

PS E U D O-RA N D O M TE S T I N G O F

AR I T H M E T I C CI R C U I T S

CANTURK ISCI

THIS DISSERTATION IS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS OF THE M.SC. DEGREE IN VLSI SYSTEM

DESIGN AT THE WESTMINSTER UNIVERSITY.

SUPERVISORS:

IZZET KALE

RICHARD C.S. MORLING

NOVEMBER 2001

ACKNOWLEDGEMENTS

 I would like to thank my supervisors, Dr. R.C.S. Morling and Prof. I. Kale for their

invaluable help and guidance during the project. I would also like to thank Mr. Alan Wood,

for his prompt support with UNIX system and installations. On a more personal note, I would

like to thank my family and friends for helping me keep up my spirit.

Abstract i

ABSTRACT

 Multipliers are often the critical functional blocks of datapath architectures. Due to their
deeply embedded configurations in datapath architectures and two dimensional iterative
array structure, they attain very low controllability and observability, which entails Built in
Self Test (BIST) for multiplier testing. In this project, a parameterized multiplier is designed
and BIST techniques for efficient multiplier testing are investigated. Deterministic fault
simulation for single stuck at model is used to determine the fault coverage characteristics of
the investigated methods, which are also compared to cell fault model (CFM), which is
defended by [2] and [3] to be more comprehensive. Both board level and hierarchical
faulting are applied in fault simulation. For hierarchical faulting, an over detailed method is
observed to be less optimistic than CFM. Various well-known and original input pattern
generation techniques are investigated, with emphasis on PRBS generation using Linear
Feedback Shift Registers (LFSRs) and Cellular Automata (CA). Effects of different seed are
discussed with a practical method for seed determination. The use of repeated patterns as
input is observed to be extremely efficient. In both exhaustive and repetitive pattern testing,
pseudorandom sequences overperform regular deterministic sequences. For output
compression, Multiple Input Signature Registers (MISRs) are seen to be very effective, with a
high weighted characteristic polynomial. A complete parameterized top level system with
BIST circuit is designed and a constant size test set with repetitive pattern generation using
LFSR with seed x7B is tested for larger size multipliers and is seen to be equally effective,
with less hardware cost than of general pseudorandom testing.

Table of Contents

ii

TABLE OF CONTENTS

Abstract i
Table of Contents ii
List of Figures v
List of Tables vii
List of Abbreviations viii

I-Introduction 1

I.1 – Introduction to the Project 1
I.2 – Introduction to Project Report 3

II-Testing and Built in Self Test 4

II.1 – Evolution of Testing 4
II.1.1 – Functional and Structural Testing 6
II.1.2 – Controllability and Observability 7

II.2 – Online vs. Offline Test 8
II.3 – Cost of Testing in VLSI Circuits 8
II.4 – Testing Terminology 9
II.5 – Test Pattern Generation 10

II.5.1 – Manual Test Pattern Generation 11
II.5.2 – Automatic Test Pattern Generation 12
II.5.3 – Pseudorandom Test Pattern Generation 14

II.6 – Test Data Compression 17
II.6.1 – Input Test Data Compression 18
II.6.2 – Output Test Data Compression 18

III-PRBS Generation and Signature analysis 23

III.1 – PRBS Generation Using LFSRs 23
III.1.1 – Theory of LFSR Taps 25
III.1.2 – Primitive Polynomials 29
III.1.3 – Alternative LFSR Configurations 29

III.2 – PRBS Generation Using CA 31
III.2.1 – LFSR vs. CA 34

III.3 – Signature Analysis 34
III.3.1 – Multiple Input Signature Registers 36

IV-Design/Simulation Tools and Data Management 39

IV.1 – Generic Design Flow 39
IV.2 – Project Tools and Data Management 40

IV.2.1 – Auxiliary Project Tools 43

Table of Contents

iii

V- Multiplier and BIST Circuit Design 44

V.1 – Multiplier Architecture 44
V.1.1 – Twos Complement Multiplication 44
V.1.2 – Multiplier Architectures 47

V.2 – Initiation Part-I: Design of 3x3 CPA Multiplier 49
V.2.1 – HHandH 51
V.2.2 – HLandH 53
V.2.3 – Half Adder (HA) 53
V.2.4 – Full Adder (FA) 54
V.2.5 – Modified Full Adder for Signed Addition (MSBFA) 55
V.2.6 – Signed Parallel 3x3 CPA Multiplier (CPAmult3x3) 56

V.3 –Design of Parameterized CPA Multiplier (CPAmultNxN) 57
V.4-Design of Parameterized Signature Analyzer (Signalyzer) 60
V.5 –Design of 8x8 Multiplier + Signature Analyzer (MultSign8x8) 61
V.6 –Design of Parameterized LFSR (LFSR) 63
V.7 –Design of Top Level System (LFSRMultSignNxN) 65
V.8 –16x16 Multiplier with BIST (LFSRMultSignNxN_16) 67
V.9 –32x32 Multiplier with BIST (LFSRMultSignNxN_32) 68
V.10 –24x24 Multiplier with BIST (LFSRMultSignNxN_24) 69
V.11 – Design Summary 69

VI- Investigation of BIST Techniques 71

VI.1 – Fault Simulation and Fault Models 72
VI.2 – Initiation Part-II: Fault Simulation of 3x3 CPA Multiplier 73
VI.3 – BIST for 8x8 Multiplier 73

VI.3.1 – BIST = 16 bit Upcounter for Board Level Faulting 80
VI.3.2 – BIST = 16 bit Downcounter for Board Level Faulting 83
VI.3.3 – BIST = 16 bit Rolling 0 for Board Level Faulting 84
VI.3.4 – BIST = 16 bit Rolling 0 + all 0s for Board Level Faulting 88

VI.4 – BIST for 8x8 Multiplier with Hierarchical Faulting 91
VI.4.1 – BIST = 16 bit Rolling 0 + all 0s 94
VI.4.2 – Benchmark BIST = 16 bit Downcounter 99
VI.4.3 –BIST = Repetitive Patterns - Upcounter 101
VI.4.4 –BIST = 16 bit LFSR 104
VI.4.5 –BIST = 8 bit LFSR – Repetitive Pattern 109
VI.4.6 –BIST = 16 bit CA 113
VI.4.7 –BIST = 8 bit CA – Repetitive Pattern 117
VI.4.8 – Summary of BIST Techniques 120

VI.5 – MISR Implementation for BIST 121
VI.6 –LFSR Implementation for BIST 124
VI.7 –16x16 Multiplier with BIST 126
VI.8 –Larger Multipliers with BIST 129

VII-Workplan 132

Table of Contents

iv

VIII-Conclusions 133

IX-Suggestions for Future Work 136

X-References and Bibliography 137

X.1 - References 137
X.2 - Bibliography 139

XI-Appendices 140

List of Figures v

LIST OF FIGURES

Figure II-1, General Characteristics of Controllability and Observability([13]) 7
Figure II-2, Test pattern generation techniques 8
Figure II-3, Fault coverage plot for 1000 random test vectors 13
Figure II-4, An 8 stage maximum length LFSR 14
Figure II-5, A 4 stage maximum length CA 14
Figure III-1, General Description of the LFSR Structure 25
Figure III-2, 4 stage Max-length LFSR 28
Figure III-3, TDA – LFSR structure 30
Figure III-4, Nonlinear Feedback shift Register 30
Figure III-5, 90 and 150 CA cells 31
Figure III-6, A 4 stage maximum length CA and its output sequence compared with an LFSR output 32
Figure III-7, Multiple Input Signature analyzer 36
Figure IV-1, Generic Design Fault Simulation Flow Chart 40
Figure IV-2, Design and Tool flow 41
Figure IV-3, Key to Design and Tool flow units 42
Figure V-1, twos complement multiplication 45
Figure V-2, sign extension after ordering summation 46
Figure V-3, sign extended addition of signed numbers 46
Figure V-4, Modified signed adder 47
Figure V-5, Regular 3x3 CPA Multiplier Structure 50
Figure V-6, Used 3x3 CPA Multiplier Structure 51
Figure V-7, HHandH symbol 51
Figure V-8, HHandH simulation result 52
Figure V-9, HLandH symbol 53
Figure V-10, HLandH simulation result 53
Figure V-11, HA symbol 54
Figure V-12, FA symbol 54
Figure V-13, MSBFA symbol 55
Figure V-14, CPAmult3x3 symbol 56
Figure V-15, NxN CPA Multiplier Structure 58
Figure V-16, CPAmultNxN symbol 59
Figure V-17, Exemplary Simulation Trace for CPAmultNxN 59
Figure V-18, Signalyzer symbol 60
Figure V-19, MultSign8x8 symbol 62
Figure V-20,LFSR symbol 64
Figure V-21, Structure of LFSR 65
Figure V-22, LFSR Simulation input Signals 65
Figure V-23, LFSRMultSignNxN symbol 66
Figure V-24, Design Library 70
Figure VI-1, Generated CPAmult3x3schematic with inserted faults 73
Figure VI-2, Schematic Level Simulation Trace for 3x3 Multiplier 75
Figure VI-3,Effectiveness of applied input patterns 75
Figure VI-4, Fault coverage (%) vs. test cycle plot for 3x3 multiplier 77
Figure VI-5, Number of Detected Faults vs. test cycle histogram for 3x3 multiplier 78
Figure VI-6, Multiplier 8x8 Schematic, Inserted Faults and Simulation trace for the upcounter test 81
Figure VI-7, Number of Detected Faults vs. test cycle histogram for board level upcount test 82
Figure VI-8, Fault coverage (%) vs. test cycle plot for board level upcounter test 82
Figure VI-9, Number of Detected Faults vs. test cycle histogram for board level downcount test 84
Figure VI-10, Fault coverage (%) vs. test cycle plot for board level downcounter test 84
Figure VI-11, Histogram for board level rolling0 test 86
Figure VI-12, Fault coverage (%) for board level rolling0 test 86
Figure VI-13, Undetected faults 87
Figure VI-14, Undetected faults on the HLandH gates 87
Figure VI-15, Sensitization of noninverting input for stuck at 1 fault 88

List of Figures vi

Figure VI-16, Fault simulation for rolling 0 + all 0s 89
Figure VI-17, Histogram for board level rolling0 + all 0s test 90
Figure VI-18, Fault coverage (%) for board level rolling0 + all0s test 90
Figure VI-19, Hierarchical Fault injection 92
Figure VI-20, Faults inserted to MSBFA 92
Figure VI-21, Faults inserted to FA 93
Figure VI-22, Faults inserted to HA 93
Figure VI-23, Faults inserted to HHandH gate 93
Figure VI-24, Faults inserted to HLandH 93
Figure VI-25, Histogram for hierarchical rolling0 + all 0s test 95
Figure VI-26, Fault coverage (%) for hierarchical rolling0 + all0s test 95
Figure VI-27, Histogram for rolling0 + all 0s test followed by a rolling1 test 96
Figure VI-28, Histogram for hierarchical Exhaustive Downcounter test 100
Figure VI-29, Fault coverage (%) for hierarchical Exhaustive Downcounter test 100
Figure VI-30, Locations of undetected faults for downcounter test in 8x8 multiplier 101
Figure VI-31, Histogram for Repetitive upcounter with k=4 103
Figure VI-32, Fault coverage (%) for Repetitive upcounter with k=4 103
Figure VI-33,The emulated LFSR by the Matlab Script 104
Figure VI-34, Histogram for 16 bit LFSR with seed=x0001 105
Figure VI-35, Fault coverage (%) for 16 bit LFSR with seed=x0001 105
Figure VI-36, Zoomed Fault coverage (%) for 16 bit LFSR with seed=x0001 106
Figure VI-37, Zoomed Histogram for 16 bit LFSR with seed=x0001 107
Figure VI-38, Zoomed Fault coverage (%) for 16 bit LFSR with seed=xEA58 108
Figure VI-39,The emulated 8 bit LFSR by the Matlab Script 110
Figure VI-40, Fault coverage (%) for 8 bit LFSR with repetition length, k =4 and seed=x01 111
Figure VI-41, Histogram for8 bit LFSR with repetition length, k =4 and seed=x01 111
Figure VI-42, Fault coverage (%) for 8 bit LFSR with repetition length, k =4 and seed=x7B 112
Figure VI-43, Fault coverage (%) for 8 bit LFSR with repetition length, k =4 and seed=xB7 113
Figure VI-44, Matlab Emulated 16 bit CA circuit 114
Figure VI-45, Fault coverage (%) for 16 bit CA with seed=x0001 115
Figure VI-46, Histogram for 16 bit CA with seed=x0001 115
Figure VI-47, Fault coverage (%) for 16 bit CA with seed=x534F 116
Figure VI-48, Histogram for 16 bit CA with seed=x534F 116
Figure VI-49, Histogram for 8 bit CA with seed=x01 118
Figure VI-50, Fault coverage (%) for 8 bit CA with seed=x6D 119
Figure VI-51, Fault coverage (%) for 8 bit CA with seed=xAB 120
Figure VI-52, Generated schematic for 16 bit signature analyzer 122
Figure VI-53, Generated schematic for 16 bit signature analyzer + 8x8 multiplier 122
Figure VI-54, Signature analyzer input signals 123
Figure VI-55, Histogram for MultSign8x8, with 8 bit LFSR with seed=x7B as input 123
Figure VI-56, Generated 8 bit LFSR 124
Figure VI-57, Generated schematic for complete design for mult8x8 125
Figure VI-58, Fault coverage (%) for LFSRmultSign8x8 126
Figure VI-59, Generated 16x16 schematic 127
Figure VI-60, Generated 32 bit signature analyzer 127
Figure VI-61, Top level circuit 128
Figure VI-62, Fault coverage (%) for LFSRmultSign16x16 129
Figure VI-63, Generated 32x32 multiplier schematic 130
Figure VI-64, Generated 64 bit signature analyzer 130
Figure VI-65, Top level circuit schematic for 32 bit multiplier 131
Figure VII-1, Milestoned Workplan 132

List of Tables vii

LIST OF TABLES

Table1, Exemplary Test Set 10
Table 2, Fault coverage for two combinational circuits with random test vectors 15
Table 3, Syndrome count vs. Accumulator-Syndrome Testing 20
Table 4, 90 and 150 functions of CA 31
Table 5, P(x) and D(x) relation 35
Table 6, Physical Paths to Design Data 42
Table 7, Auxiliary tools and functions 43
Table 8,Modified Booth Algorithm 49
Table 9,HA Simulation List 54
Table 10,FA Simulation List 55
Table 11,MSBFA Simulation List 55
Table 12,MultSign8x8 Simulation List 63
Table 13, Fault simulation data locations in CD 79
Table 14, Rolling 0 pattern 85
Table 15, Rolling 0 + all 0s pattern 88
Table 16, Rolling 1 pattern 96
Table 17,Two Rolling 0s pattern 97
Table 18,Two Rolling 0s + all 1s for each b pattern 98
Table 19,Two Repetitive pattern with repetition length(k)=4, and pattern generator Upcounter 102
Table 20, Summary of BIST Results 121

List of Abbreviations

viii

LIST OF ABBREVIATIONS

 Below is a list of abbreviations used in this report. The abbreviation, the description of the

abbreviation and first mention page in the report are listed in the respective columns:

ASIC Application Specific Integrated Circuit 1
ATE Automatic Test Equipment 9
ATPG Automatic Test Pattern Generation 10
BIST Built in Self Test 1
CA Cellular Automata 2
CAD Computer Aided Design 4
CPA Carry-Propagate Array 2
CSA Carry-Save Array 2
DfT Design for Testability 4
DSP Digital Signal Processor 1
DUT Device Under Test 7
EDA Electronic Design Automation 1
EDDM Electronic Design Data Model 40
FA Full Adder 47
FAN FANout oriented test generation algorithm 14
GF(2) Galois Field of 2 26
HA Half Adder 50
HDL Hardware Description Language 39
IC Integrated Circuit 1
LASAR Logic Automated Stimulus And Response 13
LFSR Linear Feedback Shift Registers 2
LSI Large Scale Integration 4
LSSD Level-Sensitive Scan Design 13
LTG LAMP2 Test Generator 14
MAC Multiply-Accumulate 1
MD Multiplicand 44
MISR Multiple Input Signature Register 2
MR Multiplier 44
MSB Most Significant Bit 44
MSI Medium Scale Integration 5
OEM Original Equipment Manufacturer 6
PCB Printed Circuit Board 5
PODEM Path Oriented DEcision Making 13
PRBS Pseudorandom Binary Sequence 2
RTL Register Transfer Level 39
SB Sign Bit 44
SMART Sensitizing Method for Algorithmic Random Testing 14
SRTG Shift Register Test Generator 13
SSI Small Scale Integration 5
VHDL VHSIC Hardware Description Language 2
VHSIC Very High Speed Integrated Circuit 2
VLSI Very Large Scale Integration 1

Introduction 1

I-INTRODUCTION

I.1 – INTRODUCTION TO THE PROJECT :

 With the immense present and ongoing technological developments in communications

and computerization, digital signal processors (DSPs) and general purpose processors are two

of the most active fields in Very Large Scale Integration (VLSI) and Application Specific

Integrated Circuit (ASIC) design. Datapath architectures, which constitute the operational

backbone of these two systems are of particular importance, as even though the significant

advances in computation speed, electronic design automation (EDA) tools and integrated

circuit (IC) technology instigate faster, smaller and less power dissipating circuits with less

production time overhead, the requirements for efficient testing methodologies get stubbornly

more demanding as such architectures are deeply embedded in overall system structure, with

low controllability and observability, and increased gate to pin ratios. [1],[2],[3],[4]

 Multipliers are the most critical functional blocks of datapath architectures in terms of

speed and area, and due to their common use in datapath architectures, they are very well

integrated in the design automation processes with several alternatives favoring regularity in

structure, power consumption, speed and/or area. However, due to their deeply embedded

configuration in the datapath architectures, the low observability and controllability, which

are even deteriorated by the general regular 2 dimensional iterative array structure[3], make

multiplier testing a significant bottleneck in the design process. Therefore, Built in Self Test

(BIST) architectures are the preferred solution in multiplier testing for most applications

([3],[5]), as efficient BIST methods provide testing at the operation speed of the overall

system – at speed testing –, very high fault coverage with moderate amount of test vectors –

constant or linearly dependent on multiplier size – and reduced test time, which in turn reduce

the test cost.

 In this project, we investigate several BIST techniques for testing parallel multipliers, and

then the scrutinized BIST techniques will be extended to Multiply-Accumulate (MAC),

structures with also the addition of the inherent nonlinearities of MAC architectures, namely

rounders for precision loss in fixed point multipliers and limiters/clippers to prevent wrapping

due to overflow in accumulators. The project can be vaguely separated into 4 phases:

Introduction 2

(0- Gaining background information on testing, BIST, Pseudorandom Binary Sequence

(PRBS) Generation and output compression techniques)

1- Design of a parameterizable signed – 2s complement multiplier:

 In this phase, which might be considered as the design entry, we design a

parameterizable multiplier using VHDL(VHSIC1 Hardware Description Language) in

Mentor Graphics’ Renoir®. There is a significant amount of literature on well-known

types of array and tree multipliers, and during the design entry, we refer to [6],[7],[8] for

signed Carry-Propagate Array (CPA) multipliers; to [9] for signed Carry-Save Array

(CSA) multipliers; to [8],[5] for modified booths array multipliers; to [7],[10],[3] for tree

structures and to [4] for CSA for MAC architectures. As the initial design, we’ve chosen

a simple signed CPA structure for the parameterizable multiplier.

 (1 2- Design data management and undertaking necessary steps to convert the design

data into the fault simulation format using Mentor’s Design Architect® and

AutologicII®)

2- Investigation of several BIST alternatives for input pattern generation:

 In this phase, we investigate several well-defined and original BIST schemes for an

efficient set of input test vectors in terms of fault coverage using Mentor’s QuickfaultII®.

Several techniques described in [13],[1],[14],[11],[12],[15] and [3] are observed and

particular emphasis is built on exhaustive and nonexhaustive PRBS generation with

Linear Feedback Shift Registers (LFSRs) ([1],[13],[14],[11]) and Cellular Automata

(CA) ([13],[15]). Finally, the application of repetitive patterns, described in [3], is

investigated as well as evaluation of the fault models described in [3],[6] and [23].

3- Application of output compression:

 In this phase, we investigate the outcome of applying output compression for the

multiplier outputs, mainly by application of signature analysis as described in

[13],[14],[1] and [11]. Techniques for improving fault coverage might be applied

depending on the outcomes of the designed 16 bit Multiple Input Signature Register

(MISR). Other output compression techniques, described generally in [1],[3] and [13] and

techniques specifically used multipliers as in [3].[5] might be investigated for comparison

depending on the time bounds

4- Extension to MAC Structure:

1 VHSIC : VERY-HIGH-SPEED INTEGRATED CIRCUITS

Introduction 3

 In this phase, we planned to extend the multiplier structure to a MAC structure,

which is the backbone of most DSP processor architectures[8]. An efficient BIST scheme

for the MAC architecture with rounders and limiters was to be investigated.

I.2 – INTRODUCTION TO PROJECT REPORT :

 In the project report, we try to demonstrate the project progress, in a systematical way,

which combines the chronological progress with the formerly described project phases. The

first section herein provides a brief introduction to the project and report. The second section

aims to give notional and theoretical information about testing and BIST. In the third section

we provide an in depth description of PRBS generation using LFSRs and CA and signature

analysis, specifically multiple input signature analysis. The fourth section describes the used

tools during the project as well as providing a comprehensive explanation of the design data

management and design flow. In the fifth section, the first phase of project progress, the

design entry is described and designed blocks are introduced, with their conformance to the

specifications. In the sixth section, investigation of various pattern generation techniques is

discussed with the application of several alternative pattern generation methods. The results

are either included within the section or in the appendices or merely referred from the

attached CD, depending on the respective volume of data to be presented. Sixth section,

which describes mainly the core of the project progress, concludes investigation of BIST

techniques with the determination of output compression technique and the final simulation

results. The remainder of the section, which is basically an extension to verify the

effectiveness of the proposed BIST scheme demonstrates the fault coverage for larger size

multipliers with the applied constant volume test set, and points to an interesting outcome and

encountered computational problems with increasing circuit size. The seventh section

demonstrates the project workplan. The eighth section states the conclusions reached after the

evaluation of the results, and the ninth section suggests any further work that could be

undertaken. Finally, the tenth section describes the cited references and used bibliography.

 ∨ To abide by the set page limitation on theoretical information, section two should be

considered as supplementary material about testing, and can be skipped for only complete

theoretical information about PRBS generation and signature analysis, in section three.

Testing and Built in Self Test

4

II-TESTING AND BUILT IN SELF TEST

 Since the electronics technology accomplished higher levels of integration into a single

silicon chip that led to Large Scale Integration (LSI), which preceded VLSI, the applications

of electronic systems have experienced an almost unlimited expansion. However, despite the

many advantages provided by VLSI, the inherent high integration level started to necessitate

very sophisticated testing strategies in order to verify the correct device operation. As the

electronics market stimulated the use of VLSI in a variety of tasks from critical military

applications to consumer products, the reliability of the products’ functioning gained an

escalating importance. The expanding demand for ASIC applications led to development of

more sophisticated Computer Aided Design (CAD) tools; which have shown most significant

progress in layout and simulation, with yet more inferior improvement in testing. This

consequently leads to designs with superior complexity, but which are in contrast extremely

difficult to test effectively. Moreover, due to the low volume attribute of ASICs, the high test

costs cannot be retaliated with large amounts of mass production. Thereupon, despite the

traditional design point of view, that design and test can be considered as two different

aspects of development, current design processes consider testing as an integral part of design

rather than design and test being two mutually exclusive processes. At present, as the number

of gates per chip exceeds millions, not only the design process is resolutely bound to the

designed circuits’ being testable, but also some percentage of auxiliary device circuitry is

intentionally included on devices, in order to assure the functionality of the ‘actual’ circuit is

verified to an adequate level. The two concepts mentioned in the last argument, the former

leading to Design for Testability (DfT), while the latter to BIST, are extensively scrutinized in

this section, with the exception of fault models and fault simulation techniques which are

discussed in section VI for the sake of clarity.

II.1 – EVOLUTION OF TESTING

 In the early times of electronics engineering, when systems were constituted from

discrete components, testing of digital systems comprised three distinct phases:

1- Each discrete component was tested for concordance to its specifications

2- The components were assembled into more complex digital elements (i.e. flip flops

etc.), and these were tested for correct functionality

Testing and Built in Self Test

5

3- The higher level system was built up and was tested for functionality

 As the systems acquired higher complexity, the 3rd phase began to become increasingly

difficult to accomplish and other means of system verification were begun to be sought. In

[16], R.D. Eldred suggested another way, which is well-known and used as structural test at

present, in order to test the hardware of a system instead of the burdensome functional test.

The first applications of the proposed structural test was to discrete components on Printed

Circuit Boards (PCBs), which then began to be applied to ICs as the electronics technology

developed into higher levels of integration([14]). Though the problems of IC testing was not

very much different from that of the PCBs, the objective of testing had then changed to

discard the faulty units rather than locating the defective components and replace them. In the

case of Small Scale Integration (SSI) and Medium Scale Integration (MSI), the problems were

relatively as simple as PCB testing, since ([1]):

1- Internal nodes of the devices were easily controlled and observed from the primary

inputs and outputs of the devices.

2- The simplicity of circuit functions permitted the use of exhaustive testing

3- More complex systems were constructed from basic, thoroughly tested components.

 As LSI and VLSI advanced as the prominent technologies, the gate/pin ratios increased

rapidly, thus reducing the controllability and observability of internal nodes drastically.

Consequently, the testing problems exacerbated by VLSI circuits can be stated as ([1]):

1- Increased testing costs, which depend on test time and therefore circuit complexity

2- Increased time overhead for efficient test pattern generation and verification

3- Increase in the volume of test data

 Recently, rapid changes in VLSI technology and more extensive use of ASICs have even

worsened these problems. Certain features of ASIC applications make VLSI testing even

more demanding ([1]):

1- ASIC designs generally require a short design time overhead due to the competitive

nature of the market, and hence they have a short product lifetime. Therefore,

immense efforts for efficient testing strategies may yet diminish the market value due

to time overhead.

2- As ASICs are by definition application specific, they generally have a low

production volume which cannot compensate for significant test costs.

3- The uniqueness of ASICs requires unique testing strategies for each specific

application.

Testing and Built in Self Test

6

 At present the objectives of VLSI testing can be described as follows ([13],[1]):

1- To ensure the circuit is functionally correct, free of design errors before fabrication

2- To ensure the device is free of fabrication errors after fabrication (fault detection)

(i) To locate the source of a fault within an IC (Physical fault location)

(ii) To locate a faulty component or connection within the complete system

(Component Fault Location)

 In order to comply with the above objectives, VLSI testing consists of several phases,

which require the involvement of both the IC manufacturer (vendor), and the Original

Equipment Manufacturer (OEM)([13]):

1- IC Fabrication Checks: Tests by vendor to ensure all fabrication steps have been

performed correctly during wafer production

2- IC Design Checks: Tests to ensure prototype ICs perform correctly.

