed test is named online test. However, if the system is needed to end its normal operation to reset the system into a testing mode, the performed testing methodology is termed offline test. The testing strategies described in this report and applied in the project are all examples of offline test strategies.

II.3 – Cost of Testing in VLSI Circuits

As the VLSI circuits grew in terms of number of components per silicon die, the problem of finding a restricted number deterministic input test patterns to fully or to an acceptable extent test the digital circuit has dramatically intensified. Despite the fact that there is no principal disparity in the determination of each functional test, the complexity of the digital devices yields unmanageable volumes of input test patterns. For instance, a test attempt to test a microprocessor through all the possible states it may encounter during normal operation is irrational. Moreover, for a fully combinational digital circuit, to verify correct functional operation, one should apply all the possible input combinations in the circuit truth table. For instance for an n input, m output device; the total volume of input data to be applied is 2n words of each n bits long, and the total volume of output data to be observed is 2n words of each m bits long. For a numerical example, for a 16x16 multiplier, n=32 and m=32 (

Total input data volume: 232.32bits = 27.1Gb = 128 Gb

Total output data volume: 232.32bits = 128 Gb

Also considering the time overhead, if each test vector could be applied at a rate of 100MHz, the total time to test a single device would be:

Total test Time: 232.10-8s (42.9s

The presence of a storage element – which is inherent in sequential circuits – even worsens this problem. For a circuit with s storage elements, all possible input combinations should be tested for each 2s internal states, demanding a total number of 2n.2s input and output patterns [13].

Therefore, a structured subset of all possible inputs to such complex systems must be determined for a reasonable volume of test data. [19] suggests that for circuits that cannot be partitioned into smaller mutually exclusive subcircuits, the number of deterministic tests required to fully test the circuit is linearly proportional to the number of gates in the circuit([13]). However according to the prediction of [19] and results cited in [1, pp.15-18], test application time is squarely proportional to the number of gates.

Literally, testing costs in terms of monetary aspects also involve the Automatic Test Equipment (ATE), as well as development of test strategy ([1, pp.17-18]), which include tester operation, ownership and maintenance costs. ATE costs depend on the data storage volume, output sampling frequency and test time. Therefore, DfT techniques, most prominently BIST alternatives, reduce test costs significantly due to both reduced test data volume and provision of at-speed testing while output sampling rate is kept much lower.

II.4 – Testing Terminology

Before proceeding to the details of testing, it is imperative to describe certain terms related to digital circuit testing. The three terms, which are used to define the test data are([13]):

(i) Input test vector (input vector/test vector): Applied parallel binary signals to the circuit under test via the available primary inputs, at one instance. For example, for a circuit with 8 primary inputs, 10001010 might be one of the applied input test vectors.

(ii) Test Pattern: Applied test vector plus the fault free outputs observed from the available parallel primary outputs. For example, for the above hypothesized circuit with 4 primary outputs, if the fault free outputs are 1111 for primary inputs 10001010, the test pattern is 10001010 1111.
(iii) Test Set: The complete set of all test patterns applied to the circuit under test to determine its non-faulty operation. The test set comprises all the sequence of applied test vectors and to be observed non-fault outputs. An exemplary test set with the test patterns and vectors demonstrated is as in table 1.
	Test Patterns

	
	Test vectors
	Non-faulty outputs

	Pattern1
	10001010
	1111

	Pattern2
	11001001
	1010

	Pattern3
	00100100
	0001

	.
	.
	.

	.
	.
	.

Table1, Exemplary Test Set

Although in general literature, these terms are not strictly followed, we will stick to these definitions throughout the project report.

II.5 – Test Pattern Generation

Test pattern generation is the process of defining an effective test set which will drive the circuit under test so that the faults in the circuit will cause a different response at the primary outputs from the non-faulty outputs. The algorithms used in test pattern generation are usually directed to non-functional testing, which concentrate on propagating any available faults on the circuit nodes to primary outputs. This type of testing is termed fault oriented testing ([1]). Test pattern generation is strongly related to fault modeling. Therefore, the applied fault model as well as the faulting hierarchy must be precisely elaborated before test pattern generation. Eldred ([16]) was the first to present a method for test pattern generation for combinational circuits and this introduced concept led to one dimensional path sensitization techniques, which were later developed into a multiple path sensitization technique by J. P. Roth in [27] in 1966. Roth’s D-Algorithm is later optimized for various Automatic Test Pattern Generation (ATPG) techniques.

Test pattern generation methods can be loosely classified into the three major branches ([13]]):

(i) Manual generation

(ii) Automatic (Algorithmic) generation

(iii) Pseudorandom generation

We describe test pattern generation in the above three categories. However, a more comprehensive classification is as shown in figure II-2.

Figure II-2, Test pattern generation techniques ([1])

II.5.1 – Manual Test Pattern Generation ([13]):

Manual test pattern generation might be used by original circuit or system designer depending on the extensive detailed knowledge of the system. The deterministic test set consists of test patterns for specific functional conditions and/or that will provide the propagation of certain node faults. The advantage of this technique lies in the efficient determination of an effective smaller deterministic set, but might require extensive analysis time.

II.5.2 – Automatic Test Pattern Generation ([1],[13],[14]):

Automatic (algorithmic) test pattern generation is the widely applied technique for test pattern generation, as the gate count in the VLSI systems increases rapidly. Mostly, dedicated ATPG programs are utilized for this task, which work on predetermined fault models – usually single stuck at 1. Most ATPG programs choose a faulty node at circuit, propagate this fault to an observable output and backtrace to primary inputs in order to specify the required test vectors for all faults within the circuit. In the forthcoming descriptions of ATPG techniques, the first described one, Boolean difference method does not depend on the described backtracking scheme, while all the others do.

i- Boolean Difference Method
:

Boolean Difference Method uses Boolean algebraic relations for test vector determination. The formal definition of Boolean difference is:

[image: image12.jpg]

(1)

where,

f(x): a function of n independent variables

d/dx: difference operator

If the above Boolean difference is 1, then the fault on input line xi can be detected. If Boolean difference is 0, f(x) is independent of xi and fault cannot be detected. Boolean difference method covers both stuck at 1 and stuck at 0 faults, but Boolean algebra involved requires extensive computation time and memory and therefore is not the used method in practice.

ii- Single Path Sensitization:

Single path sensitization traces a signal path from faulty node to the primary outputs by setting the other inputs of any logic gate such that the output sensitive to changes in the faulty node. Then, by backward simulation, the required input test vectors are defined. Single path sensitization technique sensitizes only a single path from the faulty node to primary outputs, which deteriorates faults detection probability for reconvergent fanouts. To overcome this shortcoming, D algorithm is proposed.

iii- Roth’s D Algorithm:

D algorithm is a more formal description of path sensitization method and is the foundation point of many ATPG programs used in practice. D algorithm is based on the ‘calculus of D cubes’. It sensitizes all the paths from the faulty node to an observable primary output and therefore is robust against reconvergent fanout. The application of D algorithm requests the knowledge of all gates in the circuit and all interconnection. In D algorithm terminology, D represents a fault sensitive node that is fault free when D=1 and D’ represents a fault sensitive node that is fault free when D=0. The algorithm defines a fault, generates a D cube of failure, generates a fanout list for the faulty gate and propagates the effect of faulty gate through all gates in the fanout list via path sensitization, which is termed as D Drive process. Finally the algorithm performs a backward simulation for consistency of assigned logic values to primary inputs
.

iv- Improvements over D Algorithm
:

Although D algorithm is computationally more efficient than Boolean Difference Method, the computation time for test pattern generation is still a significant concern and several modifications over D algorithm are proposed in order to reduce computational cost.

A modification of D-algorithm was Logic Automated Stimulus And Response (LASAR), which worked backwards from the primary outputs by assigning logical values to outputs and working backwards for gate logic values.

In order to reduce test pattern generation cost, an alternative form of fault simulation, called TEST-DETECT is also integrated to D algorithm, which determined what other faults could be detected by each defined test vector. TEST-DETECT starts at primary outputs and backtraces the whole circuit to define D-chains.