3- IC Production Checks: Tests to ensure produced ICs are defect free

4- Acceptance Tests: Tests by OEM to ensure the incoming ICs are functionally correct

5- Product Tests: Tests by OEM for final manufactured products.

 The 1st and 3rd phases is the sole responsibility of vendor, while the 2nd step is either

verified by the vendor in the case of standard ICs or by the OEM in the case ASICs. The

last 2 phases are only relevant to OEM, who should verify their concordancei.

II.1.1 – Functional and Structural Testing:

 Before structural testing was proposed, digital systems were tested to verify their

compliance with their intended functionality, i.e. in this philosophy, a multiplier would be

tested whether it would multiply and so forth. This testing philosophy is termed as functional

testing, which can be defined as, applying a series of determined meaningful inputs to check

for the correct output responses in terms of the device functionality ([13]). Although this

methodology imparts a good notion of circuit functionality, under the presence of a definitive

fault model, it is very difficult to isolate certain faults in the circuits in order to verify their

detection ([14]). With the proposal of structural testing, which might be defined as,

consideration of possible faults that may occur in a digital circuit and applying a set of inputs

tailored for detecting these specified faults. In [16], the suggested technique was to define the

digital system as a combination of primitive/common basic blocks such as AND, OR, XOR,

etc. and inject faults to each gate of the circuit consecutively and generate input test patterns

to propagate these faults to observable outputs. As obvious structural testing relies on the fault

Testing and Built in Self Test

7

models described for the Device Under Test (DUT), and any result obtained in this manner is

unworthy without a proper description of used fault models. Fault models and fault simulation

techniques developed as a result of the above described technique will be elaborated in

section VI.

II.1.2 – Controllability and Observability:

 These terms, which are mentioned in section II.1, were introduced in 1970s in order to

describe the ease – or difficulty – of testing the nodes of a digital circuit. Controllability is a

measure of how easily – or hardly – can a node of a digital circuit can be driven from the

accessible (primary) inputs. Observability, is a measure of how easily the logical value of a

given node can be propagated to the observable (primary) outputs. In general, controllability

decreases as the distance between the to be controlled node and primary inputs – i.e. the

number of internal gates between primary inputs and the node – increases, and observability

decreases as the distance from primary outputs increases([13]). A representative plot for

observability and controllability can be demonstrated as in figure II-1.

Figure II-1, General Characteristics of Controllability and Observability([13])

 There have been various proposed schemes in order to quantify controllability and

observability, to identify circuits with low controllability and/or observability during the

design phase and modify these accordingly. Some of these include A Testability Measurement

Program (TMEAS), TESTSCREEN, Sandia Controllability Observability Analysis Program

(SCOAP), Computer-Aided MEasure for LOgic Testability (CAMELOT), VLSI testability

analysis program (VICTOR) and COMETii.

Controllability
(Solid Curve)

Observability
(Dotted Curve)

Distance from primary inputs
Distance from primary outputs

Testing and Built in Self Test

8

II.2 – ONLINE VS. OFFLINE TEST

 The formerly described VLSI testing phases are usually performed to guarantee a

designed digital system conform to their design specifications during the prototype and final

production and post-production checks. During these tests, the system is not actually yet

operated to perform its normal intended operation, i.e. for a microprocessor, is not yet placed

on a motherboard to perform as the CPU of a computer. Regarding the description in [14,

p.6], the system is termed online in the latter described situation, while is termed offline,

during the initial production check phases as described in the former case. Obviously, the tests

described previously all refer to offline tests, and as a matter of fact, most of the testing effort

in digital testing is geared toward offline testing. Nevertheless, occasionally the digital device

is required to be tested during the online mode to assure correct operation and state of the

device before the initiation of a critical task as well as for error recovery purposes. If the

testing of system is performed while the device continues its normal operation, the performed

test is named online test. However, if the system is needed to end its normal operation to reset

the system into a testing mode, the performed testing methodology is termed offline test. The

testing strategies described in this report and applied in the project are all examples of offline

test strategies.

II.3 – COST OF TESTING IN VLSI CIRCUITS

 As the VLSI circuits grew in terms of number of components per silicon die, the problem

of finding a restricted number deterministic input test patterns to fully or to an acceptable

extent test the digital circuit has dramatically intensified. Despite the fact that there is no

principal disparity in the determination of each functional test, the complexity of the digital

devices yields unmanageable volumes of input test patterns. For instance, a test attempt to test

a microprocessor through all the possible states it may encounter during normal operation is

irrational. Moreover, for a fully combinational digital circuit, to verify correct functional

operation, one should apply all the possible input combinations in the circuit truth table. For

instance for an n input, m output device; the total volume of input data to be applied is 2n

words of each n bits long, and the total volume of output data to be observed is 2n words of

each m bits long. For a numerical example, for a 16x16 multiplier, n=32 and m=32

 Total input data volume: 232.32bits = 27.1Gb = 128 Gb

Testing and Built in Self Test

9

 Total output data volume: 232.32bits = 128 Gb

 Also considering the time overhead, if each test vector could be applied at a rate of

100MHz, the total time to test a single device would be:

 Total test Time: 232.10-8s ≅ 42.9s

 The presence of a storage element – which is inherent in sequential circuits – even

worsens this problem. For a circuit with s storage elements, all possible input combinations

should be tested for each 2s internal states, demanding a total number of 2n.2s input and output

patterns [13].

 Therefore, a structured subset of all possible inputs to such complex systems must be

determined for a reasonable volume of test data. [19] suggests that for circuits that cannot be

partitioned into smaller mutually exclusive subcircuits, the number of deterministic tests

required to fully test the circuit is linearly proportional to the number of gates in the

circuit([13]). However according to the prediction of [19] and results cited in [1, pp.15-18],

test application time is squarely proportional to the number of gates.

 Literally, testing costs in terms of monetary aspects also involve the Automatic Test

Equipment (ATE), as well as development of test strategy ([1, pp.17-18]), which include

tester operation, ownership and maintenance costs. ATE costs depend on the data storage

volume, output sampling frequency and test time. Therefore, DfT techniques, most

prominently BIST alternatives, reduce test costs significantly due to both reduced test data

volume and provision of at-speed testing while output sampling rate is kept much lower.

II.4 – TESTING TERMINOLOGY

 Before proceeding to the details of testing, it is imperative to describe certain terms

related to digital circuit testing. The three terms, which are used to define the test data

are([13]):

(i) Input test vector (input vector/test vector): Applied parallel binary signals to the

circuit under test via the available primary inputs, at one instance. For example,

Testing and Built in Self Test

10

for a circuit with 8 primary inputs, 10001010 might be one of the applied input

test vectors.

(ii) Test Pattern: Applied test vector plus the fault free outputs observed from the

available parallel primary outputs. For example, for the above hypothesized

circuit with 4 primary outputs, if the fault free outputs are 1111 for primary inputs

10001010, the test pattern is 10001010 1111.

(iii) Test Set: The complete set of all test patterns applied to the circuit under test to

determine its non-faulty operation. The test set comprises all the sequence of

applied test vectors and to be observed non-fault outputs. An exemplary test set

with the test patterns and vectors demonstrated is as in table 1.

Table1, Exemplary Test Set

 Although in general literature, these terms are not strictly followed, we will stick to these

definitions throughout the project report.

II.5 – TEST PATTERN GENERATION

 Test pattern generation is the process of defining an effective test set which will drive the

circuit under test so that the faults in the circuit will cause a different response at the primary

outputs from the non-faulty outputs. The algorithms used in test pattern generation are usually

directed to non-functional testing, which concentrate on propagating any available faults on

the circuit nodes to primary outputs. This type of testing is termed fault oriented testing ([1]).

Test pattern generation is strongly related to fault modeling. Therefore, the applied fault

model as well as the faulting hierarchy must be precisely elaborated before test pattern

generation. Eldred ([16]) was the first to present a method for test pattern generation for

combinational circuits and this introduced concept led to one dimensional path sensitization

techniques, which were later developed into a multiple path sensitization technique by J. P.

Test Patterns
 Test vectors Non-faulty outputs

Pattern1 10001010 1111
Pattern2 11001001 1010
Pattern3 00100100 0001

. . .

. . .

Testing and Built in Self Test

11

Roth in [27] in 1966. Roth’s D-Algorithm is later optimized for various Automatic Test

Pattern Generation (ATPG) techniques.

 Test pattern generation methods can be loosely classified into the three major branches

([13]]):

(i) Manual generation

(ii) Automatic (Algorithmic) generation

(iii) Pseudorandom generation

 We describe test pattern generation in the above three categories. However, a more

comprehensive classification is as shown in figure II-2.

Figure II-2, Test pattern generation techniques ([1])

II.5.1 – Manual Test Pattern Generation ([13]):

 Manual test pattern generation might be used by original circuit or system designer

depending on the extensive detailed knowledge of the system. The deterministic test set

consists of test patterns for specific functional conditions and/or that will provide the

propagation of certain node faults. The advantage of this technique lies in the efficient

determination of an effective smaller deterministic set, but might require extensive analysis

time.

Test generation methods

Combinational Sequential

Manual Programmable Pseudorandom

Manual ProgrammableReconfiguration
Technique

PseudorandomSequential
Analyzer

Algebraic Structural

LFSR RAPS SMART

D-Algorithm PODEM FAN FAST

Boolean
Difference

Algebraic Structural

ITG MTG SOFTG

State
Table

Testing and Built in Self Test

12

II.5.2 – Automatic Test Pattern Generation ([1],[13],[14]):

 Automatic (algorithmic) test pattern generation is the widely applied technique for test

pattern generation, as the gate count in the VLSI systems increases rapidly. Mostly, dedicated

ATPG programs are utilized for this task, which work on predetermined fault models –

usually single stuck at 1. Most ATPG programs choose a faulty node at circuit, propagate this

fault to an observable output and backtrace to primary inputs in order to specify the required

test vectors for all faults within the circuit. In the forthcoming descriptions of ATPG

techniques, the first described one, Boolean difference method does not depend on the

described backtracking scheme, while all the others do.

i- Boolean Difference Methodiii:

 Boolean Difference Method uses Boolean algebraic relations for test vector

determination. The formal definition of Boolean difference is:

),..,,..,(),..,,..,()(11 nini
i

xxxfxxxfxf
dx
d

⊕= (1)

 where,

 f(x): a function of n independent variables

 d/dx: difference operator

 If the above Boolean difference is 1, then the fault on input line xi can be detected. If

Boolean difference is 0, f(x) is independent of xi and fault cannot be detected. Boolean

difference method covers both stuck at 1 and stuck at 0 faults, but Boolean algebra involved

requires extensive computation time and memory and therefore is not the used method in

practice.

ii- Single Path Sensitization:

 Single path sensitization traces a signal path from faulty node to the primary outputs by

setting the other inputs of any logic gate such that the output sensitive to changes in the faulty

node. Then, by backward simulation, the required input test vectors are defined. Single path

sensitization technique sensitizes only a single path from the faulty node to primary outputs,

which deteriorates faults detection probability for reconvergent fanouts. To overcome this

shortcoming, D algorithm is proposed.

Testing and Built in Self Test

13

iii- Roth’s D Algorithm:

 D algorithm is a more formal description of path sensitization method and is the

foundation point of many ATPG programs used in practice. D algorithm is based on the

‘calculus of D cubes’. It sensitizes all the paths from the faulty node to an observable primary

output and therefore is robust against reconvergent fanout. The application of D algorithm

requests the knowledge of all gates in the circuit and all interconnection. In D algorithm

terminology, D represents a fault sensitive node that is fault free when D=1 and D’ represents

a fault sensitive node that is fault free when D=0. The algorithm defines a fault, generates a D

cube of failure, generates a fanout list for the faulty gate and propagates the effect of faulty

gate through all gates in the fanout list via path sensitization, which is termed as D Drive

process. Finally the algorithm performs a backward simulation for consistency of assigned

logic values to primary inputsiv.

iv- Improvements over D Algorithmv:

 Although D algorithm is computationally more efficient than Boolean Difference

Method, the computation time for test pattern generation is still a significant concern and

several modifications over D algorithm are proposed in order to reduce computational cost.

 A modification of D-algorithm was Logic Automated Stimulus And Response (LASAR),

which worked backwards from the primary outputs by assigning logical values to outputs and

working backwards for gate logic values.

 In order to reduce test pattern generation cost, an alternative form of fault simulation,

called TEST-DETECT is also integrated to D algorithm, which determined what other faults

could be detected by each defined test vector. TEST-DETECT starts at primary outputs and

backtraces the whole circuit to define D-chains.

 Following the above two improvements, Path Oriented DEcision Making (PODEM)

algorithm is utilized in an ATPG system, named PODEM-X, which comprised a fault

simulator, three test pattern generation programs and a test pattern compaction program.

PODEM-X is involved in IBM’s DfT methodology, Level-Sensitive Scan Design (LSSD). In

PODEM, the path from faulty node to a primary input is backtraced, with branching decisions

done heuristically at each step. Once a primary input is reached, the simulator is invoked to

verify whether the target fault is sensitized or not. PODEM-X uses a test generation program,

Testing and Built in Self Test

14

named Shift Register Test Generator (SRTG) to test the shift registers. The test generation

strategy applied in PODEM-X comprises a general test with RAndom Path Sensitization test

generator (RAPS) and fault oriented cleanup tests with PODEM to generate test patterns for

remaining uncovered fault conditions.

 FUTURE is a test pattern generation system produced by NEC Corp. Similar to PODEM-

X, it also has a global and a fault oriented test generator. Fault coverage is determined by a

concurrent fault simulator. The fault oriented test pattern generator is named FANout oriented

test generation algorithm (FAN), which is verified to be more efficient than PODEM because

of the applied heuristics.

 LAMP2 Test Generator (LTG) was developed in AT&T labs in order to improve the test

pattern generation efficiency for large circuits. LTG also uses two test pattern generation

schemes, global test patterns and cleanup test patterns. The global pattern generation is

performed by the program Sensitizing Method for Algorithmic Random Testing (SMART)

and the fault oriented pattern generation is performed by a procedure named FAST. As a

comparison of techniques, test generation for a circuit of 75000 gates took 1.6 CPU hours

with LTG, and a circuit of 45000 gates took 7.2 hours and 14 hours for the previous described

techniques ([1, pp.123-124]). However, no information is disclosed on the effectiveness and

volume of generated test sets!

 Another test generation system, HITEST utilizes artificial intelligence concept on expert

systems.

II.5.3 – Pseudorandom Test Pattern Generation ([1],[13],[15]):

 Manual and algorithmic pattern generation techniques described in the above two

sections can be grouped as deterministic techniques as they are based on specifically defining

input test vectors that enable the detection of certain faults within the circuit under test. The

advantage of deterministic tests is, they provide a compact test set that are targeted to the

detection of the defined fault list; and the obvious disadvantage is the extensive computation

cost and complexity. At the other extreme, fully exhaustive testing, i.e. applying all the

possible 2# of primary inputs input combinations, involves almost no complexity and there is no

Testing and Built in Self Test

15

computation cost for the determination of the test set. Obviously, this second approach bears

the disadvantage of unrealistic test data volumes for reasonably large circuits. As the general

engineering practice, an intermediate scheme that negotiates between complexity and volume

is well made use of, named pseudorandom test pattern generation. This third technique to be

described in this section relies upon probabilistic measures of random test patterns and the

plausible fact that, any random pattern applied to the circuit under test is very likely to detect

several faults in the circuit and thus, can be a candidate for a deterministic test vector –

though it might not be the most efficient. The fault coverage relation for truly random input

test vectors is well investigated in the literature, and tests made in [28] for different

combinational circuits, which are tabulated in table 2, revealed the following fault coverage

relation approximation for a combinational circuit with N applied random test vectors[13,

p.69].

 [] %1001)log(10 ×−= − NeFC λ (2)

 where;

 FC : Fault Coverage

 N : Number of applied random test vectors

 λ : A constant reflecting certain properties of the combinational circuit

% Fault coverage with respect to # of
applied random input test vectors, N

Circuit

of Primary

inputs

of Gates

N=100 N=1000 N=10000
(1) 63 926 86.1 94.1 96.3
(2) 54 1103 75.2 92.3 95.9

Table 2, Fault coverage for two combinational circuits with random test vectors [13, p.69]

 As a means of quantification of the above expression, the Matlab script in Appendix E-1

is run for N=1000 and λ=1 and the resulting fault coverage plot is as shown in figure II-3. As

can be observed, application of random test patterns reveals the same effect as deterministic

patterns with a high coverage at the start and a decelerating follow-up. As a result, a small

subset of the whole random input state space can be applied to a circuit under test for a fairly

comprehensive fault coverage, and as in ATPG, the remaining faults can be targeted with a

cleanup testing strategy. Beyond this, as a matter of practice, it is not rational to apply truly

random input test vectors as they are very hard to generate algorithmically and it is redundant

Testing and Built in Self Test

16

to apply the same vectors twice for combinational faults, which is a probable case of complete

randomness. Therefore, pseudorandom pattern generation, rather than truly random

sequences, is the widely applied pattern generation technique. The advantages of PRBS

generation is twofold: they are a pseudorandom sequence of all possible states of inputs,

except 000..00, without any repetition of states, and they are very easy to generate in

hardware. The second statement is also one of the reasons why PRBS generators are very

attractive for BIST.

Figure II-3, Fault coverage plot for 1000 random test vectors

 On chip PRBS generation is accomplished by utilization of LFSRs or CA, which will

constitute the majority of the subject matter for section III. Therefore, we will not here delve

into the details of LFSR or CA principles. However, as a requisite to the flow of the context,

we here define the general LFSR and CA structures.

 LFSR is a serially connected flip-flop configuration – shift register configuration – with

feedbacks from certain flip-flop outputs – taps – that are XORed together –added in modulo 2

– and connect back to first flip-flop’s input. The number and position of taps determine the

length and sequence of generated PRBS pattern. An exemplary 8 stage LFSR with tap

connections that provide maximum possible sequence length (2n-1 patterns) is as shown in

figure II-4.

 CA structure is quite similar to that of LFSR, with the inherent shift register

configuration. The basic difference from the LFSR is, the interconnections of individual flip-

Testing and Built in Self Test

17

flops now always include an XOR operation and there is no global feedback. CA consist of 2

types of primary cells, namely 90 and 150 cells, and certain combination of these cells reveal

maximum length sequences. The only difference between 90 and 150 cells is, 150 cells have

an additional self feedback from the flip-flop output to back to its input. An exemplary 4 stage

CA, with appropriate 90 and 150 cell configuration for maximum length PRBS is as shown in

figure II-5.
Figure II-4, An 8 stage maximum length LFSR

Figure II-5, A 4 stage maximum length CA

 As an oversimplified comparison between CA and LFSRs, CA reveal a more random

pattern sequence, while LFSRs incur less hardware cost and complexity.

II.6 – TEST DATA COMPRESSION

 As mentioned so forth throughout the text, one of the major concerns in testing is the

large volumes of test data for reasonably large circuits. This problem must be realized as

having two corollaries, the volume of test pattern generation data and the volume of needed to

sin

Qint(8)
F-F

8

Q(8)

seed(8)
Qint(7)

F-F

7

Q(7)

seed(7)
Qint(6)

F-F

6

Q(6)

seed(6)
Qint(5)

F-F

5

Q(5)

seed(5)
Qint(4)

F-F

4

Q(4)

seed(4)
Qint(3)

F-F

3

Q(3)

seed(3)
Qint(2)

F-F

2

Q(2)

seed(2)
Qint(1)

F-F

1

Q(1)

seed(1)
CK

Qint(2)
F-F

2

Q(2)

150cell
Qint(1)

F-F

1

Q(1)

90 cell
CK

0

Qint(4)
F-F

4

Q(4)

150cell
Qint(3)

F-F

3

Q(3)

90 cell

0 Q(1)

Q(2)

Q(3)
Q(3)

Q(4)

Q(2) Q(4)Q(2)

Testing and Built in Self Test

18

be observed output data, which can be imprecisely named as input data and output data. In

this section we discuss techniques to reduce the input and/or output data volume.

II.6.1 – Input Test Data Compression ([13]):

 Input compression, also known as input compaction, relies on the possibility that, for a

multiple output circuit, some of the outputs might be only dependent on some of the inputs

and not all. Thus, considering a full exhaustive test to be applied, the amount of required test

vectors reduces to half per such independent input. As a hypothetical example, for a 7 input

circuit, if 3 of the inputs controlled only a subset of the outputs, 4 of the inputs controlled only

another subset and 5 controlled the rest of outputs, the total amount of required exhaustive test

patterns would be, in the worst case: 23+24+25 = 56 < 27=128. However, there is an inherent

assumption in this application, any possible unexpected interference between the disjoint

inputs are discarded, and therefore, the two tests cannot be said to have exactly same

effectiveness. Hence, this process is similar to functional decomposition in Switching and

Automata Theory, and can be done by: functional partitioning the circuit, minimizing the

Boolean relation of each output to see which inputs they are dependent to or more

sophisticated techniques like the determination of spectrum of each output functionvi.

II.6.2 – Output Test Data Compression ([1,13,14,15]):

 Output compression, also known as output compaction or space compression is the

predominant technique in data compression. The concept of output compression relies on

compressing the acquired output data into a much less data volume, which carries all but most

fault detection properties that can be inferred from the uncompressed raw output. Inevitably,

any such compression technique involves some amount of ‘miss rate’ that a faulty raw output

will be compressed into a signature equivalent to that of a non-faulty output, which is termed

‘aliasing’. Several well-studied techniques for output data compression are described in the

following subsections.

i- Syndrome (1s count) testing:

 The simplest of the output compression techniques is 1s counting, which is basically the

count of 1s (or 0s) at the output of the circuit under test, when a full exhaustive test is applied.

Therefore, for an n input circuit, 1s count might range from 0 to 2n. There is a slight

terminology difference between 1s count and syndrome. Syndrome is the normalized 1s count

Testing and Built in Self Test

19

value to the all possible 2n inputs. Which can be related to 1s count as a 1-1 correspondence as

shown below:

 n

countonessyndrome
2
−

= (3)

 In general, syndrome count is not a satisfactory output compression technique, due to its

high fault masking. A crude estimation of fault masking for syndrome testing can be done as

follows.

 If we consider a test with R test vectors, the raw output will be an R bit long sequence,

which can have 2R possible combinations. Out of these 2R combinations, 1 will be the fault

free output while the rest 2R-1 will be corresponding the faulty output sequences. If the fault

free output sequence has s 1s, the total number of sequences having s 1s in the 2R possibilities

is([13]): ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
s
R

, where 1 of these combinations correspond to the fault free signature and the rest

to the faulty signatures. Therefore, out of the 2R-1 possible faulty sequences, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
s
R

-1 will have

the same signature as the fault free response, which reveals a fault masking probability of;

12

1

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= Rfm

s
R

P (4)

 Hence, the above relations are based on the assumption that all the output combinations

are equally probable, which is rarely true for combinational circuits. Nevertheless, an

interesting observation is, if the fault free output has very low or very large amount of 1s, the

fault masking probability is very low.

ii- Accumulator-Syndrome testing:

 Accumulator-syndrome testing is a modification of the syndrome testing of previous

subsection, where the integral of the syndrome is considered as the final signature. In discrete

point of view, the integral corresponds to the accumulation of the syndrome count values –

hence the name accumulator. An exemplary case is depicted in table 3.

Testing and Built in Self Test

20

Output sequence 0 0 1 0 1 0 0 1 1 1 0 …

Syndrome count 0 0 1 1 2 2 2 3 4 5 5 …

Accumulator-syndrome values 0 0 1 2 4 6 8 11 15 20 25 …

Table 3, Syndrome count vs. Accumulator-Syndrome Testing

 Obviously, the accumulator-syndrome testing depends on the order of the applied test

vectors.

iii- Transition Count testing:

 Transition count relies on counting the number of transitions from 1 0 and 0 1, rather

than counting the number of 1s or 0s at the output. This test is also dependent on the order of

applies test vectors. As in syndrome testing, this technique also has a margin of error for

missed faulty sequences, but this can be taken care of with ordering the test vector sequence

such that, the output sequence generated is all 0s followed by all 1s or vice versa. However,

this approach has two major drawbacks, 1) the input test set should be in fixed order, which

reduces BIST generation possibility 2) each output requires a separate set of test vectors.

Consequently this technique is also not very much utilized in applications.

 The fault masking probability for transition counting, computed in a similar fashion as in

subsection (i) is([14]):

12

1
1

2

−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

= Rfm

s
R

P (5)

 where;

 s: transition count value for the fault free output

iv- Alternative Mathematical Coefficientsvii:

 Despite the generally accepted use of Boolean algebra in definition of digital circuits,

other mathematical modeling methods coexist which might be utilized in circuit testing. Some

of these alternatives are Arithmetic, Reed-Muller and Spectral Coefficients.

 In arithmetic coefficients, the functional expression for a circuit is defined in arithmetic

addition rather than Boolean addition. The arithmetic coefficients are coefficients of the

minterms in an expression, which can take various integer values rather than the general

binary values used in Boolean Algebra’s sum of products form.

Testing and Built in Self Test

21

 In Reed-Muller coefficients, the canonic expansion of the functional expression of a

circuit is defined in terms of XOR relations. The Reed-Muller coefficients represent the

coefficients for the minterms in the XOR relations.

 In spectral coefficients, the coefficients of the minterms in Boolean Algebraic form are

transformed into Spectral domain using ‘Hadamard’ orthogonal transformation. The resulting

coefficients are generally interpreted as correlation coefficients.

 In terms of testing, arithmetic and Reed-Muller coefficients are not very well utilized as

test signatures in comparison with spectral coefficients. Spectral coefficients are researched

vastly for testing purposes, they are seen to provide very useful information for determining

the correlation between different inputs of a circuit for both input and output compression.

However, the major drawback is stated as the computational cost of computation of the

coefficients due to the required transformation.

v- Parity check testing:

 Parity checking simply checks whether the resulting output sequence has even number of

1s or vice versa. Directly following from this definition, parity checking will detect all single

bit errors and any multiple errors that will change the even-odd parity of the output sequence.

In terms of BIST prospects, parity checking can simply be applied with an XOR and a shift

register. The computer fault masking probability in a similar fashion with the previous cases

reveals:

12
1)2/2(

−
−

= R

R

fmP (6)

 Moreover, parity checking of multiple output sequences can be done via the application

of a big pre-XOR to all the outputs.

vi- Signature Analysis:

 Amongst the techniques described so far, signature analysis is the widespread used

technique in practice for BIST output compression technique. The signature analysis process

is not fundamentally different from the LFSR, but the input XOR of the LFSR is connected to

the output data sequence rather than being kept at 0. As all the test vectors are applied, the

output is fed into the XOR and this causes the transitions in the LFSR states, then after the

Testing and Built in Self Test

22

application of the whole test set, the remaining signature is read as the output signature.

Hence, in this methodology, the LFSR does not necessarily traverse all the possible 2n-1

states, as the next states are dependent on the serial output value. Based on the previously

stated assumption, the fault masking probability of signature analysis can be determined as

follows. Once again for R input test vectors, there will be R output values generated as the

output sequence. Considering the number of stages in the LFSR as n, where n<R, only 2n

sequences can be produced as the signature from the n bit LFSR. Assuming all these

signatures are equally probable, the number of sequences having the same signature would be:

2R/2n=2R-n, out of which 1 will be the fault free output and the rest faulty sequences, sharing

the same signature with the fault free one. As a result the fault masking probability can be

summarized as:

12
12

−
−

=
−

R

nR

fmP (7)

 which can be approximated to nfmP
2
1

= , for large R.