Following the above two improvements, Path Oriented DEcision Making (PODEM) algorithm is utilized in an ATPG system, named PODEM-X, which comprised a fault simulator, three test pattern generation programs and a test pattern compaction program. PODEM-X is involved in IBM’s DfT methodology, Level-Sensitive Scan Design (LSSD). In PODEM, the path from faulty node to a primary input is backtraced, with branching decisions done heuristically at each step. Once a primary input is reached, the simulator is invoked to verify whether the target fault is sensitized or not. PODEM-X uses a test generation program, named Shift Register Test Generator (SRTG) to test the shift registers. The test generation strategy applied in PODEM-X comprises a general test with RAndom Path Sensitization test generator (RAPS) and fault oriented cleanup tests with PODEM to generate test patterns for remaining uncovered fault conditions.

FUTURE is a test pattern generation system produced by NEC Corp. Similar to PODEM-X, it also has a global and a fault oriented test generator. Fault coverage is determined by a concurrent fault simulator. The fault oriented test pattern generator is named FANout oriented test generation algorithm (FAN), which is verified to be more efficient than PODEM because of the applied heuristics.

LAMP2 Test Generator (LTG) was developed in AT&T labs in order to improve the test pattern generation efficiency for large circuits. LTG also uses two test pattern generation schemes, global test patterns and cleanup test patterns. The global pattern generation is performed by the program Sensitizing Method for Algorithmic Random Testing (SMART) and the fault oriented pattern generation is performed by a procedure named FAST. As a comparison of techniques, test generation for a circuit of 75000 gates took 1.6 CPU hours with LTG, and a circuit of 45000 gates took 7.2 hours and 14 hours for the previous described techniques ([1, pp.123-124]). However, no information is disclosed on the effectiveness and volume of generated test sets!

Another test generation system, HITEST utilizes artificial intelligence concept on expert systems.

II.5.3 – Pseudorandom Test Pattern Generation ([1],[13],[15]):

Manual and algorithmic pattern generation techniques described in the above two sections can be grouped as deterministic techniques as they are based on specifically defining input test vectors that enable the detection of certain faults within the circuit under test. The advantage of deterministic tests is, they provide a compact test set that are targeted to the detection of the defined fault list; and the obvious disadvantage is the extensive computation cost and complexity. At the other extreme, fully exhaustive testing, i.e. applying all the possible 2# of primary inputs input combinations, involves almost no complexity and there is no computation cost for the determination of the test set. Obviously, this second approach bears the disadvantage of unrealistic test data volumes for reasonably large circuits. As the general engineering practice, an intermediate scheme that negotiates between complexity and volume is well made use of, named pseudorandom test pattern generation. This third technique to be described in this section relies upon probabilistic measures of random test patterns and the plausible fact that, any random pattern applied to the circuit under test is very likely to detect several faults in the circuit and thus, can be a candidate for a deterministic test vector – though it might not be the most efficient. The fault coverage relation for truly random input test vectors is well investigated in the literature, and tests made in [28] for different combinational circuits, which are tabulated in table 2, revealed the following fault coverage relation approximation for a combinational circuit with N applied random test vectors[13, p.69].

[image: image2.wmf][

]

%

100

1

)

log

(

10

´

-

=

-

N

e

FC

l

(2)

where;

FC
: Fault Coverage

N
: Number of applied random test vectors

(

: A constant reflecting certain properties of the combinational circuit

	Circuit
	# of Primary inputs
	# of Gates
	% Fault coverage with respect to # of applied random input test vectors, N

	
	
	
	N=100
	N=1000
	N=10000

	(1)
	63
	926
	86.1
	94.1
	96.3

	(2)
	54
	1103
	75.2
	92.3
	95.9

Table 2, Fault coverage for two combinational circuits with random test vectors [13, p.69]

As a means of quantification of the above expression, the Matlab script in Appendix E-1 is run for N=1000 and (=1 and the resulting fault coverage plot is as shown in figure II-3. As can be observed, application of random test patterns reveals the same effect as deterministic patterns with a high coverage at the start and a decelerating follow-up. As a result, a small subset of the whole random input state space can be applied to a circuit under test for a fairly comprehensive fault coverage, and as in ATPG, the remaining faults can be targeted with a cleanup testing strategy. Beyond this, as a matter of practice, it is not rational to apply truly random input test vectors as they are very hard to generate algorithmically and it is redundant to apply the same vectors twice for combinational faults, which is a probable case of complete randomness. Therefore, pseudorandom pattern generation, rather than truly random sequences, is the widely applied pattern generation technique. The advantages of PRBS generation is twofold: they are a pseudorandom sequence of all possible states of inputs, except 000..00, without any repetition of states, and they are very easy to generate in hardware. The second statement is also one of the reasons why PRBS generators are very attractive for BIST.