 One further enhancement to signature analysis, in today’s testing circuits is the

application of multiple outputs to the same LFSR, which is termed as Multiple Input

Signature Analysis.

i For more detailed information on IC fabrication, testing and OEM-Vendor relation refer to [13, pp. 1-7]
ii For more detailed information on testability measures, refer to [13, pp. 20-25],[17],[18, pp. 4-11]
iii For more information on Boolean difference method, the reader may refer to [13, pp. 51-55].
iv Comprehensive information on single path sensitization and D algorithm is available in [1, pp. 108-115] and
[13, pp.48-63].
v For more information on described techniques, please refer to [1, pp. 115-144], [13, 63-67],[14, 10-11]
vi For more information on input compression methods, please refer to [13, pp. 120-124]
vii For more information on the described coefficients, refer to [13, pp. 127-141],[14, pp.103-108]

PRBS Generation and Signature Analysis

23

III-PRBS GENERATION AND SIGNATURE ANALYSIS

 In this project, we extensively investigate PRBS generation and signature analysis as

BIST for multipliers. In the previous section, we have provided a general introduction to

testing and various techniques. In this section, we specialize ourselves into PRBS generation

using LFSRs and CA and into signature analysis, specifically multiple input signature

analysis.

III.1 – PRBS GENERATION USING LFSRS

 As described in section II, LFSR structure, basically, is a shift register configuration that

propagates the stored patterns from left to right. The modification that provides the PRBS

generation is due to the XOR feedback of the selected flip-flop outputs, named taps. When the

taps are chosen properly, the LFSR will traverse through all possible states except for the all

0s state and will produce a maximum length PRBS sequence named M-sequence. In order for

the desired operation, the LFSR should be first initialized to a well-known stage, which is

usually referred to as seed. For an n stage LFSR, there are 2n-1 states, and the M-sequence is

2n-1 bits long. Hence, the M-sequence is periodic, and after the 2n-1 distinct values, it repeats

itself in the next samples. The forbidden state, which the LFSR never traverses is usually

referred to be 00..00, but if one of the feedback values are inverted, or XNOR instead of

XORs are used, the forbidden state may be altered. The reason why the all 0s state is

considered the forbidden state is, when all the flip-flop values are 0, the XOR of p<n outputs

will reveal a 0 regardless of the location of the taps as: (0⊕ 0) ⊕ 0 ⊕ 0…⊕ 0 = 0 ⊕ 0 …. = 0

= 0. Therefore, the fed back value is always 0, and the LFSR always stays in the 00….0 state.

 Regarding the above described output generation scheme for the LFSR, the following

listed properties can be deduced as the general characteristics of an n stage LFSR:

(1) A max-length LFSR generates a length 2n-1, periodic m-sequence, obviously, with

period 2n-1. Consequently, the LFSR, traces all the corresponding 2n-1 states of n bit

length periodically.

(2) In one period of the m-sequence, the number of 1s exceeds the number of zeros by

exactly 1. Therefore, the total number of 1s in an m-sequence is 2n-1 and the total

number of 0s is 2n-1-1. The reason for this is, as the LFSR traverses all the states

PRBS Generation and Signature Analysis

24

except for all 0s for once within one period. All the m-sequence bits, which can be

considered as, in practice, the LSBs or MSBs, more generally any single bit of the

states, correspond to a single state and all the bits for possible state combinations,

except for the all 0s state exist in the m-sequence, which would imply a final 0 in the

m-sequence. Therefore, the missing 0 results in the number of 1s being 1 more than

the number of 0s.

(3) (The Run Property) In the m-sequence, there will be a total of 2n-1 runs – bursts of the

same bit – of each bit. Among these runs, ½ of the runs will have length 1, ¼ of the

runs will have length 2, 1/8 of the runs will have length 3 and so on. In addition to

these, there will be one additional run of 1s with length n.

(4) As a corollary to (3), the number of transitions in the m-sequence will be 2n-1.

(5) (Shift and Add Property) Every m-sequence has a cyclic shift and add property such

that, if the original m-sequence is rotated and added to itself in mod2, the resulting

sequence is also a rotated version of the original m-sequence.

(6) The autocorrelation of the m-sequence is constant for every shift value and the number

of matching bits for any shift is ~½ of the total amount of bits = 2n-1. More

specifically, if we define the autocorrelation function as ([13],[14]):

∑=
p

a
p

C
1

1)(ττ (8)

 where;

 p:2n-1

 τ: shift between the 2 sequences (1≤ τ ≤2n-2)

 aτ: 1 if the two entries after the shift are the same

 -1 if the two compared entries are different

for all τ, C(τ)=-1/p. Which reveals, for the n bit LFSR, 2n-1 –1 bits of the m-sequence

always match and 2n-1 bits don’t match. Although this property does not have any

significance in terms of testing, it indicates the randomness feature of the generated

PRBS.

(7) (Window Property) If a sliding window of length n is moved along the m-sequence,

the 2n-1consequtive n-tuples observed are seen exactly once in a period, which

actually represent the 2n-1 unique states.

(8) (Decimation Property) Every proper decimation of an m-sequence is also an m-

sequence ([14, p. 80]).

PRBS Generation and Signature Analysis

25

 Having described the properties and PRBS generation outline for the LFSRs, one

important concept which needs to be elucidated is how to choose the taps for max-length

PRBS generation. The theory of how to choose the tap positions for max-length PRBS

generation is discussed in the following subsection.

III.1.1 – Theory of LFSR Taps:
 It might be easily verified that, not all combinations of the tap choices will provide an m-

sequence. Therefore, the theory to determine the tap locations which can provide an m-

sequence must be established and the requirements for the LFSR to generate the all possible

2n-1 states must be stated.

 After the initial transition period, the values within the shift register can be considered as

previous values of the feedback input at the first flip-flop. As shown in figure III-1, assigning

the feedback input yi, the following flip-flop outputs can be named as yi-1,yi-2 and so on. As a

general description, the taps can be described via switches ci, where ci=0 represents an open –

nonexistent – connection and a 1 representing an existent connection. As XOR operation is a

modulo 2 summation operation, all the multiple XORs to be performed can be combined as a

modulo 2 adder.

Figure III-1, General Description of the LFSR Structure

 With this description, the feedback value yi can be described with the following

expression:

∑
∞

=
−=

1j
jiji ycy (9)

 where the sigma operator represents modulo 2 addition rather than base 10 addition.

Although the summation is shown to be bounded by infinity, it will be truncated to the length

of the LFSR, as all the following cj are intuitively zero afterwards.

yi-n
F-F

n

Q(n)

seed(n)
yi-(n-1)

Q(n-1)

yi-3
F-F

3

Q(3)

seed(3)
yi-2

F-F

2

Q(2)

seed(2)
yi-1

F-F

1

Q(1)

seed(1)
CK

Modulo 2 sum
(XOR)

yi

c1 c2 c3 c(n-1) cn

PRBS Generation and Signature Analysis

26

 As a preliminary to the rest of the discussion, a well-applied practice in coding theory is

to represent a binary sequence as a polynomial, where the binary values represent the

polynomial coefficients and the powers polynomial variables represent the timing or

sequencing information. More formally, for the sequence described below:

a0 a1 a2 a3 a4 a5 … am ai ∈ {0,1}

 the corresponding polynomial, G(x) is:

G(x) = a0x0 + a1x1 + a2x2 + …+ amxm

 Hence, all the algebra defined for the polynomials are in modulo 2 arithmetic, which are

referred to as operations in Galois Field of 2 (GF(2)). In GF(2), addition and subtraction are

equivalent as 0+1 = 1+0 = 0-1 = 1-0 = 1 and 1+1 = 0+0 = 1-1 = 0-0 = 0. Multiplication is

performed as normal bitproduct and add fashion where the summation of partial products is

done in GF(2). Division is also performed in the usual fashion, but the subtractions are

performed in GF(2).

 Now returning back to the discussion of taps, when we consider the polynomial

representation for yi input with respect to time, for time, t, 0 to time, m, tm, we reach the

following set of relations:

 Now, if we write the corresponding polynomial, Gy(x) for the yi sequence,

Gy(x) = y0x0 + y1x1 + y2x2 + …+ ymxm + ..

 which can be written in the compact form:

∑
∞

=

=
0

)(
m

m
my xyxG (10)

 and substituting ym with the feedback expression, ∑
∞

=
−=

1j
jmjm ycy ,

t0 y0 = c1y-1 + c2y-2 + c3y-3 + … + cny-n
t1 y1 = c1y0 + c2y-1 + c3y-2 + … + cny1-n
t2 y2 = c1y1 + c2y0 + c3y-1 + … + cny2-n
 •
 •
tm ym = c1ym-1 + c2ym-2 + c3ym-3 + … + cnym-n
 •
 •

1st in time last in time

In
cr

ea
si

ng
 ti

m
e

feedback taps

PRBS Generation and Signature Analysis

27

∑ ∑
∞

= =
− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0 1
)(

m

m
n

j
jmjy xycxG (11)

 further modification of this relation reveals:

()

∑

∑

=

=

−
−

−−
−−

−
−

+

+++
= n

j

j
j

n

j

j
j

j
j

j
j

y

xc

xyxyxyxc
xG

1

1

1
1

)1(
)1(

1
)(

L

 (12)

 Hence, the above equation describes how the initial conditions and the tap positions are

related to the generated PRBS sequence yi. The parenthesized term in the numerator is

equivalent to the initial condition sequence, and the cj terms in the denominator are equivalent

to the feedback taps. Two immediate observations to be deduced from the above expression

are:

(i) If all the initial conditions, y-1,…,y-n are 0, the Gy(x) polynomial is zero,

independent of the denominator. This explains the all 0s forbidden state as the

initial condition as the output sequence will be all 0s.

(ii) If all initial conditions are zero except for y-n – the seed for the last flip-flop -, then

the numerator is:

cnxn.(y-nx-n) = cn

as a result, for an n stage LFSR, there should always be a feedback from the last

flip-flop, in order to be able to produce all LFSR states that are expected to include

000…001. For cn = 1, the Gy(x) polynomial equals 1/(denominator polynomial).

 The denominator polynomial, ∑
=

+
n

j

j
j xc

1
1 , is referred to as the characteristic polynomial,

P(x), of the LFSR, and together with the initial conditions, which are referred to as the seed,

defines the generated PRBS sequence by the LFSR. As long as the LFSR is known to

generate an m-sequence, the highest order of the characteristic polynomial defines the length

of the LFSR. As described above, the PRBS sequence can be analytically derived for the

LFSR, given the initial seed and the characteristic polynomial, however, this is usually not the

practical approach as the notion of PRBS generation is also to reduce the time overhead for

pattern generation. As an example ([13, pp.78-86]), for the 4 stage LFSR shown in figure III-

2, the characteristic polynomial is:

P(x) = 1 + c1x1 + c2x2 + c3x3 + c4x4 = 1 + 1.x1 + 0.x2 + 0.x3 + 1.x4 = 1 + x1 + x4

PRBS Generation and Signature Analysis

28

 and, as described in (ii), the polynomial representing the yi becomes
)(

1)(
xP

xGy = for

the given seed = 0001.

Figure III-2, 4 stage Max-length LFSR

 The resulting yi m-sequence can be computed by doing the above polynomial division in

GF(2):

 1 1 + x + x4

 1 + x + x4 1 + x + x2 + x3 + x5 + x7 + … = Gy(x)

 x + x4

 x + x2 + x5

 x2 + x4 + x5

 x2 + x3 + x6

 x3 + x4 + x5 + x6

 x3 + x4 + x7

 x5 + x6 + x7

 x5 + x6 + x9

 x7 + x9

 x7 + x8 + x11

 x8 + x9 + x11

 •

 •

 Hence, as a result,

Gy(x) = 1.x0 + 1.x1 + 1.x2 + 1.x3 + 0.x4 + 1.x5 + 0.x6 + 1.x7 + …

 and the generated PRBS is, from 1st output to last is,

PRBS Sequence: 1 1 1 1 0 1 0 1 …

yi

c4=1

F-F

4

Q(4)

seed=1

c3=0 F-F

3

Q(3)

seed=0

c2=0 F-F

2

Q(2)

seed=0

c1=1

F-F

1

Q(1)

seed=0
CK

y0 y1 y2 • • • • • •

PRBS Generation and Signature Analysis

29

 Hence, the used characteristic polynomial is known to produce an m-sequence, therefore,

the resulting sequence is expected to be periodic with 24-1=15, and if the above division

process is continued up to x15, which is the 16th output sample, the sequence will be seen to

repeat itself.

 Regarding the above division process, it is proven ([1], [14]) that for Gy(x) to have

maximum period, the characteristic polynomial must be not factorizable. Moreover, as Gy(x)

will still be periodic with 2n-1, the characteristic polynomial must be a factor of 121 −+
n

x . The

polynomials that satisfy above conditions are primitive polynomials, which are a special case

of irreducible polynomials, and are used as the characteristic polynomial for maximum length

LFSRs. Primitive polynomials have very interesting properties some of which also relate to

PRBS generation ([13],[14]). In the next subsection, we discuss some of these properties

briefly. The complete descriptions and proofs might be referred from the cited references.

III.1.2 – Primitive Polynomials:
 As described in the above section, the principal feature of the primitive polynomials is,

they cannot be factorized into 2 or more smaller order polynomials. Other properties are

described within this subsection.

 As n – can be regarded as the length of LFSR or order of polynomial – increases, the

number of possible primitive polynomials increase rapidly, most of the textbooks include one

of the minimum term polynomials for each n, but there are also alternative polynomials with

minimum number of terms for n ≥ 3 ([13]).

 For any primitive polynomial, P(x), the reciprocal of the polynomial, which is defined as

⎟
⎠
⎞

⎜
⎝
⎛=

x
PxxP n 1)(* is also a primitive polynomial, and the m-sequence generated by the

reciprocal primitive polynomial is exactly the reverse of the m-sequence generated by the

original polynomial.

III.1.3 – Alternative LFSR Configurations:
 Although we have focused on a single type of LFSR configuration so far, other LFSR

configurations also exist. Referring the so far described configuration as the TDL (Tapped

Delay Line) configuration – with an analogy to DSP, another configuration is the TDA (Time

Delay and Accumulate) structure, which is shown in figure III-3. This structure is also termed

as true polynomial divider due to its algebraic properties.

PRBS Generation and Signature Analysis

30

Figure III-3, TDA – LFSR structure

 This structure, when the same characteristic polynomial is used in the shown reversed

order, produces the same output sequence as the TDL structure. However, the internal states

in the 2 configurations are not always the same([13]). This structure is not the preferred

structure as it incurs additional delay in the forward datapath and for manufacturing purposes

([13],[1]). However, the TDA structure also has an advantage in data compression as it

performs true polynomial division and the remainder in the LFSR is the correct remainder

only for TDA structure.

 Another structure, aiming more control over generated test patterns is Nonlinear

Feedback Shift Registers (Non-LFSR), which is described in figure III-4. This structure tries

to achieve a more effective test set, without reverting to storing the test vectors in ROM, thus

minimizing the test cost. Instead of the XOR functions, the feedback function is realized with

NAND, NOR, etc. combinational functions. The major problem with this structure is the

design overhead to define the combinational function, which might not even be realizable and

to abide by predefined sequencing rules ([1, pp. 168-169]).

Figure III-4, Nonlinear Feedback shift Register

 Further improvements on the TDL and TDA structures have also been investigated and

hybrid structures to minimize the logic cost are proposed as cited in [13, p.88].

yi-n F-F

n

Q(n)

seed(n)

Q(n-1)

yi-3 F-F

3

Q(3)

seed(3)
yi-2

F-F

2

Q(2)

seed(2)
yi-1

F-F

1

Q(1)

seed(1)
CK

yi

cn-1 cn-2 cn-3 c1

yi-(n-1)

cn

yi-n
F-F

n

Q(n)

seed(n)
yi-(n-1)

Q(n-1)

yi-3
F-F

3

Q(3)

seed(3)
yi-2

F-F

2

Q(2)

seed(2)
yi-1

F-F

1

Q(1)

seed(1)
CK

Combinational Logic Function

yi

c1 c2 c3 c(n-1)
cn

PRBS Generation and Signature Analysis

31

III.2 – PRBS GENERATION USING CA

 A second less studied alternative for PRBS generation is cellular automata. As introduced

in section II, the basic shift register structure also exists in CA, with the ultimate difference

that all the cell interconnections have some XOR operation and that no global feedback is

required. Therefore, the regular shifting of data within the shift register is not existent in CA

([13],[15]). The cells for CA are defined in terms of flip-flops and XOR combinations of

neighbor cells. The input to any cell depends only on its adjacent neighbors and maybe itself

depending on whether the cell is a 90 or 150 cell, as shown in figure III-5. Considering the

possible inputs from the three stated cells, the input functions for the 90 and 150 cells are

described in table 4.

Qk-1 Qk Qk+1 90 Cell: Qk-1⊕Qk+1 150 Cell: Qk-1⊕Qk⊕Qk+1
0 0 0 0 0
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 0
1 1 1 0 1

Table 4, 90 and 150 functions of CA

 The terminology for 90 and 150 cells comes from the decimal value of the binary outputs

for the two cells. As can be calculated, they sum up to 90 and 150 respectively.

Figure III-5, 90 and 150 CA cells

 Other functions of the three outputs are also investigated and it is formally proven that,

only 90 and 150 cells produce m-sequences for PRBS generation. Moreover, not all

combinations of 90 and 150 cells can produce m-sequences. It is theoretically proven that, for

n≤150, at most 2 150 cells are sufficient to produce a configuration of 90 and 150 cells that

produce m-sequences. An exemplary 4-stage max-length CA, copied from section II, is

redisplayed here in figure III-6 and the corresponding m-sequence is also displayed and

Qk
F-F

90 cell
CK

Qk-1 Qk+1 Qk F-F

4

Q(4)

150cell

Qk+1
Qk-1

Qk

CK

PRBS Generation and Signature Analysis

32

compared to the response of a 4 stage LFSR. As can be seen in the m-sequence, unlike the

LFSRs, the CA do not exhibit the cyclic shift behavior. As demonstrated in the figure, the

LFSR output follows a cyclic shift of 1s (and 0s) from left to right, while no such pattern is

distinguishable in CA. As expected, the forbidden all 0s state also exists in CA.

(a). 4 stage max-length CA

CA sequence LFSR sequence
Q(1) Q(2) Q(3) Q(4) Q(1) Q(2) Q(3) Q(4)

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 1
1 1 0 0 1 1 0 0
1 0 1 0 0 1 1 0
0 0 0 1 1 0 1 1
0 0 1 1 0 1 0 1
0 1 1 0 1 0 1 0
1 0 1 1 1 1 0 1
0 0 1 0 1 1 1 0
0 1 0 1 1 1 1 1
1 1 0 1 0 1 1 1
1 0 0 1 0 0 1 1
0 1 1 1 0 0 0 1

(b). Output sequences of LFSR and CA

Figure III-6, A 4 stage maximum length CA and its output sequence compared with an LFSR output

 The generated m-sequence for CA can be derived in a similar manner as LFSR, but the

GF(2) operations are demonstrated rather using matrix relations. If we define a transition

matrix T, which defines the next state from the current state such that:

[Qnext]=[Qpresent]*[T] (13)

Qint(2)
F-F

2

Q(2)

150cell
Qint(1)

F-F

1

Q(1)

90 cell
CK

0

Qint(4)
F-F

4

Q(4)

150cell
Qint(3)

F-F

3

Q(3)

90 cell

0 Q(1)

Q(2)

Q(3)
Q(3)

Q(4)

Q(2) Q(4)Q(2)

PRBS Generation and Signature Analysis

33

 where, [Q] represents a length n – number of stages – array row vector with the above

described Q outputs of CA and [T] represents a nxn state transition matrix1. As each output

depends only itself – if 150 cell – and its adjacent neighbors, the transition matrix is a

tridiagonal matrix with the 1st diagonals completely 1s and the main diagonal only 1 for the

corresponding 150 cells. As an example, the next state for the CA in figure III-6 when the

state is 1111 – line 4 – can be found as:

[] []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×=

1100
1010
0111
0010

11110011 (14)

 which is in accordance with line 5. It is worth reemphasizing that all the arithmetic is

performed in GF(2), due to mod2 operation of XOR gates. As a direct consequence, as the 2nd

next output is [Qnext]*[T], the 2nd output is related to the current one as [Qpresent]*[T]2; and the

argument can be easily furthered to the nth next output as:

[Qk]=[Q0]*[T]k (15)

 where Q0 represents the current state and Qk represents the output state after k clocks.

 It is also proven that, CA and LFSRs are isomorphic, so that for every LFSR

configuration there is a corresponding CA configuration and vice versa2.

 In the previous section, a mathematical condition for the LFSR configuration was derived

to achieve max-length PRBS, which had revealed the characteristic polynomial should be a

primitive polynomial. A similar argument can be hold for the CA by considering the T matrix.

For an n-stage CA, the output states must be different for 2n-1 clocks. Therefore, the state

transition should never map the initial state back to itself before the (2n)th clock, which can be

stated in GF(2) algebra as:

For k=1,…,2n-1, [T]k ≠ [I]

and

For k=2n, [T]k = [I]

 where, [I] represents the identity matrix.

1 I use a slightly different notation than the described notations from [13] and [15], which is more convenient to
associate with the drawn hardware structure. However, the reader should be aware that, the given relation holds
as the T matrix is symmetric matrix

PRBS Generation and Signature Analysis

34

 As demonstrated, the CA can be equally well applied as LFSRs, for PRBS generation,

and their comparison therefore is important for the choice of the more appropriate one, which

is the context of the following subsection.

III.2.1 – LFSR vs. CA:
 As presented, either LFSRs or CA can be used as on chip PRBS pattern generators. In

terms of area penalty, CA are inferior to LFSRs due to the requirement of at least 1 2 input

XOR gate per flip-flop. The hardware difference becomes extremely significant as the number

of stages increases as the total number of required XORs is at most 4 for max-length PRBS

with LFSRs. Hence, regarding the MVSD2 ILP, the circuit area of a flip-flop is not

predominantly larger than a 2 input XOR and it cannot be confidently stated that the XOR

areas are insignificant compared to flip-flops. However, on the other hand, the LFSR

configuration requires a global feedback that runs through the length of the LFSR, which is

very undesirable in terms of interconnect delays and capacitances. Therefore, this feedback

might be a serious critical path bottleneck in long LFSRs. Conversely, the interconnect length

in CA is just between the adjacent cells and it is independent of the length of the CA.

Moreover, the output of the CA compared to the output of LFSR – as shown in figure 6 – is

seen to be more naturally random, with no cyclic shift behavior. Analytically, CA output does

not possess the high cross correlation between individual output bits that LFSR output bears,

which is inherent in any shift register action. Consequently, it can be suggested that the CA

output will provide a better approximation for the fault coverage relation

[] %1001)log(10 ×−= − NeFC λ described in section II. However, although intuitively it would be

expected that CA serves better to the notion of PRBS generation and therefore it must be

more effective than LFSR, it is not a concept that can be verified quantitatively in general.

III.3 – SIGNATURE ANALYSIS

 As described in section II, signature analysis was first developed by HP® to test PCBs

using a probe, which was connected to the nodes within the circuit and applied to the input of

the LFSR through an XOR gate. Therefore, the signature analyzer works like an LFSR,

following the LFSR output sequence as long as the input is zero and inverses the feedback bit

if the input bit is 1. As the input 1 will produce a 1 input from 0 feedback, there is no

2 As stated in [13] this isomorphism is a rather loosely used term, as it does not guarantee the same output
sequence, but the same states with a different order

PRBS Generation and Signature Analysis

35

deadlock for all 0s and the signature analyzer can be reset to all 0s state initially. The error

coverage probability of the signature analyzer had been derived in section II.

 Due to the fundamentals being the same as in LFSRs, the polynomial relation in the

signature analyzer can be developed in a similar manner. Recalling the discussion in section

III.1 about the true polynomial divider, for the signature analyzer, a Divisor Polynomial is

defined instead of the characteristic polynomial of LFSRs. Divisor polynomial is the same as

characteristic polynomial defined for the TDA LFSR. In relation to the characteristic

polynomial of TDL type LFSR, the divisor polynomial is reciprocal of the characteristic

polynomial, P(x), or simply, the same bitstream read in reverse order, first bit representing the

highest order of magnitude. An example is demonstrated in table 5.

Characteristic Polynomial 1 1.X1 0.X2 0.X3 0.X4 1.X5 1.X6 0.X7 1.X8
Bitstream Representation 1 1 0 0 0 1 1 0 1
Divisor Polynomial 1.X8 1.X7 0.X6 0.X5 0.X4 1.X3 1.X2 0.X1 1

Table 5, P(x) and D(x) relation

 Hence, the divisor polynomial is defined by the same bit sequence, with the sequence of

orders reversed. This is also achieved by taking the reciprocal of P(x), but used in reverse

order for polynomial division in signature analysis. Upon this distinction between D(x) and

P(x), the polynomial relation for the signature analyzer can be expressed as:

)(
)()(

)(
)(

xD
xRxG

xD
xI

+= (16)

 where,
 I(x): data input bit stream expressed as a polynomial
 R(x): The residue – signature – remaining in the signature analyzer
 D(x): divisor polynomial, G(x): output sequence

 As an example, considering the same LFSR configuration in figure III-2, with an

additional XOR input to the first flip-flop, where the serial input is incorporated, the divisor

polynomial will be D(x) = x4 + x3 + 1, as easily deduced from table 5. Assuming a bit stream

of 10100113, the I(x) polynomial will be x6 + x4 + x1 + 1. Doing the polynomial division in

GF(2) as described in page 7 will reveal:

 x6 + 0 + x4 + 0 + 0 + x1 + 1 x4 + x3 + 1

 x6 + x5 + x2 x2 + x1 + 0 = G(x)

 x5 + x4 + 0 + x2 + x1 + 1

 x5 + x4 + 0 + 0 + x1

 0 + 0 + x2 + 0 + 1 = R(x)

y0 y1 y2

PRBS Generation and Signature Analysis

36

 Compared to the LFSR case, one subtle difference is, the G(x) polynomial generated in

the signature analysis case is not continuing indefinitely, as the applied input stream is finite

length. Quantitatively, a length ‘L’ input stream produces a signature of length ‘n’ –

obviously as the length of LFSR is n – and length L-n output sequence. This conclusion

applied to the above example will compel the output stream to be ‘110’ and the residue to be

‘0101’. Recalling subsection II.1.3, these results must be noted to be valid for only the TDA

LFSR, as stated, being the true polynomial divider.

 However, originally being developed for PCB testing, where the probe can access

internal circuit nodes, the application of signature analysis to embedded VLSI systems is not

realistic as each output requires a separate signature analyzer. In today’s practical BIST

circuits, multiple input signature analyzers (MISRs) are used to serve as a solution for

multiple outputs.

III.3.1 – Multiple Input Signature Registers:
 For BIST of multiple output circuits, MISR are extensively utilized in practice due to

their easy and low cost implementation and efficient fault coverage. MISR, in principle is not

different from the single input signature analyzer, but instead of taking one serial input from

the first flip-flop, every flip-flop in the MISR has one input coming from the primary outputs

of the to be tested circuit as shown in figure III-7. Therefore, for an n output circuit, at least an

n stage MISR is used. In figure III-7, the cn switches define the divisor polynomial D(x) and

the Q outputs show the internal stages. The residue is usually clocked out serially through one

of the flip-flop outputs.

Figure III-7, Multiple Input Signature analyzer

3 In polynomial division, the first received bit is on the left. Thus, the first bit in time has the highest order in the
polynomial

yi-n F-F

n

Q(n)

seed(n)

Q(n-1)

yi-3 F-F

3

Q(3)

seed(3)
yi-2

F-F

2

Q(2)

seed(2)
yi-1

F-F

1

Q(1)

seed(1)
CK

yi

cn-1 cn-2 cn-3 c1

yi-(n-1)

cn

Input0 Input1 Input2 Input3 Inputn-1

PRBS Generation and Signature Analysis

37

 Considering Ii(x) the current set of primary outputs to be compressed, and current state of

the MISR as Si(x), the next state output of the MISR can be represented as:

Si+1(x) = [Ii(x) + x.Si(x)] mod D(x) (17)

If the initial state of the MISR is known, for instance to be S0(x), then, the kth state can be

computed as below, from repetitive application of above relation.

Sk(x) = [xk-1I0(x) + xk-2I1(x) + … + x1Ik-2(x) + x0Ik-1(x)] mod D(x) (18)

 where, the Ii(x) polynomials represent the Ith set of inputs to the signature analyzer.

 Consequently, the expected signature can be analytically derived from the expected

outputs of the circuit, prior to application of signature analysis. In terms of fault masking

properties, MISR is scrutinized similarly as the single input signature analyzer, and again

under the same assumptions – uniform distribution of error within bits, the fault masking

probability is found to be ([14]):

12
12

1

1

−
−

= −+

−

Ln

L

fmP (19)

 where,
 L: length of the input test set
 n: number of signature analyzer stages

 A more comprehensive description of fault coverage stated in [1], where the length of

signature analyzer, ‘n’, might be larger than the width of the test vectors, ‘m’ is:

12
12

1 −
−

= −

−

mL

nmL

fmP (20)

 which reduces to nfmP
2
1

= for large L. Hence, this expression is the same as the one

found for single input signature analyzer in section II. Signature analyzers own some

important error masking properties. These are not derived in this text due to space limitations,

but the outcomes will be shortly stated. Further reference could be found in ([13] and [14]).

 - Single Cycle Errors: All errors that occur within a single cycle are always detected.

 - Single Bit Errors: As a direct consequence of the first statement, all single bit

errors are detected

 - Single Output Errors: If the error occurs at only one circuit primary output, the fault

masking probability is the same as that of a single input

signature analyzer.

 - Error Cancellation: Different from the case of single input signature analyzers, error

cancellation is a probable incident in MISRs. Error cancellation

PRBS Generation and Signature Analysis

38

occurs when an error occurs at one input of signature analyzer

and while this error is propagated to the first feedback on the

shift register path, another error on another input ‘collides’ with

the propagated error and they are XORed together. As a result,

in GF(2), the difference between the original and error-prone

output drops back to null. One solution to this is, using

characteristic polynomials with high number of coefficients –

low hamming distance -, and feeding the error as soon as

possible before it can be cancelled. However, as stated in [14],

the probability of error cancellation in a MISR is 21-n-L, which is

quite low for large set of test vectors.

 As a result, since error correction is very unlikely, the MISR has almost equivalent fault

coverage as a single input signature analyzer, under the same condition stated in [1]’s

derivation; large number of applied test vectors, L.

Design/Simulation Tools and Data Management 39

IV-DESIGN/SIMULATION TOOLS AND DATA MANAGEMENT

 Although chronologically the importance of design data management and variety of used

tools is emphasized after the end of design entry phase, it is more appropriate to describe

design data and tool flow prior to any design phase in order to provide a better comprehension

of the whole design process. As described in the introduction section, the primary goal of the

project is the design of a parameterizable multiplier in VHDL and to investigate input pattern

generation and output compression techniques using a fault simulator. However, the nature of

fault simulation and the scarce compatibility of design entry tool and fault simulator require

meticulous data management and design-test flow.

IV.1 – GENERIC DESIGN FLOW

 A general description to Design Fault Simulation flow can be stated as follows. The

design entry is done either with a Hardware Description Language (HDL) or manual

component placement and routing. For HDL entry, the design must then be synthesized

regarding a vendor specific component library. After then, in both methods, the rawest

description of the design data can be obtained in terms of a netlist. Which can then be applied

to the fault simulator. With a plausible modification to our specific process, the overall design

flow can be outlined as shown in figure IV-1.

 In this project, we have chosen the track through HDL design entry. Nevertheless, both

methodologies have their own pros and cons. With the HDL design entry, the process is

quicker and has the advantage of automating several designs with parametric VHDL

definitions, yet it lacks a desired amount of control on the multiplier structure. Though the

hierarchy and multiplier strategy is well preserved with Register Transfer Level (RTL) level

descriptions, the laying out process is still dependent upon the mercy of the synthesizer used.

On the other hand, manual placing and routing benefits the advantage of complete control on

the multiplier, yet this process is much slower, burdensome and errorprone.

Design/Simulation Tools and Data Management 40

IV.2 – PROJECT TOOLS AND DATA MANAGEMENT

 In this project, a key factor for progress has been data management, which includes

managing VHDL design data, source codes, libraries, compilation for simulation and

synthesis, source compile dependencies and documentation.

 The used input design entry tool is Mentor Graphics’ Renoir®, which generates pure HDL

code from a semi-schematic design entry format. The VHDL level simulator used is Mentor

Graphics’ Modelsim®, which acquires the simulation data from Renoir via compilation for

simulation. The output acquired from Renoir® is pure VHDL, and as stated in [20, p. 1-20],

the used fault simulator, Mentor’s QuickFaultII®, does not support VHDL as input data type.

Therefore the acquired VHDL sources are compiled for synthesis using Mentor’s QuickHDL®

compiler1 with synthesis tag and Mentor’s AutologicII® is used to synthesize the design and

save in Electronic Design Data Model2 (EDDM) format, which can then be input to

1 Autologic II has a synthesis compiler ALCOM, but QuickHDL compiler QVHCOM with –synth tag reveals
much elucidating error messages
2 In all the compilation and EDDM write steps, logical library management should be taken extensive care of in
order to make each data format able to identify the physical mappings of its dependencies

Design
Specification

Manual
Place & Route

Fault
Simulator

Synthesis Vendor Specific Cell
Library

Basic Cells

NETLIST

HDL
Design Entry

Figure IV-1, Generic Design Fault Simulation Flow Chart

Design/Simulation Tools and Data Management 41

QuickFaultII. EDDM format is the storage format used by many mentor graphics and a

typical EDDM object is a schematic([21, p. 1-6]). Before applying the generated EDDMs to

QuickFault, an intermediate step is to invoke Mentor’s Design Architect®, in order to convert

the hierarchical symbols generated by Autologic to meaningful symbols to improve design

readability, i.e. to make an XOR look like an XOR and a full adder like a full adder. Hence,

though this looks rather redundant at the early considerations, as design complexity increases,

this turns out to be the only rational way to understand the generated schematic structure.

Finally, the synthesized and modified EDDM designs are then opened in Quickfault and fault

simulation results are documented from Quickfault. The overall design and tool flow can be

summarized as shown in figure IV-2:

RENOIR

Renoir.ini

Figure IV-2, Design and Tool flow

HDL
Design Entry

Design Data

VHDL library
for simulation

Downstream1Compile for
Simulation

HDL

Generate

MODELSIM

QhSIM

Simulate
VHDL

VHDL library
for simulation

WORK

qvhcom

QuickHDL

VHDL library
for synthesis

Downstream2
alcom

qvhcom -synth
Compile for
Synthesis*

AUTOLOGIC

quickhdl.ini

Synthesize and
Convert to EDDM

Netlist

Synthesize

Save
EDDM/sch.

EDDM design
Library

Design
Architect

Edit schematic
and

Modify symbols

QuickSIM
Simulate
schematic

QuickFAULT

Fault Simulate
schematic

External
Stimuli

Documentation
of Results

* Although the compile for synthesis option is setup for Autologic, Renoir was unable to perform
the synthesis, yet it could display the downstream synthesized by qvhcom -synth

Design/Simulation Tools and Data Management 42

 Hence in figure IV-2, we used an almost compatible format with [21, pp. 2-1 – 2-2] and

[20, pp.1-6 – 1-11], which comprise several other design pathways for synthesis and fault

simulation. The design units described in figure IV-2 are defined as shown in figure IV-3:

 The faded tools and processes, and dashed flowlines are not performed during the design

flow, yet are included for the sake of completeness.

 As a reference to included CD, the physical paths to the available design data and

libraries are as tabulated in table 6:

RENOIR
Design Data CD>MSc/DesignFiles/Renoir/DesignData/
Generated HDL CD>MSc/DesignFiles/Renoir/HDL/
Downstream1 CD>MSc/DesignFiles/Renoir/CompiledData/
Inifile CD>MSc/DesignFiles/Renoir/CopyofRenoirINIfile

AUTOLOGIC
VHDL lib. For synthesis CD>MSc/DesignFiles/Renoir/SynthCompiledData/
EDDM design lib. CD>MSc/DesignFiles/Renoir/Eddm_sch/
Inifile CD>MSc/DesignFiles/Renoir/quickhdl.ini

Table 6, Physical Paths to Design Data

TOOL

inifile.ini

Design Data

Library

LibName

Process

Command

Initialization files for the attached tools, which include logical to
physical library mappings for the tool inputs and outputs; and some
other user modified or required startup configurations

Design and Simulation Tools

Design and Simulation Data Formats

Design and Simulation Libraries

Descriptions of attached processes

Default Library Names for the attached libraries assigned by the
corresponding tools

Compiler Commands provided by the attached tools

Figure IV-3, Key to Design and Tool flow units

Design/Simulation Tools and Data Management 43

IV.2.1 – Auxiliary Project Tools:

 Besides the design flow described in IV.2, there are a few other tools used for auxiliary

purposes during the design progress. These tools are not directly related to design flow, but

are rather utilized for simple tasks such as writing automatically generated data into files,

converting file formats and automated comparison of resultant data.

 These tools are listed in table 7 with their intended tasks.

Tools Function
HPUX-XV Capture pictorial data and edit colors for a printer friendly format
Matlab Produce stimuli for simulation
HPUX shell scripts Convert ASCII file formats and compare ASCII files

Table 7, Auxiliary tools and functions

 The locations of written Matlab scripts are: “CD>MSc/DesignFiles/matlab/”, and the

generated output stimuli are referenced in several locations generally under

“CD>MSc/results/”. The XV outputs constitute most of the imported pictures in the report as

well as the .gif files under “CD>MSc/results/”. Unix scripts are referred usually from

“CD>MSc/results/”.

Multiplier and BIST Circuit Design 44

V- MULTIPLIER AND BIST CIRCUIT DESIGN

 As described in the introduction, in this section we describe the design of a parameterized,

signed, parallel multiplier, using VHDL via Renoir. We describe signed binary multiplication

and briefly discuss various multiplier architectures and then expatiate upon the design of a

parameterized CPA multiplier. Chronologically, the mentioned steps are the first in design

progress. Then, we explain the design of the signature analyzer used in the design and finally

the LFSR design, which are however, chronologically after the BIST investigation phase

during design progress.

V.1 – MULTIPLIER ARCHITECTURE

 In general, the multiplier function is divided into two major parts: 1) Bit product

generation 2) Addition of bit products to form the final product. Different multiplier

architectures emerge from how these two steps are performed. In unsigned multiplication, the

second step is mere addition, while in signed multiplication, the second step includes an

addition or subtraction in the final level of partial product accumulation depending on the

most significant bit (MSB) of multiplier. In unsigned multiplication, final product for an NxN

multiplication is 2N bits. However, for signed multiplication, 2N-1 bits are sufficient as long

as both multiplier and multiplicand do not take their most negative value simultaneously. Two

distinct properties of signed multiplication are: 1) Multiplier and multiplicand are not

completely symmetric in hardware architecture 2) In order to keep track of sign, sign

extension must be handled during partial product additions.

V.1.1 – Twos Complement Multiplication:

 Twos complement multiplication is conceptually not different from mundane

multiplication, in terms of binary domain, the only difference is, instead of the ‘-’ sign, the

MSB holds the information about the number being positive of negative – therefore contrary

to unsigned numbers, adding 0s to left might have a significance –. As in decimal domain,

multiplicand (MD) is multiplied by the ‘value’ of each bit of multiplier (MR), and as in

decimal, the values of higher significant bits of multiplier are assessed by a left shifting

operation performed during partial product addition. As the value of MSB in multiplier,

named Sign Bit (SB), can be either negative or zero in twos complement arithmetic, the final

Multiplier and BIST Circuit Design 45

step is either a subtraction or 0 addition. In general twos complement multiplication can be

demonstrated as in Figure V-1:

SB1 x y z

SB2 a b c

SB3 SB3 SB3 SB3 SB3 c.x c.y c.z

SB4 SB4 SB4 SB4 b.x b.y b.z

SB5 SB5 SB5 a.x a.y a.z

SB6 SB6 x* y*
 z*

SBp P6 P5 P4 P3 P2 P1 P0

Figure V-1, twos complement multiplication

 In the above demonstration, the shaded bits are extended signs for correct signed addition.

(.)’ denotes the complement of the binary value. As can be deduced, the last set of partial

products is either all 0s if SB2 is 0, or twos complement negation of multiplicand if SB2 is 1;

which is stated as “(-SB2) . MD”. Hence, in the above description, it is described such that, for

an NxN multiplication, each partial product row must be sign extended to 2N bits, which is to

emphasize the correct operation if all the rows are added simultaneously. However if we

consider adding first 2 rows at once and then adding the result to the consecutive rows one by

one with a cumulative fashion, the sign extension scheme can be adjusted as described in

figure V-2. Hence, except for the first row, all rows now require only one bit sign extension,

which in turn reduces the required number of bitwise additions by (N-1)! –(N-1).

 As observed, unlike unsigned multiplication, the partial summations require N+1 bitwise

additions for each accumulation step. In unsigned addition, the MSB of sum is gathered from

the carry out output of the MSB adder however, in signed multiplication, the adder terms are

sign extended and the MSB is the final adder’s sum output, where the carry out is discarded.

MD

MR

c . MD (SB3 = c.SB1)

(-SB2) . MD
[SB6 = SB2.(SB1)’]

b . MD (SB4 = b.SB1) b . MD (SB4 = b.SB1) b . MD (SB4 = b.SB1) b . MD (SB4 = b.SB1)

a . MD (SB4 = a.SB1)a . MD (SB4 = a.SB1)a . MD (SB5 = a.SB1)

Final Product

Multiplier and BIST Circuit Design 46

SB3 SB3 SB3 c.x c.y c.z

SB4 SB4 b.x b.y b.z

SB SB . . .

SB5 SB5 a.x a.y a.z

SB SB . . .

SB6 SB6 x* y* z*

SBp P6 P5 P4 P3 P2 P1 P0

Figure V-2, sign extension after ordering summation

However, as described in [8], a slight modification in the MSB adder can alleviate this

redundancy. Regarding the above scheme, signed addition of two N bit numbers can be

demonstrated as in figure V-3:

Figure V-3, sign extended addition of signed numbers

 The shaded sign extensions for A and B inputs produce the MSB of the sum. When we

consider the logical functions of sum and carry out circuits, the sum logic is true when either

one or all 3 of the inputs are true and carry out logic is true when at least 2 of the inputs are

true. These can be expressed in Boolean domain as:

Sum = A(B)’(Cin)’ + (A)’B(Cin)’ + (A)’(B)’Cin + ABCin = A ⊕ B ⊕ Cin (21)

And

Cout = AB + ACin + BCin (22)

C0 FA
1

B0 A0

C1

S0

FA
2

B1 A1

C2

S1

FA
N-1

BN-2AN-2

CN-1

SN-2

CN-2FA
N

BN-1 AN-1

CN

SN-1

0 FA
N+1

BN-1 AN-1

CN+1

SN

Multiplier and BIST Circuit Design 47

 Now describing CN in figure V-3, in terms of the above Cout function:

CN = AN-1BN-1 + AN-1CN-1 + BN-1 CN-1 (23)

and expressing SN in terms of above Sum function:

 SN = AN-1 ⊕ BN-1 ⊕ CN (24)

 We then substitute the CN expression in SN expression, which reveals:

SN = AN-1 ⊕ BN-1 ⊕ (AN-1BN-1 + AN-1CN-1 + BN-1 CN-1)

and upon simplification of this expression we reach:

SN = AN-1BN-1 + AN-1(CN-1)’ + BN-1(CN-1)’ (25)

 Hence, this expression is almost the same as the carry out function for Nth adder, with just

the carry in inverted. The revelation of this expression is, if we modify the carry out of the Nth

adder as above, we might then use that carry out as the SN bit, without the expenditure of the

N+1th adder. Calling this adder with modified carry out, MSB Full Adder (FA), the adder

circuit described in figure V-4 then turns out to be almost at equivalent cost to an unsigned

adder circuit.

Figure V-4, Modified signed adder

 With this modification, each partial sum in multiplication is reduced to N bitwise additions

rather than N+1 case described in figure V-2. However, we should be aware that, sign

extension requirement is not fully overcome with this method, as for two unequal length

operands, the shorter one must still be sign extended up to the length of the longer one.

V.1.2 – Multiplier Architectures:

 As discussed at the beginning of the section, different multiplier structures emerge from

how the bit product generation and partial summations are performed. Each of the to be

described structures have their own advantages and shortcomings compromising speed,

power, hardware cost and regularity in structure. Although in general signed multiplication is

described as a sign extended unsigned multiplication in most of the cited references, some of

these can be modified to the above described scheme.

C0 FA
1

B0 A0

C1

S0

FA
2

B1 A1

C2

S1

FA
N-1

BN-2AN-2

CN-1

SN-2

CN-2MSB
FA N

BN-1 AN-1

SN

SN-1

0

SN

Multiplier and BIST Circuit Design 48

 Of the most well known architecture, CPA multiplier ripples the carries through each row

of additions and thus, it actually performs exactly the operation described in figure V-2. the

general hardware structure of a CPA multiplier is a matrix of adders with each row rippling

the carries to the MSB, which is the modified MSB FA. The structure of an unsigned CPA

multiplier is described in [3, p.938], [7, pp. 95 – 98] and [9, pp. 2 – 6]. Structures for signed

CPA multiplier are described in [9, p.16], using a regular sign extension scheme and in [8, pp.

39 – 40], which utilizes the modified MSB FA.

CSA multiplier, which has the exact same hardware construct with CPA multiplier for

unsigned multiplication, makes use of the fact that, the internal summation results are not

required for the output, and instead of rippling the carries through each row, it transfers

individual carries to the following row. In carry save structures, a final stage for adding the

sums and carries is required, which is named, vector merging addition. CSA multipliers

whose final stage is performed with carry ripple addition are named “Braun Array

Multipliers”([7]). The architectures for unsigned CSA multipliers are described in [3, p. 938],

[6, pp. 344 – 348], [7, pp. 99 – 101] and [9, pp. 10 –11]. One significant advantage of CSA

multiplier is, the critical path is single, contrary to 2 critical paths in CPA multiplier ([9, pp. 9

– 10]. Moreover, in the general structure, CPA multiplier requires 3(N-1) adder delays – see

MVSD1 ILP, Q.3 for derivation –, [6, p.344] asserts CSA multiplier requires 2N+1 adder

delays, for all the outputs to stabilize. Signed CSA architectures are described in [9, p.17],

which uses the regular sign extension scheme and in [4], which also uses sign extension and a

modified adder array without a final vector merging adder.

 Tree or Wallace tree multipliers are a further modification of CSA multipliers, which

compromise a regular structure for performance improvements. In Wallace tree multipliers,

all partial products are first computed in parallel and then they are added in an adder tree in

concordance with the carry save addition principles. A final vector merging adder is again

required to combine the final carry and sum vectors. Unsigned tree structures are described in

[3, p.939], [7, pp.103 – 105] and [10, pp. 160 – 165]. A signed Wallace tree architecture is

described in [22, pp. 77 – 80], which applies a specific algorithm for twos complement

multiplication.

Multiplier and BIST Circuit Design 49

 Modified Booth’s Array Multiplier, which is the most commonly used multiplier in

datapath structures as all but most synthesizers generate Modified Booth’s Multipliers during

synthesis ([2]), recodes the multiplier in 2 bits at a time. Thus, unlike to the previously

described multipliers, Booth multiplier modifies the partial product generation structure and

reduces the number of generated partial products. The algorithm takes 2 bits of the multiplier

at a time and adds 0/±1/±2 . multiplicand, according to the recoding, which also considers the

previous bit of multiplier. Recoding is done for 2 bits only in practice, as implementation of

negation – invert and inject hot one – and multiplication by two – left shift – is

straightforward. The algorithm for 2 bit recoding is demonstrated in table 8.

Current bit pair Previous bit
biti+1 biti Action1 biti-1 Action2

Overall Action

0 0 Add 0 0 Add 0 Add Nothing
0 1 Add 1 0 Add 0 Add 1x MD
1 0 Add –2 0 Add 0 Add –2x MD
1 1 Add –1 0 Add 0 Add –1x MD
0 0 Add 0 1 Add 1 Add 1x MD
0 1 Add 1 1 Add 1 Add 2x MD
1 0 Add –2 1 Add 1 Add –1x MD
1 1 Add –1 1 Add 1 Add Nothing

Table 8,Modified Booth Algorithm

 Modified Booth Multipliers are described extensively in [2], [5] and [8, pp. 29 – 36 & pp.

41 –43].

 As the initial design, we have chosen a CPA multiplier due to its regularity and ease of

extension for twos complement arithmetic. In the rest of the report, multiplier refers to CPA

multiplier unless otherwise stated.

V.2 – INITIATION PART-I: DESIGN OF 3X3 CPA MULTIPLIER

 In order to present the experimental route of design, we first design a simple 3x3 CPA

multiplier and measure its fault coverage. In this section, we describe the design of the 3x3

multiplier, while in section VI, in ‘Initiation Part-II’, we’ll describe the fault coverage

measurement for the multiplier.

Multiplier and BIST Circuit Design 50

 The regular structure of a 3x3 signed multiplier, regarding the cited references is as shown

in figure V-5. The multiplication operation is: B2 B1 B0 x A2 A1 A0 = P5 P4 P3 P2 P1 P0. As

discussed previously, the final stage of multiplication is either a subtraction – if A2 is 1 – or 0

addition – if A2 is 0 –, which equals A2 . (B(2:0))’ and hot 1 as carry in to the last stage if A2

is 1. Therefore, the final stage is implemented as addition of A2 . (B(2:0))’ and A2 itself as the

hot 1.

Figure V-5, Regular 3x3 CPA Multiplier Structure

 In figure V-5, the adder inputs are the produced bit products by the AND gate matrix. As

seen the first column propagates all 0s and the A0Bi terms are only propagated to the next

row. Nonetheless, the MSB FA’s modified carry out is nonzero, as the modified carry out

function states:

SN = AN-1BN-1 + AN-1(CN-1)’ + BN-1(CN-1)’

S3 = (A0B2).0 + (A0B2).(0)’ + 0.(0)’

S3 = A0B2

 As seen in the above structure, the first set of adders is redundant and therefore, a typical

structure as demonstrated in figure V-6 is used in almost all designs in preference to the above

structure, which removes all the redundant blocks and reduces the FA logic to Half Adder

(HA) logic for adders with one of the inputs constantly wired false.

FA

0 A0B0

0 FA 0 MSB
FA

A0B2 0

0 A0B10 A0B2

A0B2 A0B1 A0B0

FA

A1B0

FA MSB
FA

0

A1B1A1B2

FA 0 FA 0 MSB
FA

A2

A2(B2)’ A2(B1)’ A2(B0)’

P4 P5 P3 P2 P1 P0

Multiplier and BIST Circuit Design 51

Figure V-6, Used 3x3 CPA Multiplier Structure

 Hence, this structure performs precisely the accumulation scheme described in figure V-2,

with the final sign extended additions taken care of by the MSB FA.

 In order to build the above architecture, we built the lowest hierarchy blocks – leaf cells

(the pit product generators and adder blocks), using dataflow (RTL1) level VHDL in Renoir.

The blocks that are built as the leaf cells are described in V.2.1 to V.2.5. Finally, in V.2.6,

designed 3x3 CPA multiplier is demonstrated.

V.2.1 – HHandH:

 Firstly for bit product generation, the required AND gates are generated. HHandH

represents that both inputs to the gate are active high and output is active high. The symbol

for HHandH is as shown in figure V-7. The generated VHDL code is attached in Appendix A-

1.

Figure V-7, HHandH symbol

1 RTL level VHDL is used in almost all design codes in order to have direct control on synthesis process

A0B2 A0B1 A0B0

HA

A1B0

FA MSB
FA

A1B1A1B2

FA 0 FA 0 MSB
FA

A2

A2(B2)’ A2(B1)’ A2(B0)’

P4 P5 P3 P2 P1 P0

A0B2

Multiplier and BIST Circuit Design 52

 HHandH is used to generate all bit products except for the last row, as the B inputs to the

last row are inverted.

 VHDL level simulation (Modelsim Simulation) results of HHandH are as shown in figure

V-8. The signal traces display correct operation of HHandH.

Figure V-8, HHandH simulation result

 For each of the described components in the report, the Renoir symbols and schematic

structural VHDL representations are in:

 “CD>MSc/DesignFiles/Renoir/DesignData/componentname”. If component names are

different from the subsection header, they will be written in parentheses in the title of

subsection.

 The generated VHDL codes are in:

“CD>MSc/DesignFiles/Renoir/HDL/componentname_vhdlarchitecturename”.

 The compiled files for VHDL simulation with Modelsim are in:

“CD>MSc/DesignFiles/Renoir/CompiledData/componentname/”

 The Modelsim simulation results are in:

“CD>MSc/DesignFiles/Renoir/ModelSimResults/componentname”

 Included Renoir figures, either captured from Renoir graphical interface – in case of

symbols – or printed as postscript files – in the case of structural design blocks – can also be

referenced from:

“CD>MSc/DesignFiles/report/renoirfigs/componentnamesym.gif” for printed symbols

 and

“CD>MSc/DesignFiles/report/renoirfigs/componentnamestruct.ps” for attached structural

designs.

Multiplier and BIST Circuit Design 53

 For the rest of the report, all the described components and higher level blocks have the

above correspondence with the attached CD, therefore they will not be referred individually

for the sake of brevity.