[image: image3.jpg]Fault Coverage (%)

100

0 i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000

FC plot for 1000 random test vectors; with A=1
T T

Number of Applied Random Test vectors

Figure II-3, Fault coverage plot for 1000 random test vectors

On chip PRBS generation is accomplished by utilization of LFSRs or CA, which will constitute the majority of the subject matter for section III. Therefore, we will not here delve into the details of LFSR or CA principles. However, as a requisite to the flow of the context, we here define the general LFSR and CA structures.

LFSR is a serially connected flip-flop configuration – shift register configuration – with feedbacks from certain flip-flop outputs – taps – that are XORed together –added in modulo 2 – and connect back to first flip-flop’s input. The number and position of taps determine the length and sequence of generated PRBS pattern. An exemplary 8 stage LFSR with tap connections that provide maximum possible sequence length (2n-1 patterns) is as shown in figure II-4.

CA structure is quite similar to that of LFSR, with the inherent shift register configuration. The basic difference from the LFSR is, the interconnections of individual flip-flops now always include an XOR operation and there is no global feedback. CA consist of 2 types of primary cells, namely 90 and 150 cells, and certain combination of these cells reveal maximum length sequences. The only difference between 90 and 150 cells is, 150 cells have an additional self feedback from the flip-flop output to back to its input. An exemplary 4 stage CA, with appropriate 90 and 150 cell configuration for maximum length PRBS is as shown in figure II-5.

Figure II-4, An 8 stage maximum length LFSR

Figure II-5, A 4 stage maximum length CA

As an oversimplified comparison between CA and LFSRs, CA reveal a more random pattern sequence, while LFSRs incur less hardware cost and complexity.

II.6 – Test Data Compression

As mentioned so forth throughout the text, one of the major concerns in testing is the large volumes of test data for reasonably large circuits. This problem must be realized as having two corollaries, the volume of test pattern generation data and the volume of needed to be observed output data, which can be imprecisely named as input data and output data. In this section we discuss techniques to reduce the input and/or output data volume.

II.6.1 – Input Test Data Compression ([13]):

Input compression, also known as input compaction, relies on the possibility that, for a multiple output circuit, some of the outputs might be only dependent on some of the inputs and not all. Thus, considering a full exhaustive test to be applied, the amount of required test vectors reduces to half per such independent input. As a hypothetical example, for a 7 input circuit, if 3 of the inputs controlled only a subset of the outputs, 4 of the inputs controlled only another subset and 5 controlled the rest of outputs, the total amount of required exhaustive test patterns would be, in the worst case: 23+24+25 = 56 < 27=128. However, there is an inherent assumption in this application, any possible unexpected interference between the disjoint inputs are discarded, and therefore, the two tests cannot be said to have exactly same effectiveness. Hence, this process is similar to functional decomposition in Switching and Automata Theory, and can be done by: functional partitioning the circuit, minimizing the Boolean relation of each output to see which inputs they are dependent to or more sophisticated techniques like the determination of spectrum of each output function
.

II.6.2 – Output Test Data Compression ([1,13,14,15]):

Output compression, also known as output compaction or space compression is the predominant technique in data compression. The concept of output compression relies on compressing the acquired output data into a much less data volume, which carries all but most fault detection properties that can be inferred from the uncompressed raw output. Inevitably, any such compression technique involves some amount of ‘miss rate’ that a faulty raw output will be compressed into a signature equivalent to that of a non-faulty output, which is termed ‘aliasing’. Several well-studied techniques for output data compression are described in the following subsections.

i- Syndrome (1s count) testing:

The simplest of the output compression techniques is 1s counting, which is basically the count of 1s (or 0s) at the output of the circuit under test, when a full exhaustive test is applied. Therefore, for an n input circuit, 1s count might range from 0 to 2n. There is a slight terminology difference between 1s count and syndrome. Syndrome is the normalized 1s count value to the all possible 2n inputs. Which can be related to 1s count as a 1-1 correspondence as shown below:

[image: image4.wmf]n

count

ones

syndrome

2

-

=

 (3)

In general, syndrome count is not a satisfactory output compression technique, due to its high fault masking. A crude estimation of fault masking for syndrome testing can be done as follows.

If we consider a test with R test vectors, the raw output will be an R bit long sequence, which can have 2R possible combinations. Out of these 2R combinations, 1 will be the fault free output while the rest 2R-1 will be corresponding the faulty output sequences. If the fault free output sequence has s 1s, the total number of sequences having s 1s in the 2R possibilities is([13]):
[image: image5.wmf]÷

÷

ø

ö

ç

ç

è

æ

s

R

, where 1 of these combinations correspond to the fault free signature and the rest to the faulty signatures. Therefore, out of the 2R-1 possible faulty sequences,
[image: image6.wmf]÷

÷

ø

ö

ç

ç

è

æ

s

R

-1 will have the same signature as the fault free response, which reveals a fault masking probability of;

[image: image7.wmf]1

2

1

-

-

÷

÷

ø

ö

ç

ç

è

æ

=

R

fm

s

R

P

(4)

Hence, the above relations are based on the assumption that all the output combinations are equally probable, which is rarely true for combinational circuits. Nevertheless, an interesting observation is, if the fault free output has very low or very large amount of 1s, the fault masking probability is very low.

ii- Accumulator-Syndrome testing:

Accumulator-syndrome testing is a modification of the syndrome testing of previous subsection, where the integral of the syndrome is considered as the final signature. In discrete point of view, the integral corresponds to the accumulation of the syndrome count values – hence the name accumulator. An exemplary case is depicted in table 3.

	Output sequence
	0 0 1 0 1 0 0 1 1 1 0 …

	Syndrome count
	0 0 1 1 2 2 2 3 4 5 5 …

	Accumulator-syndrome values
	0 0 1 2 4 6 8 11 15 20 25 …

Table 3, Syndrome count vs. Accumulator-Syndrome Testing

Obviously, the accumulator-syndrome testing depends on the order of the applied test vectors.

iii- Transition Count testing:

Transition count relies on counting the number of transitions from 1(0 and 0(1, rather than counting the number of 1s or 0s at the output. This test is also dependent on the order of applies test vectors. As in syndrome testing, this technique also has a margin of error for missed faulty sequences, but this can be taken care of with ordering the test vector sequence such that, the output sequence generated is all 0s followed by all 1s or vice versa. However, this approach has two major drawbacks, 1) the input test set should be in fixed order, which reduces BIST generation possibility 2) each output requires a separate set of test vectors. Consequently this technique is also not very much utilized in applications.

The fault masking probability for transition counting, computed in a similar fashion as in subsection (i) is([14]):

[image: image8.wmf]1

2

1

1

2

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

R

fm

s

R

P

(5)

where;

s: transition count value for the fault free output

iv- Alternative Mathematical Coefficients
:

Despite the generally accepted use of Boolean algebra in definition of digital circuits, other mathematical modeling methods coexist which might be utilized in circuit testing. Some of these alternatives are Arithmetic, Reed-Muller and Spectral Coefficients.

In arithmetic coefficients, the functional expression for a circuit is defined in arithmetic addition rather than Boolean addition. The arithmetic coefficients are coefficients of the minterms in an expression, which can take various integer values rather than the general binary values used in Boolean Algebra’s sum of products form.

In Reed-Muller coefficients, the canonic expansion of the functional expression of a circuit is defined in terms of XOR relations. The Reed-Muller coefficients represent the coefficients for the minterms in the XOR relations.

In spectral coefficients, the coefficients of the minterms in Boolean Algebraic form are transformed into Spectral domain using ‘Hadamard’ orthogonal transformation. The resulting coefficients are generally interpreted as correlation coefficients.