V.2.2 – HLandH:

 As the last row of partial summations requires inverted B inputs, a separate semi-inverted

AND gate is generated. HLandH represents that input in0 of the AND gate is active high

while input in1 is active low and output is active high. The symbol for HLandH is as shown in

figure V-9. The generated VHDL code is attached in Appendix A-2.

Figure V-9, HLandH symbol

 VHDL level simulation results of HLandH are as shown in figure V-10. The signal traces

display correct operation of HLandH.

Figure V-10, HLandH simulation result

V.2.3 – Half Adder (HA):

The symbol for HA is as shown in figure V-11. The generated VHDL code is attached in

Appendix A-3.

Multiplier and BIST Circuit Design 54

Figure V-11, HA symbol

 VHDL level simulation results of HA are tabulated in table 9, which is acquired from the

list window of Modelsim.

 ns a b cout s
 0 1 1 1 0
 50 0 1 0 1
 100 1 0 0 1
 150 0 0 0 0
 200 1 1 1 0

Table 9,HA Simulation List

 As seen in the listed simulation results, HA functions in accordance with the

specification.

V.2.4 – Full Adder (FA):

The symbol for FA is as shown in figure V-12. The generated VHDL code is attached in

Appendix A-4.

Figure V-12, FA symbol

Multiplier and BIST Circuit Design 55

 VHDL level simulation results of FA are tabulated in table 10:
 ns a b cin cout s
 0 0 0 1 0 1
 50 0 0 0 0 0
 100 0 1 1 1 0
 150 0 1 0 0 1
 200 1 0 1 1 0
 250 1 0 0 0 1
 300 1 1 1 1 1
 350 1 1 0 1 0
 400 0 0 1 0 1

Table 10,FA Simulation List

 As seen in the listed simulation results, FA functions as desired.

V.2.5 – Modified Full Adder for Signed Addition (MSBFA):

The symbol for MSBFA is as shown in figure V-13. The generated VHDL code is attached

in Appendix A-5.

Figure V-13, MSBFA symbol

 VHDL level simulation results of MSBFA are tabulated in table 11:
 ns a b cin s smsb
 0 0 0 0 0 0
 50 0 0 1 1 0
 100 0 1 0 1 1
 150 0 1 1 0 0
 200 1 0 0 1 1
 250 1 0 1 0 0
 300 1 1 0 0 1
 350 1 1 1 1 1
 400 0 0 0 0 0

Table 11,MSBFA Simulation List

 As seen in the listed simulation results, MSBFA functions as expected.

Multiplier and BIST Circuit Design 56

V.2.6 – Signed Parallel 3x3 CPA Multiplier (CPAmult3x3):
 With all the required leaf cells designed and assured for correct functionality, the 3x3

CPA multiplier is designed structurally in Renoir. The symbol associated with the 3x3

multiplier is as shown in figure V-14. The structural design, which is done in a semi-

schematic manner in Renoir is attached in Appendix B-1 and the generated VHDL code is in

Appendix A-6.

Figure V-14, CPAmult3x3 symbol

 As seen in Appendix B-1, the designed multiplier is exactly the same structure described

in figure V-6, with the bit product generation also included. VHDL level simulation results of

CPAmult3x3 are tabulated in Appendix C-1, where the A, B inputs and P output are displayed

in signed decimal format to provide easy examination of multiplier operation. As can be seen

in the appendix, the correct functionality of 3x3 multiplier is verified in VHDL level

simulation.

Multiplier and BIST Circuit Design 57

V.3 –DESIGN OF PARAMETERIZED CPA MULTIPLIER

(CPAMULTNXN)

 Having ascertained the correct functionality of the signed parallel multiplier, we design

the parameterized signed, parallel CPA multiplier. The generic structure of an NxN CPA

multiplier, with a matrix shape rather than the demonstrated ladder like structure is shown in

figure V-15.

 Regarding the structure below, several for and if frames are used in Renoir in order to

achieve the generic structure shown in Appendix B-2. For the bit products, an NxN matrix,

‘bpmatrix’ is defined, which holds the generated bit products by the matrix of AND gates.

The generated matrix has the form:

NxNnn

nn

nnnnn

BABABA
BA

BA
BABABA

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−−−−

002010

01

12

012111

..

....
.....
....

..

 Hence, the described rows and columns refer to the rows and columns of generated

matrix of HHandH and HLandH gates in the CPAmultNxN structural design.

Row N-1

Row 1

Column N-1 Column 0

N
-1 dow

nto 1

N-1 downto 0

Multiplier and BIST Circuit Design 58

Figure V-15, NxN CPA Multiplier Structure

 As can be observed in figure V-15, the 1st and last rows are different from the

intermediate rows, as 1st one has both inputs from bit products, and last one having FA in the

LSB. Therefore, during generation, these two rows are isolated with 2 if frames in Renoir.

The carries of the 1st row are propagated by ‘carryripple1’, an array of (N-1:0), with

carripple1(i) corresponding the ripple between columns i and i-1. Therefore, carry in to the ith

column adder in the first row is carryripple1(i). The partial sums being transferred to the next

rows are stored in a 2D array – not a matrix – named ‘sums’. The format of sums is

[]
[]
[]

[]⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 2___
.....
.....

1___

NrowfromsPartialsum

rowfromsPartialsum

A0BN-1 A0B1 A0B0

HA

A1B0

FA MSB
FA

A1BN-2 A1BN-1

AN-1

P2N-2 P2N-1 P2N-3

P1

P0

A0BN-1 A0B2

FA

A1B1

HA

A2B0

FA MSB
FA

A2BN-2 A2BN-1

FA

A2B1

P2

FA

AN-1(B0)’

FA MSB
FA

FA

AN-1(B1)’ AN-1(BN-2)’AN-1(BN-1)’

PN PN-1

(Row 2)

(Row 1)

(Row N-1)

 (Col 0) (Col 1) (Col N-1)

Row 1

Row N-2

Column N-1 Column 0

1to N
-2

N-1 downto 0

Multiplier and BIST Circuit Design 59

 The partials sums are represented as an array of (N-1:0)elements representing the outputs

of each partial sum row. i.e. sums(i)(j) represents the output from ith partial sum row, and this

partial sum’s jth bit. The carries inside the intermediate generated rows are in a matrix of (2:N-

2) rows, representing the rows of multiplier and (N-1:1) columns, representing the individual

carries within a row. Similar to carryripple1, the ‘row’th row and ith column of this matrix,

‘carryripples’, represents the carry in to ith column adder in row ‘row’. Finally, for the last

row, the carries are stored in an array named ‘carryripple2’ functioning the same way as

carryripple1 and the outputs are directly added to the MSBs of the product bus.

 The corresponding symbol in Renoir, for the generated CPAmultNxN structural design is

as shown in figure V-16 and the generated VHDL code from the structural design is in

Appendix A-7.

Figure V-16, CPAmultNxN symbol

 The VHDL level simulation results for the parameterized CPA multiplier reveals correct

operation of the design for various tried multiplier widths. An exemplary simulation result for

an 8x8 multiplier (N=8) is as shown in figure V-17.

Figure V-17, Exemplary Simulation Trace for CPAmultNxN

Multiplier and BIST Circuit Design 60

 After the completion of the design of the parameterized multiplier, the first step of the

design entry has actually been finished and the next step in project progress is investigation of

input pattern generation and output compression techniques. In terms of chronology, after the

confirmed design of CPAmultNxN, we moved to reading the Renoir designs in QuickFault

for fault simulation and the described design data management notions in section IV are

scrutinized at this point. As described in section IV, the design pathway has been from Renoir

 (QuickHDL) Autologic Design Architect QuickFault and the operations done

after these intermediate steps are the discussion of section VI. Therefore, chronologically,

section VI is the next step performed after this point and it is recommended that the following

subsections within this section are referred back after the examination of section VI.

V.4 –DESIGN OF PARAMETERIZED SIGNATURE ANALYZER

(SIGNALYZER)

 As described in section VI, the output compression technique chosen is signature

analysis. Although the first signature analyzer is defined for 16 bits for an at most 255 vector

input, here we introduce the design of a parameterized signature analyzer which can be

configured for required number of bits and characteristic polynomials.

 The associated symbol for the signature analyzer is as shown in figure V-18 and the

VHDL code is attached in Appendix A-8.

Figure V-18, Signalyzer symbol

Multiplier and BIST Circuit Design 61

 The width generic defines the width of the desired signature analyzer and the poly

represents the characteristic polynomial for the signature analyzer, which defines the tap

locations.

 An informative VHDL level simulation for the signature analyzer is shown in Appendix C-

2, which uses the characteristic polynomial defined for the specific 8x8 multiplier. Therefore,

the signature analyzer is run for 256 clock cycles and is seen to have a period of 255 as

expected due to the polynomial used. The simulation is done so that, D inputs to signature

analyzer are kept at all 0s to prevent any interference from input and to make the signature

analyzer work like an LFSR, except for the first cycle where the LSB is kept 1 to initiate the

feedback after clear. As seen in the simulation list, the signature analyzer works exactly as

expected in VHDL level.

V.5 –DESIGN OF 8X8 MULTIPLIER + SIGNATURE ANALYZER

(MULTSIGN8X8)

 After the signature analyzer is assured for correct operation, multiplier and signature

analyzer are connected in a higher hierarchy to initiate the design of final circuit with BIST

circuitry also included. The Renoir symbol for the designed system is as shown in figure V-

19. The Renoir structural design for the MultSign8x8 is attached in Appendix B-3 and the

generated VHDL code for the multiplier + signature analyzer circuit is attached in Appendix

A-9.

The generics ‘signpoly’ and ‘Nmult’ describe the characteristic polynomial of the signature

analyzer and width of the NxN multiplier respectively. As seen in the structural design in

Appendix B-3, the product bits are connected to signature analyzer ‘d’ input and the serial

signature analyzer residue is clocked out via ‘sout’.

Multiplier and BIST Circuit Design 62

Figure V-19, MultSign8x8 symbol

A demonstrative VHDL level simulation of MultSign8x8 is as tabulated in table 12. As

seen, scan input, which disables the parallel ‘d’ inputs to the MISR is always kept false, as

this feature is not used in general in the way signature analysis is done during the project. As

Modelsim permits different types of signal radix in the same list, in most Modelsim lists and

traces, the ‘a’, ’b’ and ‘product’ buses are displayed in signed decimal format for quick

analysis of signal values’ concordance with the expected multiplier behavior. Yet, on the

other hand, most of the LFSR type output signals are displayed in hex format and ‘a’ and ‘b’

might be therefore displayed also in hex for PRBS input pattern generation analysis cases.

 As can be deduced from the simulation list, the multiplier + signature analyzer circuit

works in the expected way, where ‘sout’ will be the primary output observed by the tester

during testing.

Multiplier and BIST Circuit Design 63

ns Scan clr_l Ck b a product sout
0 0 0 1 -1 1 -1 0
50 0 1 0 -1 1 -1 0
100 0 1 1 -1 1 -1 1
150 0 1 0 -1 0 0 1
200 0 1 1 -1 0 0 0
250 0 1 0 -1 -128 128 0
300 0 1 1 -1 -128 128 0
350 0 1 0 127 -128 -16256 0
400 0 1 1 127 -128 -16256 0
450 0 1 0 127 127 16129 0
500 0 1 1 127 127 16129 0
550 0 1 0 -128 -128 16384 0
600 0 1 1 -128 -128 16384 0
650 0 1 0 -86 85 -7310 0
700 0 1 1 -86 85 -7310 1
750 0 1 0 -86 85 -7310 1

Table 12,MultSign8x8 Simulation List

V.6 –DESIGN OF PARAMETERIZED LFSR (LFSR)

 In order to finalize the BIST circuitry, the LFSR is designed as the last hierarchical block

in the design process. After investigation of several BIST input pattern generation techniques

in section VI, the technique decided upon is PRBS generation using an LFSR with seed = x7B

(0111 1011), where also repetitive patterns are used to have a constant volume of test vectors

with an insignificant downgrade on fault detection efficiency. As described in section VI, a

repetition length 4 sequence is used, meaning 24 = 16 different inputs repeated for the length

of each ‘a’ and ‘b’ multiplier inputs. In order to apply all possible combinations these two 16

repeated patterns, 16.16 = 256 vectors are needed, yet with the LFSR, 255 of these 256

patterns are provided, with all 0s, which is already observed to have zero effect after the 255

vectors, unprovided.

 To provide a more flexible overall system in VHDL description, the designed LFSR is

constructed as a parameterized LFSR with the tap locations, seed and length explicitly defined

by the designer. The used LFSR structure, is the TDL type (Type A) LFSR, due to its better

path delays as the XOR gates are separate from the flip-flop chain. The associated Renoir

symbol for the generated LFSR is as shown in figure V-20 and the generated VHDL code is

in Appendix A-10.

Multiplier and BIST Circuit Design 64

Figure V-20,LFSR symbol

 The generic, width, defines the length of the LFSR, seed defines the initial seed to be used,

which the LFSR is set to when clr_L is active and taps define the taps of the LFSR. For the

seed, the leftmost bit represents the seed into the leftmost flip-flop, and the rightmost bit

represents the seed into the rightmost cell. For the taps, a ‘1’ represents an existing tap while a

‘0’ represents a nonexistent tap, leftmost bit referring to the leftmost flip-flop and rightmost

bit to rightmost flip-flop. As an example, the hardware to be realized for the generic values

given in figure V-20, which is actually the LFSR used in the final BIST circuitry is shown in

figure V-21. Seed = “01111011” describes the 1st and 6th flip-flops are reset, while the rest are

set. Taps=”10001101” describes that there are taps from the outputs of 1st, 5th, 6th and 8th flip-

flops, which also reveals the characteristic polynomial of the used 8 bit LFSR is:

1 + x1 + x5 + x6 + x8

Multiplier and BIST Circuit Design 65

Figure V-21, Structure of LFSR

 The VHDL level simulation, for the LFSR with the above parameters used is shown in

Appendix C-3. The simulation list is strobed at every 90ns, therefore, only one Q output

change is displayed per row. The initialization period is the first 50 ns and is not displayed in

the simulation list. The input signals are produced as demonstrated in figure V-22:

Figure V-22, LFSR Simulation input Signals

 As seen in the simulation list, the 8 bit LFSR with the given characteristic polynomial

produces a maximum length sequence, with a period of 255. Seed B7 is the next state after the

listed last state F6, strobed at 25490 ns.

V.7 –DESIGN OF TOP LEVEL SYSTEM (LFSRMULTSIGNNXN)

 After the evident VHDL simulation results for the LFSR, all of the required blocks for the

top level design are completed and assured of correct operation. In this section, we build the

final system with BIST circuitry for both input pattern generation and output compression

included. In the top level structural design, which is attached in Appendix B-4, it is seen that

the 4 right bits of LFSR’s ‘Q’ output, Q(5:8) in figure V-21 are assigned to both 4 bit portions

of multiplier’s ‘a’ input, a(7:4) and a(3:0); and 4 left bits of ‘Q’ output, Q(1:4) in figure V-21

sin

clr_L
Qint(8)

F-F

8

Q(8)

seed(8)
Qint(7)

F-F

7

Q(7)

seed(7)
Qint(6)

F-F

6

Q(6)

seed(6)
Qint(5)

F-F

5

Q(5)

seed(5)
Qint(4)

F-F

4

Q(4)

seed(4)
Qint(3)

F-F

3

Q(3)

seed(3)
Qint(2)

F-F

2

Q(2)

seed(2)
Qint(1)

F-F

1

Q(1)

seed(1)
CK

clr_L

CK

50 ns 100 ns

Multiplier and BIST Circuit Design 66

are assigned to both 4 bit portions of multiplier’s ‘b’ input, b(7:4) and b(3:0). As discussed in

section VI, this 4 bit long repeated pattern of input test patterns are seen to be very effective in

fault detection, revealing a very high fault coverage with a small set of test vectors. Identical

to MultSign8x8 design, the output of multiplier, product, is fed to the ‘d’ input of signature

analyzer and the ‘sout’ output of signature analyzer reveals the codeword for compressed

output data. Although the whole system is designed to be parameterized for variable sizes of

multiplier, LFSR and signature analyzer, variable tap locations and seed for LFSR, and

variable characteristic polynomial for the signature analyzer, the assignment of Q output bits

to multiplier inputs is required to be done manually for each design as stated on the Renoir

structural design sheet. This is to provide the designer with sufficient flexibility for the choice

of repetition length – 4 in our case – and any desired permutation of outputs.

 The generated Renoir symbol for LFSRMultSignNxN is as shown in figure V-23 and the

generated VHDL code for the design is in Appendix A-11.

Figure V-23, LFSRMultSignNxN symbol

 As seen in figure V-23, all the generic parameters from lower hierarchy is passed onto the

top level and the top level design in general enables the specification of the multiplier as well

as desired BIST circuit at the top level without the necessity to involve with the lower levels

except for the case explained above and also exclaimed in the symbol.

Multiplier and BIST Circuit Design 67

 The system inputs, clear and clock, have the same functionality as in the case of LFSR and

scan input is the signature analyzer input which might be used to disable the multiplier output

at the end of test run and the signature left in the signature analyzer can be clocked after the

test input application, but in all our simulations we disable the scan input and strobe ‘sout’

during input test vector application.

 The VHDL level simulation, with the generic parameters as assigned in the symbol figure,

is attached in Appendix C-4. The simulation is again run for 255 clock cycles, which is the

determined complete test for the system. The inputs clr_L and ck are driven as described in

figure V-22 and scan input is always kept low as discussed formerly. As demonstrated in the

simulation list, the signal values comply with the expectations. The LFSR is seen to take x7B

seed value at the 266th cycle and traverses all the possible 255 states. The multiplier inputs

and output are displayed in signed decimal and their functional operation is confirmed. The

‘sout’ values of signature analyzer are the primary test outputs that the test equipment

observes during the 255 test cycles.

V.8 –16X16 MULTIPLIER WITH BIST (LFSRMULTSIGNNXN_16)

 After the completed design of the top level system for the 8x8 multiplier, larger multipliers

with BIST circuitry are designed in order to test the effectiveness of the applied constant set

of test vectors. First a 16x16 multiplier with the BIST is designed. Due to the flexibility of the

VHDL design, only the top level generics that are shown in figure V-23 are updated to the

desired values and the internal LFSR output assignments are modified. As the symbol for the

larger multiplier designs share the same symbol with LFSRMultSignNxN, the symbols are

not printed again. The structural Renoir design which shows the LFSR output multiplier

input assignments for the LFSRMultSignNxN_16 is in Appendix B-5. As seen in the

appendix, all the four 4 bit portions of both a and b inputs of the multiplier are assigned to

Q(5:8) and Q(1:4) outputs of LFSR repetitively, thus, the inputs a and b having repeated

patterns every 4 bits. The signature analyzer characteristic polynomial is computed from the

high weight, Hamming distance 5 polynomial of the 16 bit signature analyzer by a simple

polynomial multiplication, where the characteristic polynomial of 16th degree is multiplied by

itself to produce a characteristic polynomial of 32nd degree. Hence, the length of the generated

Multiplier and BIST Circuit Design 68

PRBS sequence is not increased as the newly computed polynomial is already a non-primitive

polynomial with two factors of degree 16 – which are also computed from the polynomial

multiplication of 2 different 8th degree polynomials -, therefore, the length of the PRBS that

could be generated from the signature analyzer characteristic polynomial is the same length as

of the 16 bit signature analyzer, which is chosen to have a length of 255. The polynomial

multiplication in GF(2) (Galois Field of 2) for the32nd degree characteristic polynomial is as

shown below:

(1+x2+ x3+ x5+ x6+ x7+ x8+ x10+ x11+ x15+ x16) * (1+x2+ x3+ x5+ x6+ x7+ x8+ x10+ x11+ x15+ x16) =

= 1+x4+ x6+ x10+ x12+ x14+ x16+ x20+ x22+ x30+ x32

 Hence, this polynomial multiplication operation is best done via Matlab as polynomial

multiplication is equivalent to convolution of coefficients. Therefore, the operation done in

Matlab for characteristic polynomial calculation is:

Newpoly = mod(conv(oldpoly1,oldpoly2),2)

 The mod2

 is to realize the arithmetic operation results in GF(2).

 Acquired from the above calculation, the generic signpoly is assigned to:

 “100010100010101010001010000000101”

 and the generic Nmult is assigned to16. Other generics, which refer to the LFSR

parameters are kept the same as figure V-23, as the input pattern generation scheme is

constant, regardless of multiplier size. The VHDL code generated for the

LFSRMultSignNxN_16, is attached in Appendix A-12 and the VHDL level simulation, is as

shown in Appendix C-5. As seen in the simulation list, the inputs are driven the same way as

in section V.7 and the results are in concordance with expectations.

V.9 –32X32 MULTIPLIER WITH BIST (LFSRMULTSIGNNXN_32)

 After the fault simulation of LFSRMultSing16x16, a 32x32 multiplier is generated from

the parameterized top level design. The signpoly generic is updated for a 64 bit signature

analyzer, and the characteristic polynomial is acquired from polynomial multiplication of the

Multiplier and BIST Circuit Design 69

characteristic polynomial for the 32 bit signature analyzer by itself. Evidently, the PRBS

length from this polynomial will be still 255, which is the preferred characteristic for the max

255 pattern input test vectors. The polynomial multiplication is performed as described in

section V.8 and the resultant signpoly generic value is:

"10000000100010000000100010001000100000001000100000000000000010001"

 The Nmult generic is obviously assigned to 32 and the LFSR related parameters are not

changed. The structural Renoir description of the LFSRMultSignNxN_32 is as shown in

Appendix B-6. As the repetitive pattern scheme suggests, all the eight 4 bit portions of b

inputs are assigned to Q(1:4) and all the eight 4 bit portions of a inputs are assigned to Q(5:8).

The VHDL code generated from the structural description is attached in Appendix A-13 and

VHDL level simulation of LFSRMultSignNxN_32 is in Appendix C-6, which reveals correct

functionality.

V.10 –24X24 MULTIPLIER WITH BIST (LFSRMULTSIGNNXN_242)

 As the fault simulation of the 32x32 multiplier failed due to insufficient memory space, a

moderately smaller sized 24x24 multiplier is designed after 32x32 multiplier. The

characteristic polynomial for the 48 bit signature analyzer is acquired by polynomial

multiplication of the characteristic polynomials for the 16 bit signature analyzer and 32 bit

signature analyzer, in the way described formerly. The resultant signpoly generic value is:

"1011111000110000101010011010100000110111011101111"

and the Nmult value is 24. The structural Renoir design of LFSRMultSignNxN is in

Appendix B-7 and the generated VHDL code is in Appendix A-14. The VHDL level

simulation reveals correct operation, but is not included in the appendix for brevity.

V.11 – DESIGN SUMMARY

 Finally, having described all design blocks, the MSc design library in Renoir is displayed

in figure V-24, to describe the overall design blocks and also each design and its appendix

reference is shown for quick reference.

2 As this design is done after the CD is written, the corresponding data is missing in the submitted CD

Multiplier and BIST Circuit Design 70

Figure V-24, Design Library

Appendix A-6 & Appendix B-1

Appendix A-7 & Appendix B-2

Appendix A-4

Appendix A-3

Appendix A-1

Appendix A-2

Appendix A-5

Appendix A-8

Appendix A-10

Appendix A-11 & Appendix B-4

Appendix A-12 & Appendix B-5

Appendix A-13 & Appendix B-6

Appendix A-9 & Appendix B-3

Investigation of BIST Techniques 71

VI- INVESTIGATION OF BIST TECHNIQUES

 This section, which can be considered as the core of the project includes the phases 2 and 3

described in the Introduction, describing the investigated BIST strategies for both input

pattern generation and output compression. We first discuss the terms of fault simulation,

deterministic and alternative fault simulation techniques, different fault models, including

single stuck at model QuickFault uses, Cell Fault Model (CFM)([23]), defended against single

stuck at model in [3] and their comparison. Hierarchical vs. Board level faulting,

opportunistic vs. cycle based simulation and pin/net faulting are described and the choices for

the project fault simulations are justified [20]. Starting with board level faulting and then

expanding to hierarchical faulting up to primitive cells, the multiplier design is simulated with

respect to several input pattern generation techniques for efficient fault coverage. The

techniques are described in an evolutionary manner in order to demonstrate how each new

technique is initiated. The fault coverage result for each case is demonstrated and commented

for pros and cons. All the plotted and listed data are also included in

“CD>MSc/Results/designname”. The resultant data are either included in the text, or

appended in the appendices or referred from the CD depending on the size of the data.

Chronologically, this section starts after the completed design of CPAmultNxN,

parameterized, signed, parallel, CPA multiplier up to the end of input test pattern generation

techniques, after then, output compression technique and further simulations for larger

multipliers are performed in a design fault simulation manner for each top level design. As

the signature analysis reveals extremely effective results, other techniques are not investigated

and the output compression is concluded with signature analysis.

 Before starting with the fault simulation of the phase, it is worth outlining the

intermediate steps taken to convert the VHDL design into the simulated schematic format.

The generated VHDL descriptions for the design in “CD>MSc/DesignFiles/Renoir/HDL” are

first compiled into Autologic format using ‘qvhcom’ of QuickHDL and are shown in

“CD:\MScCD\MSc\DesignFiles\Renoir\SynthCompiledData\component_name\”.

The compiled components are then synthesized and converted to eddm-schematic format

using Autologic, and are shown in “CD:\MScCD\MSc\DesignFiles\Renoir\Eddm_sch\”.

Then, the schematic files are opened in QuickFault and fault simulation is performed.

Investigation of BIST Techniques 72

VI.1 – FAULT SIMULATION AND FAULT MODELS

 Fault simulation is the process of exercising the components of a given circuit under a

predefined set of faults artificially inserted to the circuit, which depend on the postulated fault

modeling. The objective of fault simulation is to verify the effectiveness of a devised test set

as well as to improve a given test set for higher fault coverage. The most common types of

faults in digital circuits are:

(i) stuck-at faults

(ii) bridging faults

(iii) stuck-open faults

(iv) pattern sensitive faults

However, for computation cost issues, it is not rational to consider all these faults in fault

simulation and usually more simplified fault models are used in most fault simulators. As

described in [1] and [13], the commonly used technique is the single stuck at model, which is

proven to also detect all multiple stuck at faults in a two level combinational circuit.

Moreover, it is proven that a set of patterns, which detect all single stuck at faults will also

detect bridging faults([1]). Although until recently this model was observed to be fairly

adequate in fault representation in real circuits, particularly in bipolar technologies, the

advanced CMOS technologies begin to produce faults, which cannot be modeled with the

single stuck at model. A more comprehensive technique named “Cell Fault Model”, which is

proposed in [23], is defended in [3] as a more realistic technique, but it lacks the required

simulation tools for general acceptance. Nevertheless, [24] provides indirect techniques to

utilize this model with the current single stuck at fault simulators.

 There are several software techniques used for fault simulation, which can be listed as:

- commonly used techniques:

1. Parallel fault simulation

2. Deductive fault simulation

3. Concurrent fault simulation

- more recent techniques

4. Parallel Valued Lists (PVLs)

5. Parallel pattern single fault propagation (PPSFP)

Investigation of BIST Techniques 73

More detailed information about these can be obtained from [1] and [20], but is omitted in

the context of this text. Another classification of fault simulation is based on the fault

sampling technique used. A “deterministic” fault simulator, exactly wires to each net/pin

stuck at 0 and stuck at 1 values and exhaustively exercises each node in the specified faulting

hierarchy, a “statistical” fault simulator on the other hand uses probabilistic measures for the

detectability of each node and uses the fault detection probabilities to compute the final

estimated fault coverage. Obviously, the first technique favors precision while the second

computation cost.