In terms of testing, arithmetic and Reed-Muller coefficients are not very well utilized as test signatures in comparison with spectral coefficients. Spectral coefficients are researched vastly for testing purposes, they are seen to provide very useful information for determining the correlation between different inputs of a circuit for both input and output compression. However, the major drawback is stated as the computational cost of computation of the coefficients due to the required transformation.

v- Parity check testing:

Parity checking simply checks whether the resulting output sequence has even number of 1s or vice versa. Directly following from this definition, parity checking will detect all single bit errors and any multiple errors that will change the even-odd parity of the output sequence. In terms of BIST prospects, parity checking can simply be applied with an XOR and a shift register. The computer fault masking probability in a similar fashion with the previous cases reveals:

[image: image9.wmf]1

2

1

)

2

/

2

(

-

-

=

R

R

fm

P

(6)

Moreover, parity checking of multiple output sequences can be done via the application of a big pre-XOR to all the outputs.

vi- Signature Analysis:

Amongst the techniques described so far, signature analysis is the widespread used technique in practice for BIST output compression technique. The signature analysis process is not fundamentally different from the LFSR, but the input XOR of the LFSR is connected to the output data sequence rather than being kept at 0. As all the test vectors are applied, the output is fed into the XOR and this causes the transitions in the LFSR states, then after the application of the whole test set, the remaining signature is read as the output signature. Hence, in this methodology, the LFSR does not necessarily traverse all the possible 2n-1 states, as the next states are dependent on the serial output value. Based on the previously stated assumption, the fault masking probability of signature analysis can be determined as follows. Once again for R input test vectors, there will be R output values generated as the output sequence. Considering the number of stages in the LFSR as n, where n<R, only 2n sequences can be produced as the signature from the n bit LFSR. Assuming all these signatures are equally probable, the number of sequences having the same signature would be: 2R/2n=2R-n, out of which 1 will be the fault free output and the rest faulty sequences, sharing the same signature with the fault free one. As a result the fault masking probability can be summarized as:

[image: image10.wmf]1

2

1

2

-

-

=

-

R

n

R

fm

P

(7)

which can be approximated to
[image: image11.wmf]n

fm

P

2

1

=

, for large R.

One further enhancement to signature analysis, in today’s testing circuits is the application of multiple outputs to the same LFSR, which is termed as Multiple Input Signature Analysis.

Controllability

(Solid Curve)

Observability

(Dotted Curve)

Distance from primary inputs

Distance from primary outputs

Test generation methods

Combinational

Sequential

Manual

Programmable

Pseudorandom

Structural

Programmable

Manual

Reconfiguration

Technique

Pseudorandom

Sequential

Analyzer

Algebraic

LFSR

RAPS

SMART

D-Algorithm

PODEM

FAN

FAST

Boolean

Difference

State

Table

SOFTG

MTG

ITG

CK

seed(1)

Structural

Algebraic

Q(1)

1

F-F

Qint(1)

seed(2)

Q(2)

2

F-F

Qint(2)

seed(3)

Q(3)

3

F-F

Qint(3)

seed(4)

Q(4)

4

F-F

Qint(4)

seed(5)

Q(5)

5

F-F

Qint(5)

seed(6)

Q(6)

6

F-F

Qint(6)

seed(7)

Q(7)

7

F-F

Qint(7)

seed(8)

Q(8)

8

F-F

Qint(8)

CK

sin

90 cell

Q(1)

1

F-F

Qint(1)

150cell

Q(2)

2

F-F

Qint(2)

Q(2)

Q(4)

Q(2)

Q(4)

Q(3)

Q(3)

Q(2)

Q(1)

0

90 cell

Q(3)

3

F-F

Qint(3)

150cell

Q(4)

4

F-F

Qint(4)

0

� For more detailed information on IC fabrication, testing and OEM-Vendor relation refer to [13, pp. 1-7]

� For more detailed information on testability measures, refer to [13, pp. 20-25],[17],[18, pp. 4-11]

� For more information on Boolean difference method, the reader may refer to [13, pp. 51-55].

� Comprehensive information on single path sensitization and D algorithm is available in [1, pp. 108-115] and [13, pp.48-63].

� For more information on described techniques, please refer to [1, pp. 115-144], [13, 63-67],[14, 10-11]

� For more information on input compression methods, please refer to [13, pp. 120-124]

� For more information on the described coefficients, refer to [13, pp. 127-141],[14, pp.103-108]

_1063312120.unknown

_1063318326.unknown

_1063321347.unknown

_1063321400.unknown

_1063320113.unknown

_1063312339.unknown

_1062703534.unknown

_1063311528.unknown

_1062653537.unknown