 In all our fault simulations, we use Mentor Graphics’ QuickFault, which is a single stuck

at, deterministic fault simulator.

VI.2 – INITIATION PART-II:

FAULT SIMULATION OF 3X3 CPA MULTIPLIER

 After the design entry in Renoir and VHDL level simulation verification of the CPA

multiplier, the leaf level design blocks and higher hierarchy blocks are synthesized into

Eddm_schematic format. In order to describe the second phase of experimental route, firstly

the 3x3 CPA multiplier is synthesized and simulated for faults. The generated schematic for

the 3x3 multiplier is as shown in figure VI-1. The light rectangles connected to the pins of the

components represent inserted stuck at 1 faults, while the dark ones represent inserted stuck at

0 faults.

Figure VI-1, Generated CPAmult3x3schematic with inserted faults

 As seen in the figure, the faults are inserted at board level, therefore, the internal pins and

nets of these blocks are assumed to be non-faulty. This approach is prone to the criticism that

the blocks like FA and MSBFA are quite complex, and assuming their internal nodes are fault

free is an overoptimistic assumption. However, for hierarchical level simulation, the internal

Investigation of BIST Techniques 74

primitives, which are supplied by the vendor must be known and these vary from application

to application diminishing the possibility of a generally acceptable model. Another approach,

named Cell Fault Model, which is introduced by [23] suggests a different strategy, which is

defended to be more comprehensive in [3]. With this board level simulation, there are 112

faults injected in the 3x3 multiplier. The fault list for the inserted faults are appended in

Appendix D-1, to provide an example to the fault list format QuickFault produces. The pins

are described as: instance/pin, and as seen in the appendix, there is one stuck at 0 and one

stuck at 1 fault per pin. DT represents the status of the fault being detected. All the QuickFault

fault classifications are defined in [20, pp. 1-14 – 1-15].

 In order to determine the fault coverage for the 3x3 multiplier, we devised a simple

exhaustive test pattern generation scheme, an upcounter which generates all the possible 26 =

64 inputs to the 3x3 multiplier. The 6 bit upcounter as the input pattern generator provides the

patterns as:

Bits decimal
000000 0
000001 1
. .
. .
. .
111111 26-1=63

 The forcefile, which produces the stimulus is listed in Appendix D-2, to provide an

example to the forcefile format used in QuickFault – the general simulation environment

being QuickSim. Hence, all other fault lists and stimulus files are referred from the CD and

are not appended in the report due to unmanageable hardcopy volumes. For the fault

simulation, cycle based testing is used which represents an Automatic Test Equipment (ATE),

much realistically, than the opportunistic test. The stimulus provides a new test pattern every

50ns and therefore, the primary output, product, is strobed every 40 ns after each new pattern

is provided and as the QuickFault allows only compare window testing rather than single

sampling point ([25, pp. 10 - 12]) the strobing window is chosen as 5 ns. With 40 ns after the

test vector application, all the outputs are well stabilized and therefore unrealistic high fault

detection results due to the comparison of transient values are prevented. The defined test

cycle information is as shown below:

NAME: cyc1 Period: 50.0

Investigation of BIST Techniques 75

DETECTORS:
After Window
------ ------
40.0 5.0

EVENT STREAM:
Event Supersede Time
----- --------- ----
EN no 0.0ns

 With the above described setup for primary output tests and input stimuli, we have run the

fault simulation, and the total of 64 patterns which test the circuit for all possible input

combinations are expected to have a 100% fault coverage, as long as there is no inherent

redundancy in the circuit. As QuickFault also extracts information for schematic level

simulation, the schematic level simulation results are also observed from QuickFault during

fault simulation. The simulation result for an exemplary period of simulation is plotted in

figure VI-2.

Figure VI-2, Schematic Level Simulation Trace for 3x3 Multiplier

 As can also be observed in the fault list, all the faults are detected in 37 cycles out of 64.

which reveals, when starting from 000000, around 40% of the exhaustive test is redundant in

multiplier testing. As shown in figure VI-3, 100100 is the last effective test pattern in the

input test set.

bits decimal
000000 0
000001 1
. .
. .
100100 36
. .
. .
111111 26-1=63

Figure VI-3,Effectiveness of applied input patterns

Required

Redundant

Investigation of BIST Techniques 76

 The overall grade of fault simulation for the 3x3 multiplier, as shown below, shows, as

expected, 100% fault coverage is achieved with the exhaustive test.

CURRENT STATUS

Total Faults : 112
Unsimulated Faults : 0

RESULTS FROM LAST RUN

Run Time : 3300.0ns
Total Faults : 112
 Untestable Faults : 0
 Testable Faults : 112
 Undetected Faults : 0 (0.00%)
 Detected Faults : 112 (100.00%)
 Possible Faults : 0 (0.00%)
 Hyperactive Faults : 0 (0.00%)
 Hypertrophic Faults : 0 (0.00%)
 Oscillatory Faults : 0 (0.00%)
 HM Dropped Faults : 0 (0.00%)

 Hence, fault grade information is useful to observe the overall effect of applied test

patterns, but does not reveal any information about how the percentage of detection builds up.

In order to see the accumulation of fault detection QuickFault provides a plot of fault

coverage percentage vs. input test cycles and a histogram of number of detected faults at each

cycle. As seen in the fault coverage plot for the 3x3 multiplier in figure VI-4, the fault

coverage ascends up to 100% in cycle 37, with the nature of the gradient highly correlated to

the cycles, revealing which input patterns are more effective in detecting the faults.

Investigation of BIST Techniques 77

Figure VI-4, Fault coverage (%) vs. test cycle plot for 3x3 multiplier

 On the other hand, as seen in the histogram plot in figure VI-5, although you cannot

easily observe the total fault coverage up to a certain cycle, the effect of each individual cycle

is very clearly displayed, which is extremely hard to observe from the plot in figure VI-4.

Moreover, another information easily obtained from the histogram is the redundant cycles

within the first 37 cycles and the cycles which are very effective in fault detection, i.e. the

cycles that produce strong peaks in histogram, which are also quite obscure in the plot. In our

case, there are only 17 out of the 37 cycles which are actually effective in fault detection, and

cycles 13 (001101) and 33 (100001) are seen to be very effective in this order of input

patterns.

Investigation of BIST Techniques 78

Figure VI-5, Number of Detected Faults vs. test cycle histogram for 3x3 multiplier

 Obviously, these two statistics are very elucidating and reveal several guiding information.

Fault coverage plot can reveal the amount of required patterns to achieve a certain lower limit

on fault coverage, while histogram can be used to determine effective starting points for the

BIST circuit – as made use of in seed determination for LFSRs and CA – and to determine an

efficient set of deterministic test patterns. Hence, as the cycle based test is performed such

that, each strobe is for 1 test pattern, the terms test cycle and test pattern are used loosely

interchangeably throughout the text. As can be deduced from Appendix D-1, the histogram

and plot data can also be extracted from the fault list data after simulation. Therefore, for

batch simulation, or to perform fault simulation from a remote machine without graphics

interface, the text data written in the fault list can be used to independently plot the histogram

and fault coverage plot.

From now on, the fault lists, input stimuli and cycle info data will not be included in the

report, as they are rather auxiliary information. However, all the fault simulation data is also

included in the “CD>MSc/Results/”. From here on, until the inclusion of BIST circuit in the

synthesized hardware, all the fault simulation results are in “CD>MSc/Results/mult8x8/”. The

Investigation of BIST Techniques 79

fault simulations after the inclusion of designed BIST hardware are referenced from the

design name, as “CD>MSc/Results/DesignName”. The standard naming convention for the

fault simulation data is as shown in table 13:

Stimuli CD>MSc/Results/mult8x8/appliedBIST/appliedBISTstimulus.txt

CD>MSc/Results/mult8x8/appliedBIST/appliedBISTsim.gif Schematic Level

Simulation Results CD>MSc/Results/mult8x8/appliedBIST/appliedBISTsimlist.txt

Fault Lists CD>MSc/Results/mult8x8/appliedBIST/appliedBISTfaultlist.txt

Cycle Infos CD>MSc/Results/mult8x8/appliedBIST/appliedBISTcycleinfo.txt

Fault Grades CD>MSc/Results/mult8x8/appliedBIST/appliedBISTfaultsummary.txt

Fault Coverage Plots CD>MSc/Results/mult8x8/appliedBIST/appliedBISTplot.gif

Histograms CD>MSc/Results/mult8x8/appliedBIST/appliedBISThisto.gif

Table 13, Fault simulation data locations in CD

 Moreover, the plots included in the text are also stored in:

“CD>MSc/DesignFiles/report/quickfaultfigs”, but it is recommended that the figures in the

Results/ are preferred as the report figures are color edited and have worse resolution.

VI.3 – BIST FOR 8X8 MULTIPLIER

 Having described the design flow and general data structure with Initiation parts I and II,

we start the investigation of BIST techniques for the 8x8 multiplier, designed in Renoir, using

the parameterized multiplier. The synthesized 8x8 multiplier is in:

“CD>MSc/DesignFiles/Renoir/Eddm_schematic/ cpamultnxn_8/”.

 Initially we use board level faulting for the fault simulation of 8x8 multiplier, and then we

revert to the hierarchical fault injection using the generic library ($MGC_Genlib) of Renoir as

the hierarchical leaf level, which includes only AND, OR gates, inverters, set-reset flip-flops,

etc., which is a very low level hierarchical model compared to the models most vendors

provide. Several well-practiced and original BIST techniques are applied as stimuli and their

fault coverage performances are observed, with specific emphasis given on PRBS generation

schemes. Repeated patterns, which are shown to provide very high fault coverage with a small

set of input test vectors([3]) are observed and used within PRBS generation structures.

Investigation of BIST Techniques 80

 During the investigation of different BIST schemes, we use automatically generated

stimulus files, either created from QuickFault or using the Matlab Scripts in

“CD>MSc/DesignFiles/matlab”. With the quick turnover of this approach, various techniques

are investigated without the necessity of building the BIST hardware. After we conclude the

investigation and decide upon the BIST structure based on the observed performances, we

move back to design entry phase and generate the blocks required for the BIST circuit. The

next step is the investigation of output compression techniques and comparison of the fault

coverage results with and without output compression.

VI.3.1 – BIST = 16 bit Upcounter for Board Level Faulting:

 As the first probable BIST scheme, we use an upcounter of 16 bits length, which produces

all the possible 216 = 64K = 65536 input patterns for the multiplier. With board level faulting,

the number of injected faults is 932 and we apply exhaustive testing for all 64K input

patterns. From the experience gained by the fault simulation of 3x3 multiplier with the same

upcounter scheme, we expect again around 40% of the overall exhaustive test to be redundant.

 The applied stimulus is in “CD>MSc/Results/mult8x8/upcountstimulus.txt” and the fault

list for the inserted faults is in “CD>MSc/Results/mult8x8/faultlist.txt” and the test cycle

information is in “CD>MSc/Results/mult8x8/cycleinfo.txt”. The schematic generated for the

8x8 multiplier and the injected faults are as shown in figure VI-6, which also displays an

exemplary schematic level simulation for the multiplier with the inputs and output in signed

decimal radix. From now on, for all the stimuli, one pattern duration is 100 ns, and strobing

time is 90 ns.

Investigation of BIST Techniques 81

Figure VI-6, Multiplier 8x8 Schematic, Inserted Faults and Simulation trace for the upcounter test

 With the applied stimulus, 100% fault coverage is achieved in 32897 cycles out of 64K.

Exceeding our expectation, the redundancy is around 50 %, and the last effective input pattern

is: 32897-110 = 3289610 = 10000000 100000002, which is the most negative value possible

multiplied by itself. The grade of the fault simulation is as shown below:

Total Faults : 932
Unsimulated Faults : 0

RESULTS FROM LAST RUN

Run Time : 5466000.0ns
Total Faults : 932
 Untestable Faults : 0
 Testable Faults : 932
 Undetected Faults : 0 (0.00%)
 Detected Faults : 932 (100.00%)
 Possible Faults : 0 (0.00%)
 Hyperactive Faults : 0 (0.00%)
 Hypertrophic Faults : 0 (0.00%)
 Oscillatory Faults : 0 (0.00%)
 HM Dropped Faults : 0 (0.00%)

The histogram and the fault coverage plot are as shown in figures VI-7 and VI-8

respectively.

Investigation of BIST Techniques 82

Figure VI-7, Number of Detected Faults vs. test cycle histogram for board level upcount test

Figure VI-8, Fault coverage (%) vs. test cycle plot for board level upcounter test

Investigation of BIST Techniques 83

As can be seen in histogram, there is a vast redundancy within the 32897 cycles as well.

After the initial hyperactive region, the cycles that are effectively detecting faults are

distributed within the 32897 cycles. The only seemingly nonredundant region is right at the

end of the displayed patterns where a set of consecutive patterns actively detect remaining

faults.

The plot, after the initial steep increase in fault coverage, shows an almost flat incline and

then, a step like jump at regions around 4K, 8K, 17K and 33K where the effective cycles are

seen to concentrate.

VI.3.2 – BIST = 16 bit Downcounter for Board Level Faulting:

 Similar to first BIST, we use a downcounter of 16 bits length, which produces all the

possible 216 = 64K = 65536 input patterns for the multiplier. We use board level faulting (932

faults) and apply the test for all 64K input patterns in the reverse order of previous section.

All the fault simulation data are in “CD\MSc\Results\mult8x8\downcount”. With the same

strobing setup, we achieve 100% fault coverage exactly at 32897th cycle again. The fault

grade is as shown below:

CURRENT STATUS

Total Faults : 932
Unsimulated Faults : 0

RESULTS FROM LAST RUN

Run Time : 4000000.0ns
Total Faults : 932
 Untestable Faults : 0
 Testable Faults : 932
 Undetected Faults : 0 (0.00%)
 Detected Faults : 932 (100.00%)
 Possible Faults : 0 (0.00%)
 Hyperactive Faults : 0 (0.00%)
 Hypertrophic Faults : 0 (0.00%)
 Oscillatory Faults : 0 (0.00%)
 HM Dropped Faults : 0 (0.00%)

The acquired histogram and fault coverage plot are as in figures VI-9 and VI-10 respectively.

As can be observed from the plots, the fault coverage builds up much rapidly than the

upcounter. However, it still requires a huge 32897 patterns to achieve 100% fault coverage.

The histogram is also much less spread providing much better concentrated set of patterns for

large amount of fault detection.

Investigation of BIST Techniques 84

Figure VI-9, Number of Detected Faults vs. test cycle histogram for board level downcount test

Figure VI-10, Fault coverage (%) vs. test cycle plot for board level downcounter test

VI.3.3 – BIST = 16 bit Rolling 0 for Board Level Faulting:
 Although the above two cases demonstrate the case of full exhaustive testing, with the

probably simplest BIST to be thought, they also produce very discouraging results as for only

932 faults, which are at the highest level, around 32000 vectors are needed for full coverage.

And as seen in the histograms, more than 90% of the vectors are actually redundant and

applied only to follow the BIST sequence. As a matter of fact, for 932 faults, much less than

Investigation of BIST Techniques 85

932 vectors must suffice for fault coverage, as number of vectors being more than number of

faults inherently signals inevitable redundancy.

 At this point, a careful observation of the multiplier circuit reveals an important

phenomenon. All the 16 inputs of multiplier are first applied to either to HLandH gates (for

MSB partial products) or to HHandH gates (for all other partial products), and then, the

number of inputs is reduced to half. Intuitively, a test set that fully exercises the multiplier,

should start by fully exercising these input gates and then cleanup tests might be applied for

the remaining faults. However, the challenge is to provide this scheme in BIST rather than as

a standalone deterministic test set. Considering the AND structure of the input gates, a rolling

0 test pattern as demonstrated in table 14 for the 16 bit inputs seems promising, as for an

AND gate, to test the input and output pins for stuck at 1 and stuck at 0, a 01 10 11

pattern is sufficient1, which is produced for all the gates with the rolling 0 pattern.

Table 14, Rolling 0 pattern

 In order to verify this argument, the rolling 0 pattern, which is quite easy to generate as

BIST, is applied as the next test set. The simulation data are in

“CD\MSc\Results\mult8x8\rolling0”. As seen in the fault grade, there is 98.07% fault

coverage, with only these 16 vectors. Out of the 932 board level faults, 914 are detected and

only 18 of the injected faults are undetected. The histogram and fault coverage plots, in

figures VI-11 and VI-12 reveal the very efficient impact of each vector and the fault coverage

curve is almost piecewise linear, without any flat regions that imply redundancy. In order to

have an understanding of the undetected faults, we also demonstrate the undetected faults on

the circuit after the application of the rolling 0 test pattern in figure VI-13. As can be seen on

the figure, undetected faults are on the MSB bits of the partial adders and on the noninverted

1 Recalling the initial argument, the astute reader will notice this is not completely true for the HLandH gates,

and this will constitute the context of next section. However, to present the development of concepts, the two are

described separately.

Rolling zero:
11…110
11…101

•
•

01…111

16 bits per pattern

Total 16 patterns

Investigation of BIST Techniques 86

inputs of the HLandH gates. This latter observation as zoomed on figure VI-13 is also

displayed on figure VI-14.

Figure VI-11, Histogram for board level rolling0 test

Figure VI-12, Fault coverage (%) for board level rolling0 test

Investigation of BIST Techniques 87

Figure VI-13, Undetected faults

Figure VI-14, Undetected faults on the HLandH gates

Investigation of BIST Techniques 88

 Figures VI-13 and VI-14 provide two important observations:

(1) 8 out of 18 undetected faults are on the noninverted inputs of the HLandH gates

(2) all the undetected faults are stuck at 1 faults

These both imply addition of a zero dominated input test vector, which is the discussion of

the next section.

VI.3.4 – BIST = 16 bit Rolling 0 + all 0s for Board Level Faulting:

 The actually expected reason for the undetected faults on the HLandH gates is evident. For

a stuck at 1 fault at the noninverted input terminal of the HLandH gate to propagate to the

output, the other input should be true so that the output is sensitized with respect to the

noninverted input. To provide a conflict at output, the stuck at 1 test should apply a zero to the

tested input. These two facts, which are visualized in figure VI-15 require a 00 pattern at each

HLandH gate input, which can be accomplished with an all 0s test pattern in parallel for all

the gates. Moreover, there is good chance that this all 0s pattern will also detect the other

stuck at 1 faults as only 0s are propagated through the circuit components. Consequently, due

to the second observation stated, the circuit has the probable opportunity of being completely

tested for the injected faults.

Figure VI-15, Sensitization of noninverting input for stuck at 1 fault

 With the inclusion of all 0s, overall test set now becomes as shown in table 15, which can

also be generated on chip with simple hardware.

Table 15, Rolling 0 + all 0s pattern

Rolling zero + all 0s:
11…110
11…101

•
•

01…111
00…000

S@1??

0

0

16 bits per pattern

Total 17 patterns

Investigation of BIST Techniques 89

 All the fault simulation data and the corresponding results for this BIST are in

“CD\MSc\Results\mult8x8\rolling0andall0”. A snapshot of the overall fault simulation is as

shown in figure VI-16, where the rolling 0 and final all 0s case is demonstrated and the

resulting fault grade is shown below:

Figure VI-16, Fault simulation for rolling 0 + all 0s

CURRENT STATUS

Total Faults : 932
Unsimulated Faults : 0

RESULTS FROM LAST RUN

Run Time : 1700.0ns
Total Faults : 932
 Untestable Faults : 0
 Testable Faults : 932
 Undetected Faults : 0 (0.00%)
 Detected Faults : 932 (100.00%)
 Possible Faults : 0 (0.00%)
 Hyperactive Faults : 0 (0.00%)
 Hypertrophic Faults : 0 (0.00%)
 Oscillatory Faults : 0 (0.00%)
 HM Dropped Faults : 0 (0.00%)

 As seen in the grade, all the faults are detected and 100% fault coverage is achieved with

just 17 vectors, which are easily produced with a simple BIST scheme. This result is

extremely promising compared to the 32897 test patterns of the upcounter and downcounter

cases. The achieved histogram and fault coverage plots are also shown in figures VI-17 and

VI-18.

Investigation of BIST Techniques 90

Figure VI-17, Histogram for board level rolling0 + all 0s test

Figure VI-18, Fault coverage (%) for board level rolling0 + all0s test

Although this result seems to have concluded the BIST investigation with an extremely

efficient test scheme, one shortcoming discussed previously must be reconciled. The use of

board level faulting is very abstract and the results are prone to criticism. Therefore, as a very

important milestone in the project, we move forward to hierarchical faulting and verify our

results with the new fault models.

Investigation of BIST Techniques 91

VI.4 – BIST FOR 8X8 MULTIPLIER WITH HIERARCHICAL FAULTING

 In section VI.3.4, we have found very promising results for the BIST pattern to use for

fault testing of the 8x8 multiplier. However, one drawback of the fault simulation technique

used was the over-optimistic results of board level faulting as the assumed flawless models

are then full adders, half adders etc. some of which are too complex to consider as the

primitive blocks. Unfortunately, this is one controversy of fault simulation, as there can be no

standard in the selection of primitives as each vendor supplies a different set of primitive

blocks, which also makes the compressions between two different fault simulation results by

two different parties very cautious to compare. As there is no fixed standard in selection of

primitives in fault simulation, the next decision to be made in the project was the selection of

the primitives to be used. Considering the board level simulation at one extreme of

complexity, we moved to the other possible extreme, the most detailed block level, where the

primitives are AND, OR, NOT gates, flip-flops , etc. This was, though over-pessimistic, a

thoroughly robust approach as any other model in between of the two extremes would always

carry a sign of possible criticism in the fault simulation.

 With the described primitive levels, we performed hierarchical fault injection to the 8x8

multiplier circuit, and the total number of injected faults exploded from 932 to 6008, which

are displayed on the multiplier schematic in figure VI.19. An immediate difference from the

board level faulting as shown in figure VI.6 is the description of faults inside each higher

level block which are displayed as up – for stuck at 1 – and down – for stuck at 0 – arrows on

the blocks with the number of injected faults written inside the arrows. In order to present the

injected errors in the lower hierarchies, each of the higher level blocks are zoomed on figure

VI-19 and are printed separately in figures VI-20 to VI-24. As seen in the zoomed figures, the

FA and MSBFA circuits have more than 100 faults per instance and therefore have several

lower level nodes that can have a stuck at fault.

Investigation of BIST Techniques 92

Figure VI-19, Hierarchical Fault injection

Figure VI-20, Faults inserted to MSBFA

54+54 = 108 faults for each MSBFA figure V-20

54+54 = 108 faults for each FA figure V-21

3+3 = 6 faults for each HHandH gate figure V-23

16+16 = 32 faults for each HA figure V-22

5+5 = 10 faults for each HLandH gate figure V-24

Investigation of BIST Techniques 93

Figure VI-21, Faults inserted to FA

Figure VI-22, Faults inserted to HA

Figure VI-23, Faults inserted to HHandH gate

Figure VI-24, Faults inserted to HLandH

Investigation of BIST Techniques 94

 Hence, from this point on in the report, all the mentioned BIST techniques are evaluated

using hierarchical fault simulation.

VI.4.1 – BIST = 16 bit Rolling 0 + all 0s:
 Recalling from section VI.3.4, we had accomplished a 17 vector almost perfect BIST

pattern for fully testing the 8x8 multiplier for the 932 board level faults. Now to alleviate any

kind of criticism, we perform the same BIST simulation, for the 6008 hierarchical faults.

Unfortunately, as the fault grade reveals below, the BIST pattern can detect only 4903 of 6008

patterns with hierarchical faulting.

CURRENT STATUS

Total Faults : 6008
Unsimulated Faults : 0

RESULTS FROM LAST RUN

Run Time : 1700.0ns
Total Faults : 6008
 Untestable Faults : 0
 Testable Faults : 6008
 Undetected Faults : 1105 (18.39%)
 Detected Faults : 4903 (81.61%)
 Possible Faults : 0 (0.00%)
 Hyperactive Faults : 0 (0.00%)
 Hypertrophic Faults : 0 (0.00%)
 Oscillatory Faults : 0 (0.00%)
 HM Dropped Faults : 0 (0.00%)

 All the fault simulation data and results are in

" CD/MSc/Results/mult8x8/rolling0andall0/hierarsikSim/"

 The corresponding fault coverage plot and histogram are shown in figures VI-25 and VI-

26, as seen, although the detection is very efficient, the 17 vectors cannot suffice for a high

fault coverage for the 6008 faults. Consequently the fault coverage resides at 81.6 %, which is

a very unacceptable result, meaning 1 in every 5 of the circuit faults will pass the test

undetected. These disappointing results cause the proposed rolling 0 & all 0s to be removed

back to shelf and either new methods or effective improvements on this test must be seeked.

An observation of the remaining faults (which are in "MScCD/MSc/Results/

/mult8x8/rolling0andall0/hierarsikSim/hierarsikfaultlist.txt" in accordance with the consistent

filing) reveals that all the faults in HA, HHandH and HLandH are detected and that, the

undetected faults increase toward the significant bit adders.

Investigation of BIST Techniques 95

Figure VI-25, Histogram for hierarchical rolling0 + all 0s test

Figure VI-26, Fault coverage (%) for hierarchical rolling0 + all0s test

 As the first rescue to the reduced fault coverage, we try to improve the test with several

alternatives. Adding a "11…11" sequence is seen to have no effect on fault coverage, while a

rolling 1 sequence, described in table 16, provided very low improvement as shown in figure

VI-27.

Investigation of BIST Techniques 96

Table 16, Rolling 1 pattern

Figure VI-27, Histogram for rolling0 + all 0s test followed by a rolling1 test

 Figure VI-27 is a very demonstrative histogram as it displays how ineffective the second

test is compared to the first one. These and several other attempts all revealed similar

behavior and any kind of postfix on the rolling 0s and all0s test are verified to be ineffective.

Then, as a second hope of remedy, other modifications of the test are tried and fault

simulations for these tests also revealed slight to no improvements on fault coverage.

 For brevity, two of these proposed modifications that are tested are presented below and

the corresponding test data are referred from the CD.

Two Rolling 0s: A modification, suggested by Prof. Morling is applying two 8 bit wide

rolling 0 sequences in parallel to the a & b inputs of the multiplier. The suggested test set is

Rolling one:
00…001
00…010

•
•

10…000

16 bits per pattern

Total 16 patterns

Investigation of BIST Techniques 97

described in table 17. The test simulation data and resulting histogram and fault coverage

plots as well as simulation trace plot and simulation list are in:

" CD/MSc/Results/mult8x8/tworolling0s/hierarsiksim/"

Table 17,Two Rolling 0s pattern

The resulting fault grade is:
CURRENT STATUS

Total Faults : 6008
Unsimulated Faults : 0

RESULTS FROM LAST RUN

Run Time : 6500.0ns
Total Faults : 6008
 Untestable Faults : 0
 Testable Faults : 6008
 Undetected Faults : 729 (12.13%)
 Detected Faults : 5279 (87.87%)
 Possible Faults : 0 (0.00%)
 Hyperactive Faults : 0 (0.00%)
 Hypertrophic Faults : 0 (0.00%)
 Oscillatory Faults : 0 (0.00%)
 HM Dropped Faults : 0 (0.00%)

Rolling zero for a: Rolling zero for b:
11…110 11…110
11…101 "

• "
• "

01…111 "
11…110 11…101
11…101 "

• "
• "

01…111 "

• •
• •

11…110 01…111
11…101 "

• "
• "

01…111 "

8 bits per pattern

8 patterns of a for
each b pattern

Total 64 patterns

Investigation of BIST Techniques 98

 Although this result improves fault coverage to 87.9 %, it is still a very low fault coverage.

Further additions appended to this set such as a "11…11" sequence at the end seems to

improve the performance insignificantly.

Two Rolling 0s + all 1s for each b pattern: This second alternative was considered as the

first alternative does not completely cover the rolling 0s and all 0s sequence, as there are two

zeros per pattern except for all 0s and all 1s sequences. To cover the single rolling 0s pattern,

an all 1s 8 bit pattern is added at the end of each 'a' pattern – counting up to 9 patterns per b

pattern now – and a separate all 1s b pattern is also included. This new pattern is described in

table 18, and comparing with table 17, the additions are highlighted for easy observation.

Table 18,Two Rolling 0s + all 1s for each b pattern

Rolling 0 + all 1s for a: Rolling 0 + all 1s for b:
11…110 11…110
11…101 "

• "
• "

01…111 "
11…111 "
11…110 11…101
11…101 "

• "
• "

01…111 "
11…111 "

• •
• •

11…110 01…111
11…101 "

• "
• "

01…111 "
11…111 "
11…110 11…111
11…101 "

• "
• "

01…111 "
11…111 "

8 bits per pattern

9 patterns of a for
each b pattern

Total 81 patterns

Investigation of BIST Techniques 99

 Once again, this alternative is also observed to improve fault coverage insignificantly.

Moreover, as can be observed from the last 3 tables, the complexity of the generated pattern is

also becoming more complex with the new modifications and add-ups. As result of all these,

with great regret, we drop the rolling 0 test as the ultimate BIST proposal after the above

elaborations for hierarchical faulting.

VI.4.2 – Benchmark BIST = 16 bit Downcounter:

 Having observed that faulting level effects the determination of the BIST sequence, we

start with a 16 bit fully exhaustive downcounter test, which will serve us as a benchmark

when evaluating other strategies. One of the expectations of this fault simulation is to observe

that we won't be able to achieve 100% fault coverage with even full-exhaustive testing, as the

hierarchical design procedure might inherently involve some untestable nodes at this detailed

level. The fault simulation data and results are in:

" CD/MSc/Results/mult8x8/downcount/hierarsiksim/"

 The simulation list file:"CD/MSc/Results/mult8x8/downcount/hierarsiksim/

/downcountsimlist.txt" also presents a full simulation of 8x8 multiplier, where the radix are

displayed in signed decimal format for easy observation.

 As seen in the fault grade ("faultsummary.txt"), the fault coverage is 98.49% after all the

possible patterns are applied. Therefore, no test can exceed this value of fault coverage. This

also raises one counterargument against Cell Fault Model and Cell Fault Coverage (CFC)

described in [3]. It is suggested on [3,p. 947] that single stuck at fault simulation fault

coverage values are always larger than the CFC values. However, the CFC value of 99.40%

for the 8x8 CPA multiplier given on p. 945 is not even achievable with single stuck at model

with the primitives we use. As a conclusion, we disagree with [3] that CFC is always more

pessimistic than single stuck at model and we assert that this rather depends on the primitive

levels used in hierarchical faulting. As another inconsistency, the Verifault values used for

comparison in p. 947 are referred without presenting the used primitive level and therefore

should be regarded with caution. ⇐ This also reemphasizes the difficulty in comparing two

different published materials.

Investigation of BIST Techniques 100

 The histogram and fault coverage plots for the downcounter are shown in figures VI-28

and VI-29.

Figure VI-28, Histogram for hierarchical Exhaustive Downcounter test

Figure VI-29, Fault coverage (%) for hierarchical Exhaustive Downcounter test

 Once again as in previous downcounter test, huge amount of redundancies are observed in

both histogram and fault coverage plots. Interestingly, the 32897th sample once again peaks

Investigation of BIST Techniques 101

within all other samples. This points to a specific importance of 32897. sample once again.

We'll try several new scenarios to reduce these and will try to end up with an efficient,

effective, compact test set, which is easy to generate for BIST application. To gain insight to

which faults are undetected even with full exhaustive test, we include figure VI-30 which

demonstrates the locations of undetected faults.

Figure VI-30, Locations of undetected faults for downcounter test in 8x8 multiplier

 Interestingly, all the MSBFA adders have invariantly some undetected stuck at 0 faults,

which points to a redundancy in the MSBFA design. ⇐

VI.4.3 –BIST = Repetitive Patterns - Upcounter:

 Repetitive patterns have been widely used in testing of iterative logic arrays and have been

shown to provide excellent fault coverage with a small test set ([3],[5],[23]). For the

multiplier, the a and b inputs of multiplier are applied the same patterns for every k inputs

where k is the defined "repetition length". If we apply the same pattern to both lower and

higher 4 bits of one of the 8 bit inputs in our 8x8 multiplier, the repetition length of this

pattern is 4. To verify the effectiveness of repetitive patterns we apply a BIST scheme with a

repetition length of 4 and an 8 bit upcounter chosen as input pattern generator. The

corresponding input test vectors are then as shown in table 19.

Investigation of BIST Techniques 102

Table 19,Two Repetitive pattern with repetition length(k)=4,
and pattern generator Upcounter

 Hardware consideration for this test set can be finalized with a single 8 bit upcounter as:

b(3:0)&&a(3:0)

and

b(7:4)&&a(7:4)

 can be concatenated and the 8 bit counter outputs can be directly connected each of the 8

ports.

 With this pattern generation scheme, an excellent fault coverage is achieved with the mere

256 described vectors. As can be referred from:

"CD/MSc/Results/mult8x8/greekbist/hierarsiksim/"

 The fault grade reveals a 97.02 % fault coverage and as seen in the histogram and fault

coverage plots in figures VI-31 and VI-32, 228 cycles/patterns is sufficient for this coverage.

Both the histogram and plot show how effective the test set is, most of the patterns

contributing to the fault coverage.

a: b:
a(7:4) a(3:0) b(7:4) b(3:0)
0000 0000 0000 0000
0001 0001 " "
• • " "
• • " "

1111 1111 " "
0000 0000 0001 0001
0001 0001 " "
• • " "
• • " "

1111 1111 " "

• •
• •

0000 0000 1111 1111
0001 0001 " "
• • " "
• • " "

1111 1111 " "

4*4 bits per pattern

16 patterns of a
for each b pattern

Total 256 patterns

Investigation of BIST Techniques 103

Figure VI-31, Histogram for Repetitive upcounter with k=4

Figure VI-32, Fault coverage (%) for Repetitive upcounter with k=4

 Both the histogram and the plot also indicate two other outcomes. There are 2 very

ineffective regions right at the start of test, within the first 20 input test vectors and there is a

very effective input sequence starting around 127th input test vector. This redundancy

observation and peak information, will later be used to even further improve the test set.

Investigation of BIST Techniques 104

 This extremely promising result is the best of the achieved so far, and will be considered as

the limiting threshold for the following investigations.

VI.4.4 –BIST = 16 bit LFSR:

 Moving from deterministic techniques to pseudorandom techniques, we initialize one of

the major interests of the project, pseudorandom techniques as BIST for signed parallel

multiplier. As the first obvious case to scrutinize we use a 16bit LFSR with seed = x0001, as

the hypothetical pattern generation circuit. In order to be able to investigate several LFSR

variations, i.e. seed, taps, length, etc., we first wrote a Matlab script that produces the LFSR

output and creates an input stimulus file ("dofile in QuickFault") for the multiplier inputs. The

first example of the LFSR used with taps at flip-flops 16,5,3,2 for max-length PRBS, is

displayed in figure VI-33, with the variable names and indices used in the Matlab script.

Figure VI-33,The emulated LFSR by the Matlab Script

The generated Matlab script and the written function bin2hex are in appendix E-2 and also

can be referred from “CD>MSc/DesignFiles/matlab”. The generated output stimuli for

different seeds are in "CD/MSc/Results/mult8x8/LFSR/LFSR16bit/seedxxxx" directories.

 With the first seed = x0001, we performed fault simulation for the 8x8 multiplier. The

simulation data and results are in: “CD/MSc/Results/mult8x8/LFSR/LFSR16bit/seed0001/”.

With the full exhaustive simulation, the fault coverage reached 98.98%. Unexpectedly, the

fault coverage settled above 98.49 %, the value achieved by full exhaustive downcounter test.

There is no rational explanation to this as the same vectors are applied with only a different

Din

Qint(16)
F-F

16

Q(16)

seed(16)
Qint(15)

Q(15) Q(9)

Qint(5)
F-F

5

Q(5)

seed(5)
Qint(4)

F-F

4

Q(4)

seed(4)
Qint(3)

F-F

3

Q(3)

seed(3)
Qint(2)

F-F

2

Q(2)

seed(2)
Qint(1)

F-F

1

Q(1)

seed(1)
CK

Q(8)

to B(7:0) to A(7:0)

Investigation of BIST Techniques 105

sequence. There are no sequential faults in the combinational circuit and this discrepancy is

attributed to the software. The histogram and plot are as in figures VI-34 and VI-35.

Figure VI-34, Histogram for 16 bit LFSR with seed=x0001

Figure VI-35, Fault coverage (%) for 16 bit LFSR with seed=x0001

Investigation of BIST Techniques 106

 As seen in the fault coverage plot, the curve is almost like a step function with almost all

faults detected just at the start of the test. We include two more cursors in the histogram in

order to demonstrate the cycles with high detection after the hyperactive start phase. These

will be used in the determination of seeds for the LFSRs. In order to compare the result with

the repetitive upcounter with k=4 in previous section, we zoom at the fault coverage plot to

the initial jump, and determine at which cycle fault coverage reaches 97.02%. The zoomed

fault coverage plot is shown in figure VI-36.

Figure VI-36, Zoomed Fault coverage (%) for 16 bit LFSR with seed=x0001

 As seen, with just 157 cycles, the fault coverage reaches 97.2%2. We also include a

zoomed portion of histogram in figure VI-37 to demonstrate the initial hyperactive phase and

to point some of the redundancies in the test. As seen in the histogram, there is a long inactive

phase right after start, and then the hyperactivity restarts, which is also indicated by the initial

flat region in the zoomed fault coverage curve in figure VI-36. Moreover, the full histogram

in figure VI-34 reveals two very important cycles in the detection after the initial phase, as the

cursors show, these are cycles 8472 which detects 9 faults and 32434, which detects 7 faults,

making the peaks in the almost saturated region of detection. A good methodology for seed

determination might then be starting from these values as seed and collapse the initial

hyperactive regions with the late peaks.

Investigation of BIST Techniques 107

Figure VI-37, Zoomed Histogram for 16 bit LFSR with seed=x0001

 As the LFSR lacks the all 0 pattern, we also applied this pattern to the end of test and it is

seen to have no effect on fault detection. Therefore, application of DeBrujn counter is not

needed to improve performance.

 As stated, the two late peaks are used to determine an effective seed for the LFSR. First of

these peaks is at cycle 8472, which detects 9 faults. To determine the corresponding LFSR

value at this cycle, we determine the simulation time at this cycle and we refer to the

simulation list file in:

“CD/MSc/Results/mult8x8/LFSR/LFSR16bit/seed0001/LFSR16bitsimlist.txt”

The corresponding LFSR value is then applied as the seed. For 8472nd cycle, as we strobe

the outputs at +90ns after application of each vector:

Simulation time = 8472*100 – 10 = 847190 ns

And from the simlist file:

2 Hence this is 97.2% rather than 97.02% of previous test, so even smaller cycles can achieve 97.02%

Investigation of BIST Techniques 108

•
•

846990.0 A9 61 DF09
847090.0 D4 B0 0DC0
847190.0 EA 58 F870
847290.0 F5 2C FE1C
847390.0 7A 96 CD7C

•
•

Time(ns) ^/b(7:0)

 ^/a(7:0)

 ^/product(15:0)

 seed = B&&A = EA58

Seed = xEA58: With this new determined seed, the performed fault simulation data and

results are in: “CD/MSc/Results/mult8x8/LFSR/LFSR16bit/seedEA58/”. The data is not

included in the report for brevity except for the zoomed fault coverage plot, which is in figure

VI-38.

Figure VI-38, Zoomed Fault coverage (%) for 16 bit LFSR with seed=xEA58

 As seen in the fault coverage figure, 97.2% fault coverage is achieved with only 134

patterns and the flat region of the previous fault coverage curve is not observed any more. The

Investigation of BIST Techniques 109

histogram plot, which can be referred from the CD shows no new late peaks, except for the

obviously expected one in 32434 – 8472 +1 = 23963. cycle, which is displayed in the

histogram plot.

 Hence the other peak is at 32434th cycle corresponding to a simulation time of:

32434*100 – 10 = 3243390ns

The corresponding seed from the simulation list is x8080.

Seed = x8080: The fault simulation data and results for seed x8080 are in:

“CD/MSc/Results/mult8x8/LFSR/LFSR16bit/seed8080/”. The fault coverage curve reveals

97.2% fault coverage in 153 cycles, which can be referred from the CD. Although still

slightly better from the x0001 seed, this seed does not provide as an efficient fault detection as

seed xEA58.

 This concludes the investigation for 16 bit LFSR and we move forward to observe fault

coverage behavior of LFSR used as a repetitive pattern generator as BIST.

VI.4.5 –BIST = 8 bit LFSR – Repetitive Pattern:

 In the previous two sections we have observed two very efficient techniques; in section

VI.4.3 we have seen how repetitive patterns are effective in fault detection with only a small

number of test vectors while in section VI.4.4 we have seen how pseudorandom techniques

improve fault detection compared to the deterministic techniques. In this section we try to

combine the two techniques to improve performance even further. We use an 8 bit LFSR to

generate input patterns for a and b inputs of multiplier. The pattern repetition length is 4, and

therefore, a(3:0) and a(7:4) have the same inputs: the rightmost 4 output bits of the LFSR and

similarly, b(3:0) and b(7:4) have the leftmost 4 bits of LFSR output.

 We once again use a similar Matlab script to generate the dofile for stimuli with

different seed and taps. The generated Matlab script is in appendix E-3 and also can be

referred from “CD>MSc/DesignFiles/matlab”. The generated output stimuli for different

seeds are in " CD/MSc/Results/mult8x8/LFSR/LFSR8bit/seedxx" directories. The schematic

representation of the Matlab script, with the labeled Matlab variables is in figure VI-39. As

Investigation of BIST Techniques 110

can be deduced from the figure, the taps are at flip-flops 8,6,5 and 1 and the below case

represents a seed of “01111011”.

Figure VI-39,The emulated 8 bit LFSR by the Matlab Script

 With this repetition length 4, the maximum number of different patterns = 24 * 24 = 28

minus the all 0 forbidden case of LFSR, summing up to total of 255 patterns, which is already

very compact for a 16 input circuit test. We start with a trivial seed of x01 and then follow the

'late peaks' procedure discussed in previous section.

 Seed = x01: The first fault simulation with seed x01 is performed as a start point to

determine an effective seed. The simulation data and results are in:

"CD/MSc/Results/mult8x8/LFSR/LFSR8bit/seed01/". As seen in the fault coverage plot in

figure VI-40, 97.12% fault coverage is achieved in 228 cycles, which is more than 70% worse

than 16 bit LFSR with seed xEA58, however, the BIST hardware is reduced to half. The

histogram plot is displayed in figure VI-41 and a few informative observations can be

deduced. Firstly, as in the 16 bit LFSR case, the 00…01 seed causes a redundant period right

after the start of test, secondly, the histogram indicates another redundant region between

cycles 60 and 70. Afterwards, a strong burst of detection starts around cycle 75, which might

be a good starting point for the test as well as another significant peak – yet not a long burst –

in 166th cycle. The patterns corresponding these two cycles are good candidates of possible

effective seeds.

sin

clr_L
Qint(8)

F-F

8

Q(8)

seed(8)
Qint(7)

F-F

7

Q(7)

seed(7)
Qint(6)

F-F

6

Q(6)

seed(6)
Qint(5)

F-F

5

Q(5)

seed(5)
Qint(4)

F-F

4

Q(4)

seed(4)
Qint(3)

F-F

3

Q(3)

seed(3)
Qint(2)

F-F

2

Q(2)

seed(2)
Qint(1)

F-F

1

Q(1)

seed(1)
CK

b(3:0)
&

b(7:4)

a(3:0)
&

a(7:4)

Investigation of BIST Techniques 111

Figure VI-40, Fault coverage (%) for 8 bit LFSR with repetition length, k =4 and seed=x01

Figure VI-41, Histogram for8 bit LFSR with repetition length, k =4 and seed=x01

 Once again from the simulation list, 75th cycle corresponds to 7490ns and 166th cycle

corresponds to 16590 ns. The corresponding b&&a values are 77&&BB and BB&&77. Thus,

the corresponding seeds are 7B and B7.
•
•

7390.0 FF 66 FF9A
7490.0 77 BB DFED
7590.0 33 DD F907

•
•

16490.0 66 FF FF9A

Investigation of BIST Techniques 112

16590.0 BB 77 DFED
16690.0 DD BB 096F

•
•

 Time(ns) ^/b(7:0)
 ^/a(7:0)

 ^/product(15:0

 Seed = x7B: The simulation results and data for seed = x7B are in:

"CD/MSc/Results/mult8x8/LFSR/LFSR8bit/seed7B/". The fault coverage plot shown in

figure VI-42 reveals 97.2% fault coverage in just 154 cycles and 97.1% fault coverage in just

109 cycles.

Figure VI-42, Fault coverage (%) for 8 bit LFSR with repetition length, k =4 and seed=x7B

 As can be seen in the figure, the fault coverage is almost saturated after around 40 cycles

and there is almost no redundancy as there are no flat regions in the ascending part of the

curve, which can be verified from the histogram plot in the CD. This test reveals very good

test coverage with minimal hardware and test complexity.

 Seed = xB7: The simulation results and data for seed = xB7 are in:

"CD/MSc/Results/mult8x8/LFSR/LFSR8bit/seedB7/". The fault coverage plot shown in

figure VI-43 reveals an excellent 97.0% fault coverage in just 82 cycles and 97.24% fault

coverage in 230 cycles.

Investigation of BIST Techniques 113

Figure VI-43, Fault coverage (%) for 8 bit LFSR with repetition length, k =4 and seed=xB7

 Hence, these two last experiments are extremely efficient and they have comparable if not

better results to 16 bit LFSR with seed xEA58 and either of them can be the implementation

choice if LFSR is the final BIST decision.

VI.4.6 –BIST = 16 bit CA:

 As described in section III, CA are the least known of the two described PRBS generation

techniques and have preferable more random characteristics compared to LFSRs despite the

higher hardware cost. In this section we scrutinize several CA with different seeds as an

alternative to BIST implementation. Once again we generate a Matlab script to produce the

stimulus of a hypothetical CA. However, although in the LFSR case the matlab

implementation is simply based on modulo 2 summation of tap values and then shifting, the

CA computation is a little bit more involved, yet mathematically perfectly described. The

schematic model for the matlab implementation is as shown in figure VI-44. The figure

displays a CA with 150 cells at 1st and 15th locations, which is an appropriate combination for

max-length sequence generation. The details of mathematical computation of CA output is

described in section III, pages 10-12, however a slight modification to the matrix

manipulations is performed as the Q outputs are represented as a row vector rather than a

column vector in matlab. However, the equations hold as the tridiagonal matrix TT = T.

Investigation of BIST Techniques 114

Figure VI-44, Matlab Emulated 16 bit CA circuit

The generated Matlab script is in appendix E-4 and also can be referred from

“CD>MSc/DesignFiles/matlab”. The generated output stimuli for different seeds are in

"CD/MSc/Results/mult8x8/CA/CA16bit/seedxxxx" directories.

 Seed = x0001: Having already become the general initiation point, we once again start

with a seed of x0001 for the CA. The simulation data and results are in:

"CD/MSc/Results/mult8x8/CA/CA16bit/seed0001/", the simulation list is saved in binary

radix to demonstrate the nonexistent shifting property in CA contrary to the LFSR case. The

full exhaustive simulation revealed a 99.12% fault coverage – once again inconsistent with

the other full exhaustive cases for an indeterminate reason! – and the fault coverage curve is

once again like a step function, very much like desired. However the zoomed fault coverage

plot in figure VI-45 reveals the fault coverage reaches 97.2% in 159 cycles, which is worse

than all the LFSR cases. The plot shows once again the characteristic property of seed x0001,

a flat region right after the start. This plot is very similar to the x0001 case of the LFSR. The

histogram shown in figure VI-46 reveals a superior detection at the start as usual however,

there is a very strong spread within the first 10K. There are also 2 strong late peaks, one in

cycle 34569 and the other in cycle 55870, each detecting 7 faults, which will be our next

starting points. Once again referring to the simulation list, the 34569th corresponds to a seed

of x8080 and 55870th cycle corresponds to a seed of x534F.

Qint(16)
F-F

16

Q(16)

seed(16)
Qint(15)

Q(15) Q(9)

Qint(14)
F-F

15

Q(14)

seed(15) Qint(4)
F-F

4

Q(4)

seed(4)
Qint(3)

F-F

3

Q(3)

seed(3)
Qint(2)

F-F

2

Q(2)

seed(2)
Qint(1)

F-F

1

Q(1)

seed(1)
CK

Q(8)

to B(7:0) to A(7:0)

0

0

150
cell

90
cell

90
cell

90
cell

150
cell

90
cell

Investigation of BIST Techniques 115

Figure VI-45, Fault coverage (%) for 16 bit CA with seed=x0001

Figure VI-46, Histogram for 16 bit CA with seed=x0001

 Seed = x8080: The simulation data and results for this seed are in:

"CD/MSc/Results/mult8x8/CA/CA16bit/seed8080/". Fault coverage curve reveals that 97.2%

fault coverage is achieved in 138 cycles, which though very good cannot overperform LFSR.

The redundant regions are removed with the seed selection but histogram still shows a strong

Investigation of BIST Techniques 116

spread up to 5K. The significant peak at cycle 21302 is exactly the peak that corresponds to

the peak at 55870 for seed = x0001.

 Seed = x534F: The simulation data and results for this seed are in:

"CD/MSc/Results/mult8x8/CA/CA16bit/seed534F/". The fault coverage shown in figure VI-

47 reveals 97.2% fault coverage in just 122 cycles, which is the best achieved result so far. the

histogram plot shown in figure VI-48 produces a new peak at cycle 6052 with 6 faults. From

simulation list, this corresponds to a seed of D5D5, which is the next candidate for the

optimal seed.

Figure VI-47, Fault coverage (%) for 16 bit CA with seed=x534F

Figure VI-48, Histogram for 16 bit CA with seed=x534F

Investigation of BIST Techniques 117

 Seed = xD5D5: The simulation data and results for seed = xD5D5 are in:

"CD/MSc/Results/mult8x8/CA/CA16bit/seedD5D5/", it revealed 97.2% fault coverage in 127

cycles as can be seen from the plots in CD, which is the second best result achieved after

16bit CA with seed x534F.

 With these experiments we conclude the investigation of 16 bit CA as BIST, and achieve

slightly better results compared to LFSR at some specific cases, however as the general

engineering practice the trade-off is in hardware cost. Therefore, there is no single decision

that can be made at this point that can state one scheme is "better" than the other one. These

relations are based on either performance or cost.

VI.4.7 –BIST = 8 bit CA – Repetitive Pattern:

 Similar to the LFSR case, we also investigate the effectiveness of repeated patterns

when CA are chosen as the pattern generator circuit. We once again use a repetition length of

4 and consider an 8 bit CA for BIST circuit. We make use of the Matlab script to emulate the

outputs of the 8 bit CA with 150 cells located at 2nd and 3rd positions, as shown in appendix E-

5 and included in “CD>MSc/DesignFiles/matlab”. The generated output stimuli for different

seeds are in "CD/MSc/Results/mult8x8/CA/CA8bit/seedxx" directories.

 Similar to figure VI-39, the Q(1:4) outputs are input to both b(3:0) and b(7:4); and Q(5:8)

is input to a(3:0) and a(7:4). As usual we start with a seed of x01.

 Seed = x01: The simulation data and results are in:

"CD/MSc/Results/mult8x8/CA/CA8bit/seed01/". As can be seen from the fault coverage plot,

it achieves 97.1% fault coverage in 139 cycles and 97.2% fault coverage in 179 cycles. The

results are not better than the LFSR with seed x7B, but as the initial starting point, it gives

sufficient information for seed determination. The histogram, shown in figure VI-49 is quite

spread and there are several redundant regions. Moreover, the spread consists of few bursts at

various locations. Some of the significant cycles are, cycle 50 with 41 detected faults, cycle

60 with 64 detected faults, cycle 138 with 7 faults and cycle 180 with 9 faults. There is a very

spread burst between cycles 60-100, starting at 57th cycle. Therefore, one of the good starting

points might be 57th cycle as it will cover up to 100 burst at the hyperactive startup phase. In

the same fashion, starting from cycle 138 will also cover the cycle 180 peak. As can be

Investigation of BIST Techniques 118

deduced, we do not take any precaution for cycle 50, under the hope that, starting later than

50 might have the chance to cover the faults detected by 50 with another vector, thus reducing

any adverse effect leaving 50 uncovered might cause. Nevertheless, our expectation is, if

cycle 50 pattern cannot be compensated with the new start points, we'll observe a peak at

255 + 50 – 57 + 1 =249th cycle for 57th cycle as start point

and

305-138 + 1 = 168th cycle for 138th cycle as start point

Figure VI-49, Histogram for 8 bit CA with seed=x01

 Once again, referring to the simulation list file, the seed corresponding tom57th cycle is:

x6D and to 138th cycle is: xAB.

 Seed = x6D: The simulation data and results for seed = x6D is in:

"CD/MSc/Results/mult8x8/CA/CA8bit/seed6D/". The fault coverage plot in figure VI-50

shows it achieves 97.2% fault coverage in just 124 cycles, while reaches 97.0% in 123 cycles.

It can be verified that the 124 cycles result is the best achieved so far, however, seed=x7B

exceeds 97.0% before 109th cycle. Therefore, we face the controversy once again, that

different BIST strategies perform better for different target fault coverages. ⇐

Investigation of BIST Techniques 119

Figure VI-50, Fault coverage (%) for 8 bit CA with seed=x6D

 The histogram plot that can be accessed from the CD shows a very high detection

efficiency, with the highest peak at 124th cycle – where the fault coverage jumps from 97.0%

to 97.2% -, which was to be expected as the highest late we had considered in previous

seed=x01 case was at 180th cycle. To verify this, 57+124-1 = 180, shows the 180th peak is the

124th peak of this simulation.

 Seed = xAB: The simulation data and results for seed = xAB is in:

"CD/MSc/Results/mult8x8/CA/CA8bit/seedAB/". As can be verified from the fault coverage

plot in figure VI-51, the fault coverage reaches 97.19% in 125 cycles and 97.1% in just 110

cycles.

Investigation of BIST Techniques 120

Figure VI-51, Fault coverage (%) for 8 bit CA with seed=xAB

 This concludes our investigation of different BIST techniques and in the next subsection,

we discuss the results of these techniques.

VI.4.8 – Summary of BIST Techniques:

As a brief sum up, it is observed that, LFSR and CA pseudorandom techniques perform

better than deterministic techniques, due to their almost random nature of pattern sequence.

The fault coverage builds up much quickly. In regard of this opinion, it is expected that CA

perform better than LFSR as they are free from the shifting behavior of LFSRs, however, very

slight improvements if any are observed with application of CA and therefore it is not very

feasible to incur the additional hardware cost of CA for this insignificant improvement. On

the contrary, the application of repetitive patterns is seen to provide excellent fault coverage

with only a small set test vectors. As thoroughly scrutinized, the 16bit full exhaustive patterns

are not significantly better than 8 bit repetitive patterns for both LFSRs and CA with the test

length significantly reduced.

 Yet, it is not very obvious which BIST scheme is more appropriate for implementation. To

have an overall view of the results, we repeat the outcomes of each section in here in table 20.

Although there is no such measure that can be induced to state one method is 'better' than the

others, one of the evident observations is, repetitive patterns with only 8 bit pattern generators

are almost equally efficient as 16 bit pattern generators. Therefore, the BIST choice can safely

be an 8 bit pattern generator. Among the 8 bit generators, upcounter is out of scope and the

choice is between CA and LFSRs. The BIST implementation can be either LFSRs with seeds

Investigation of BIST Techniques 121

x7B or xB7, or CA with seeds x6D and xAB. However, due to the additional hardware cost of

CA, the probable choice will be between the two LFSRs.

BIST method Fault Coverage vs. # of patterns
8 bit Upcounter Using Repetitive patterns with k=4 97.02% with 228 patterns
16 bit LFSR with seed=x0001 97.2% with 157 patterns
16 bit LFSR with seed=xEA58 97.2% with 134 patterns
16 bit LFSR with seed = x8080 97.2% with 153 patterns
8 bit LFSR using repetitive patterns with k =4 and seed=x01 97.12% with 228 patterns
8 bit LFSR using repetitive patterns with k =4 and seed=x7B

97.2% with 154 patterns
97.1% with 109 patterns

8 bit LFSR using repetitive patterns with k =4 and seed=xB7

97.0% with 82 patterns
97.24% with 230 patterns

16 bit CA with seed=x0001 97.2% with 159 patterns
16 bit CA with seed=x8080 97.2% with 138 patterns
16 bit CA with seed=x534F 97.2% with 122 patterns
16 bit CA with seed=xD5D5 97.2% with 127 patterns
8 bit CA using repetitive patterns with k =4 and seed = x01 97.1% with 139 patterns

97.2% with 179 patterns
8 bit CA using repetitive patterns with k =4 and seed = x6D 97.2% with 124 patterns

97.0% with 123 patterns
8 bit CA using repetitive patterns with k =4 and seed = xAB 97.19% with 125 patterns

97.1% with 110 patterns
Table 20, Summary of BIST Results

 Before implementing the BIST generator, being very cautious, we first decide to

implement the output data compressor, with the initial and hopefully last choice of a signature

analyzer in order to make sure the data compression stage does not change the effectiveness

relation between the investigated pattern generation schemes.

VI.5 – MISR IMPLEMENTATION FOR BIST

 Having finalized the investigation for pattern generation, we move to output data

compression. Signature analysis is the generally applied technique in data compression and

has been our first choice of implementation. The regular multiplier structure suggests that it is

not probable to have a single stuck at fault that causes two distant separate multiplier outputs

change at the same time and therefore we expect a very low fault masking probability with

signature analyzer. The signature analyzer is designed as described in design entry section and

synthesized into eddm-schematic. The synthesized 16 bit signature analyzer is in:

" CD/MSc/DesignFiles/Renoir/Eddm_sch/signalyzer_16_10110111101100011/"

 The generated schematic for signature analyzer is shown in figure VI-52 and can be

accessed from "CD/MSc/Results/Sign16/Sign16sch.gif".

Investigation of BIST Techniques 122

Figure VI-52, Generated schematic for 16 bit signature analyzer

 As described in design entry section, the signature analyzer is assured for correct

functionality in VHDL level, then it is combined with the multiplier circuit at one higher level

into MultSign8x8, which is then synthesized into eddm-schematic as in:

"CD/MSc/DesignFiles/Renoir/Eddm_sch/multsignnxn_10110111101100011_8/"

The schematic for MultSign8x8 is as shown in figure VI-53 and in:

"CD/MSc/Results/MultSign8x8/multsignsch.gif".

Figure VI-53, Generated schematic for 16 bit signature analyzer + 8x8 multiplier

Investigation of BIST Techniques 123

 Now, in order to observe how much fault masking occurs with signature analysis, we used

the stimulus for 8 bit LFSR with seed=x7B to drive the multiplier. We have also included 3

signature analyzer signals as shown in figure VI-54.

Figure VI-54, Signature analyzer input signals

 As also shown in figure VI-53, we used the same fault dictionary to generate the same

faults in the multiplier only to be able to make a comparison between the two cases. Clearly,

we only strobed the single bit signature analyzer output, 'sout' to detect any faulty output. As a

result of the fault simulation, 96.80% fault coverage is achieved by observing only the

signature analyzer output, which is very slightly lower than the result we achieved by

observing all 16 multiplier outputs. All the simulation data and results are in:

"CD/MSc/Results/MultSign8x8/", and they are not included in the report for brevity.

However, we show the histogram in figure VI-55, as it bears an important information about

the minimal effective test set.

Figure VI-55, Histogram for MultSign8x8, with 8 bit LFSR with seed=x7B as input

clr_L

CK

50 ns 100 ns

Scan

Investigation of BIST Techniques 124

 As seen in the histogram, all the faults are detected in the first 111 cycles, except for only 1

at cycle 226, which has a contribution: 1/6008 = 1.66*10-4 to the total fault coverage.

Therefore we can achieve the same fault coverage with only 111 patterns.

 This immediately concluded our output compression investigation due to the excellent

results, moreover the above outcome also suggested we use seed=x7B LFSR as the pattern

generation implementation of choice.

VI.6 –LFSR IMPLEMENTATION FOR BIST

 As the last and most elaborated portion of the BIST circuitry, we designed the LFSR as

described in the design entry section. We then synthesized the parameterized LFSR into an 8

bit LFSR with seed x7B and taps at 1,5,6 and 8, which corresponds to the LFSR shown in

figure VI-39. The synthesized LFSR is in:

"CD/MSc/DesignFiles/Renoir/Eddm_sch/lfsr_8_01111011_10001101/"

 The generated schematic for the LFSR is shown in figure VI-56 and can be accessed from

" CD/MSc/Results/LFSR8/LFSR8sch.gif".

Figure VI-56, Generated 8 bit LFSR

 Finally, we connect all the 3 parts of the BIST + multiplier circuit to achieve the final

multiplier circuit with included input pattern generation and output compression. The Renoir

design can be referred from appendix B-4, which is the implementation of blocks as described

in repetitive pattern LFSR pattern generation and output compression phases. The final

synthesized design is in: "CD/MSc/DesignFiles/Renoir/Eddm_sch/lfsrmultsignnxn_

10110111101100011_8_10001101_01111011_8/

 The top-level schematic for the complete design is shown in figure VI-57 and can be

accessed from: " CD/MSc/Results/LFSRMultSign8x8/LFSRMultSignsch.gif"

Investigation of BIST Techniques 125

Figure VI-57, Generated schematic for complete design for mult8x8

 In order to assure our software based observations match with the hardware

implementation, we perform fault simulation for the final circuit by applying only the clk, clr

and scan signals as the stimuli, as in figure VI-54. We only strobe the sout output of the

signature analyzer and with the 6008 faults injected into the multiplier as shown in figure VI-

57, we achieve a 97.07% fault coverage as shown in figure VI-58. Once again, the results are

not exactly the same as the 2 previous simulations performed under the same scheme. In order

to alleviate any suspicion about any flow in the experiment, we wrote a small UNIX script

that takes the two simulation list files and compares the input output fields for the files, which

is in "CD/MSc/Results/convcomp". The resultant compare as shown in:

"CD/MSc/Results/compresult" reveals, the simulation stimuli are exactly the same throughout

the simulation, therefore, the slight difference in fault coverage measurements is attributed to

the CAD tool again.

Investigation of BIST Techniques 126

Figure VI-58, Fault coverage (%) for LFSRmultSign8x8

 As one last step to the investigation, we include the BIST circuitry in the fault simulation

and inject hierarchical faults to the LFSR and the signature analyzer, however, as the D-flip-

flop primitives in QuickFault have one inverted output as well as the noninverted ones, we

have several untestable pins in the design, which must be nofaulted. Moreover, the set and

reset pins of the flip-flops are also problematic one for each flip-flop is hardwired or dangling.

Nevertheless, the fault injection increases total fault count to 8016, with 6008 faults in

multiplier, 448 in LFSR and 1560 in signature analyzer. The final fault grade, which is in:

"CD/MSc/Results/LFSRMultSign8x8/allfaulted/faultsummary.txt" reveals 96.95% fault

coverage, which is very close to the only multiplier case.

 This finally concludes the whole BIST investigation, we observe very satisfactory results

with LFSR as pattern generator and signature analyzer as output data compressor. As the next

step in the project – which is now more of curiosity due to the repetitive patterns – we deploy

larger multipliers and perform fault simulation with the same amount of input test vectors,

using repetitive patterns with a repetition length of 4.

VI.7 –16X16 MULTIPLIER WITH BIST

 We move from the 8x8 multiplier to 16 by 16 multiplier as the new circuit to be tested with

repetitive patterns. As with the circuit size, we expect the gate count to quadruple and thus we

Investigation of BIST Techniques 127

expect to have 4 times as much faults on the circuit as the 8x8 multiplier. The synthesized

LFSRmultSign16x16 is in

"CD/MSc/DesignFiles/Renoir/Eddm_sch/lfsrmultsignnxn_16_1000101000101010100010100

00000101_16_10001101/" and the new generated schematics for 16x16 multiplier, 32 bit

signature analyzer and top level circuit are shown in figures VI-59 to VI-61, which can be

also accessed from "CD/MSc/Results/LFSRMultSign16x16/"

Figure VI-59, Generated 16x16 schematic

Figure VI-60, Generated 32 bit signature analyzer

Investigation of BIST Techniques 128

Figure VI-61, Top level circuit

 Here we observe the advantage of making separate symbols for each block, as the

component counts increase, this turns out to be only feasible way to distinguish between

blocks in the schematic. Hence there is no new schematic for the LFSR as we still use a single

8 bit LFSR for repetition length 4 patterns.

The simulation data and the results for the fault simulation of 16bit top level circuit are in

"CD/MSc/Results/LFSRMultSign16x16/" and as seen in the grade and fault list, the total

number of faults exploded up to 26456, which is almost 4 times the 8x8 multiplier faults.

 We perform fault simulation, the same way we have done for 8x8 multiplier, with

repetitive PRBS with k=4, and obviously now all the 4 bit b inputs b(15:12), b(11:8) , b(7:4) ,

b(3:0) are connected to LFSR output (1:4) and all the 4 bit a inputs a(15:12), a(11:8) , a(7:4) ,

a(3:0) are connected to LFSR output (5:8). As shown in figure VI-62, we achieve an

unexpectedly good result. The fault coverage reaches 97% in just 57 cycles and it climbs up to

98.83% in the whole test. This extremely satisfactory result reveals an excellent conclusion,

the repetitive patterns provide very high fault coverage with a fixed number of patterns

independent of the size of the multiplier. ⇐

Investigation of BIST Techniques 129

Figure VI-62, Fault coverage (%) for LFSRmultSign16x16

 Despite it looks counterintuitive, the fault coverage even improved as we increased

multiplier size, when compared to figure VI-58 of 8x8 multiplier.

VI.8 –LARGER MULTIPLIERS WITH BIST

 To verify our observations we increase the circuit size to a 32x32 multiplier, still with the 8

bit single LFSR for input test generation. The synthesized circuit is in:

"CD/MSc/DesignFiles/Renoir/Eddm_sch/lfsrmultsignnxn_32_1000000010001000000010001

00010001000000010001/". Once again the faults are expected to quadruple over 16x16

multiplier and as can be verified from "CD/MSc/Results/LFSRMultSign32x32/", the total

fault count increased to 111128.

The new generated schematics for 32x32 multiplier, 64 bit signature analyzer and top level

circuit are shown in figures VI-63 to VI-65.

Investigation of BIST Techniques 130

Figure VI-63, Generated 32x32 multiplier schematic

Figure VI-64, Generated 64 bit signature analyzer

Investigation of BIST Techniques 131

Figure VI-65, Top level circuit schematic for 32 bit multiplier

 Unfortunately, with this much faults, the fault simulation could not complete and crashed

due to insufficient memory. The post synthesis simulation results could be obtained, and can

be referred from CD for concordance, but no fault simulation data except for fault list is

available.

 We have also designed a 24x24 multiplier and synthesized into eddm-schematic, but the

fault simulation could only continue for 112ns, which is it crashed while evaluating the 2nd

input pattern. Therefore, we ere unable to achieve any results beyond 16x16 multiplier.

 Thus, we conclude our investigation for BIST and reach the conclusions repeated a few

times within the text. PRBS techniques, in combination with repetitive patterns are seen to be

unbelievably efficient in fault detection, regardless of the size of the multiplier. Signature

analyzer, reduces the output data volume to a single bit, yet incurs insignificant loss in fault

detection. CA, though the more random output nature promises significant enhancements, is

not seen to be worth sacrificing the additional hardware cost for the very slight to no

improvement in fault detection.

Workplan 132

VII-WORKPLAN

Figure VII-1, Milestoned Workplan

Background Reading and Literature Search

15th June 10th July 22nd July

Design of
parameterized
Multiplier

Convert
VHDL into
EDDM

30th July 15th July

Learn QuickFault

Learn Autologic

28th Aug

VHDL level
simulation

Manually
edit symbols

Investigate BIST
techniques

Design of BIST
and larger
multipliers

VHDL level
simulation

Convert
VHDL into
EDDM

Fault Simulation

Report Write

5th Sept

6th Sept

Project
Specification
Done

Start of
project

Parameterized
Multiplier
Complete

Synthesis
requirement
resolved

Input Pattern
Investigation
complete

Report
Hand in Blocks

converted to
eddm

Jun 01 Jul 01 Aug 01 Sep 01

Conclusions 133

VIII-CONCLUSIONS

 In this project we have designed a parameterized complete multiplier + BIST system,

including the parameterized signed parallel CPA multiplier, parameterized LFSR for input

pattern generation and parameterized signature analyzer for output data compression. Several

input pattern generation techniques with very common and original methodologies proposed

are investigated. Exhaustive pattern generation with board level fault modeling revealed

100% fault coverage at around 50% of both upcounter and downcounter pattern generators,

interestingly, both with exactly 32897 vectors. The observation that, the primary inputs are

reduced to half number after the bit product generation and a rolling 0 tests all HHandH gates’

faults led to the application of a rolling 0 as input test set and 98.07 % fault coverage achieved

with just 16 cycles. Further observing that the HLandH gates’ all undetected faults can be

tested with an all 0s pattern, led to a rolling 0s + all 0s test set which revealed a prominent

100 % fault coverage with 17 patterns.

 Board level faulting being too abstract, we moved to hierarchical faulting and to the other

extreme; the hierarchical primitives are chosen as the MGC_Genlib primitives, including only

AND, OR, INV gates and registers for the designed blocks. With this level of hierarchy, the

fault detection of rolling zeros and all 0s dropped down to 81.61%, and modifications such as

two rolling 0s applied simultaneously didn’t alleviate the downgrade. As a benchmark for the

rest of the simulations, a full exhaustive testing with downcounter is performed hierarchically

and although all possible 216 input combinations are applied to the multiplier, the fault

coverage percentage reached to 98.48% rather than 100%, due to the probable logic

redundancies in the unoptimized, unflattened hierarchical design. As of importance to note,

most of the undetected faults in hierarchical faulted circuits resided in the modified MSB

FA’s for the signed multiplier, hinting a probable inherent redundancy in this modification.

Yet, for a plausible statement, an unsigned multiplier must be simulated in the same scheme,

as the high fault population in the MSB might be due to less frequent occurrence of the

propagation of partial sums up to the MSBs in both multipliers. However, signed multiplier,

making use of the MSB only when both inputs are most negative seems to bear a correlation

with this although there is no theoretical foundation. Another observation, which supports this

Conclusions 134

hypothesis has been, the 32897. pattern in the upcounter stimulus, which was seen to be the

last effective pattern, is 3289610 = 10000000 100000002.

 After setting up the benchmark for hierarchical faulting, a non-exhaustive upcount test

using repetitive patterns with repetition length=4 is applied, and a 97.02 % coverage with only

256 cycles is achieved – as the fault coverage for full exhaustive test is 98.49 %, this might be

considered as a 97.02 %/ 98.49 % fault coverage for the actual functional gates for the

multiplier-. PRBS generation schemes are extensively investigated and a successful seed

determination technique is demonstrated. For exhaustive testing 16 bit LFSRs and CA are

applied for different seeds and better fault coverages are achieved in less than 256 cycles, yet

with the expense of hardware cost. Applying repetitive pattern technique with PRBS

generators, still better results are achieved with the 8bit LFSR with seed x7B revealing 97.1

% fault coverage in just 109 patterns and 97.2 % fault coverage in 154 patterns. Applying the

8 bit CA with seed xAB revealed 97.1 % fault coverage in 110 patterns and 97.2 % fault

coverage in just 125 patterns. Comparing LFSR with CA, for both exhaustive and non-

exhaustive tests, CA are seen to perform slightly better, due to their much random-like output

in nature, but the improvements were very insignificant. As the implementation choice, 8 bit

LFSR with seed 7B is chosen due to less hardware cost compared to CA.

 After the completion of input pattern generation techniques, output compression

techniques are investigated, and for the 255 pattern input test set, a hamming distance 5, high

weight polynomial is used as the characteristic polynomial of signature analyzer. The

characteristic polynomial 1+x2+ x3+ x5+ x6+ x7+ x8+ x10+ x11+ x15+ x16 is observed to have almost no

fault masking during compression, which is actually polynomial multiplication of 2 8th order

polynomials.

 Of the designed larger multipliers, 16x16 multiplier is interestingly seen to have even

higher fault coverage with the constant 255 test vectors, and repetitive patterns is confirmed to

be very effective for multiplier testing regardless of the size. However, 24x24 and 32x32

multipliers could not be fault simulated due to insufficient memory in fault simulation and the

results are not generalized.

 To sum up, multiplier structures, regardless of size, are seen to be very effectively tested

with repetitive patterns and pseudorandom sequences are seen to be much more effective than

Conclusions 135

regular patterns. Hierarchical faulting is seen to be more pessimistic than board level faulting,

and the importance of hierarchical primitive levels is seen to be of great influence on the fault

coverage results. A high weight signature analyzer is seen to be very effective in output data

compression, with almost no difference from direct measurement.

Suggestions for Future Work 136

IX-SUGGESTIONS FOR FUTURE WORK

 Due to long time overhead of synthesis process and fault simulation, the achieved goals

within the allocated time slot for the project do not cover all the desired aims. Some of the

future work that can be performed along this project must be investigation of BIST techniques

for MAC structures and design and synthesis of a complete system with MAC circuit and the

BIST circuit, preferably again completely parameterized.

 Another point of direction is determination of a deterministic set of vectors that perform a

compact test. An initiation to this might be [26], for a c-testable design. Yet, another approach

for a deterministic set of tests might be experimentally observing the already documented

results and begin with a good starting point for the test and with exhaustively searching the

test vector space and observing the detection ability of individual patterns in the histogram

plot provided by QuickFault.

 Other multiplier structures can also be investigated, but as already stated in [3], different

structures have very similar fault coverage properties and the results are already well

anticipated.

 As the hierarchical fault models do not provide a generalized fault coverage characteristic

due their variety, a standard fault model similar to CFM described in [23] can be investigated

and the possibility of applying this model via a single stuck at model fault simulator, like

QuickFault can be discussed. A starting point to this might be [24].

References and Bibliography 137

X-REFERENCES AND BIBLIOGRAPHY

X.1 - REFERENCES

[1] Russell, G. and Ian L. Sayers, “Advanced Simulation and Test Methodologies for VLSI

Design”, London: Van Nostrand Reinhold (International), 1989, ISBN 0-7476-0001-5

[2] Psarakis, M., D. Gizopoulos, A. Paschalis, N. Kranitis and Y. Zorian, “Robust and Low-

Cost BIST Architectures for Sequential Fault Testing in Datapath Multipliers”, VLSI

Test Symposium, 19th IEEE Proceedings on. VTS 2001, pp. 15-20, 2001

[3] Gizopoulos, D., A. Paschalis and Y. Zorian, “An Effective Built-In Self-Test Scheme for

Parallel Multipliers”, IEEE Trans. on Computers, vol. 48, no. 9, pp. 936-950, Sep. 1999

[4] Raghunath, K. J., H. Farrokh, N. Naganathan, M. Rambaud, K. Mondal, F. Masci and

M. Hollopeter, “A Compact Carry Save Multiplier Architecture and Its Applications”,

Circuits and Systems, 1997. Proceedings of the 40th Midwest Symposium on, vol. 2,

pp. 794 –797, 1998

[5] Gizopoulos, D., A. Paschalis and Y. Zorian, “Effective built-in self test for Booth

multipliers”, IEEE Design & Test of Computers, vol. 15, no. 3, pp. 105 -111, July-Sep.

1998

[6] Weste N. H. E. and K. Eshragian, “Principles of CMOS VLSI Design, A Systems

Perspective”, Massachusetts: Addison-Wesley, 1993, ISBN 0-201-08222-5

[7] Pirsch, P., “Architectures for Digital Signal Processing”, Chichester: John Wiley &

Sons, 1998, ISBN 0-471-97145-6

[8] Morling R. C. S. And I, Kale, lecture notes, “DSP and Communication Processor

Design”, MSc VLSI System Design, Univ. of Westminster, Feb. 2001

[9] “DSP Design Slides, Chapter 13”, Lund University, accessed via Netscape, 12nd July

2001, at http://www.tde.lth.se/ugradcourses/DSPDesign/slides/chap13.pdf

[10] Omondi, A. R., “Computer Arithmetic Systems Algorithms, Architecture and

Implementations”, New Jersey: Prentice Hall, 1994, ISBN 0-13-334301-4

[11] Roth, C. H., “Digital Systems Design Using VHDL”, Boston: PWS, 1998, ISBN 0-534-

95099-X

[12] Pucknell, D. A. and K. Eshragian, “Basic VLSI Design”, Australia: Prentice Hall, Third

Edition, 1994, ISBN 0-13-079153-9

References and Bibliography 138

[13] Hurst, S. L., “VLSI Testing, Digital and Mixed Analogue/Digital Techniques”, London:

IEE Circuits, Devices and Systems Series 9, 1998, ISBN 0-85296-901-5

[14] Bardell P. H., McAnney W. H. and Savir J., “Built-In Test for VLSI: Pseudorandom

Techniques”, New York: John Wiley & Sons, 1987, ISBN 0-471-62463-2

[15] Lala, P. G., “Digital Circuit Testing and Testability”, San Diego: Academic Press, 1997,

ISBN 0-12-434330-9

[16] Eldred, R.D., "Test Routines Based on Symbolic Logical Statements", Journal ACM,

vol.6, no.1, 1959, pp.33-36

[17] Wu, C. W., EE6250: VLSI Testing and Design for Testability course notes, “VLSI

Testing and Design for Testability, Chapter-3: Testability Measures”, Department of

Electrical Engineering, National Tsing Hua University, Taiwan, accessed via Netscape,

11th Aug 2001, at http://larc.ee.nthu.edu.tw/~cww/n/625/6250/03.pdf

[18] Vemuri, R., ECECS 682: VLSI Test and Validation course notes, “Design for

Testability”,Department of Electrical and Computer Engineering, University of

Cincinnati, Cincinnati, US, , accessed via Netscape, 11th Aug 2001, at
http://www.ececs.uc.edu/~ranga/courses/682/slides-spring-2001/DFTnew.pdf

[19] Goel, P., "Test Generation Costs Analysis and Projections", IEEE Proceedings on the

Design Automation Conference, June 1980, pp. 77-84

[20] Mentor Graphics Corp., “Fault Analysis User’s Manual: Software version V8.5_1”,

Unpublished, Oregon, 1995

[21] Mentor Graphics Corp., “Synthesizing with Autologic II: Software version V8.5_1”,

Unpublished, Oregon, 1995

[22] Shah, S., A. J. Al-Khalili, D. Al-Khalili, “Comparison of 32-bit multipliers for various

performance measures”, Microelectronics, 2000, ICM 2000, Proceedings of the 12th

International Conference on, pp. 75 – 80, Nov. 2000

[23] Kautz, W. H., “Testing for Faults in Cellular Logic Arrays”, proceedings of the 8th

Annual Symposium on Switching and Automata Theory, pp. 161-174, 1967

[24] Psarakis, M., D. Gizopoulos and A. Paschalis, “Test Generation and Fault Simulation

for Cell Fault Model Using Stuck at Fault Model Based Test Tools”, Electronic Testing

Journal: Theory and Applications, vol. 13, no:3, Dec. 1998

[25] Morling, R. C. S., “Production Test of Digital Integrated Circuits”, MSc VLSI System

Design, Univ. of Westminster, Dec. 2000

References and Bibliography 139

[26] Friedman, A. D., “Easily Testable Iterative Systems”, IEEE Trans. on Computers, vol.

C-22, no. 12, pp.1061-1065, Dec. 1973

 (Theoretical Information about C-testability and iterative arrays)

[27] Roth, J. P., “Diagnosis of Automata Failures: A calculus and a method”, IBM Journal

of Research and Development, pp. 278-291, 1966

[28] Eichelburger, E. B. and E. Lindbloom, “Random Pattern Coverage Enhancement and

Diagnostics for LSSD Self-Test”, IBM Journal of Research and Development, pp. 265-

272, 1983

X.2 - BIBLIOGRAPHY

 [1] Bennets, R. G., “Introduction to Digital Board Testing”, New York: Crane Russak,

1982, ISBN –8448-1385-0, pp. 107-114 & 220-223 & 165-172

 (Information on Signature Analysis and Test Pattern Generation Problems)

 [2] Kaniz M., M. Cole and S. Mourad, “Mentor Graphics Quickfault II Tutorial”,

Department of Electrical Engineering, Santa Clara University, Santa Clara, US,

accessed via Netscape, 27th July 2001, at http://www.scudc.scu.edu/mentortu/mg_quickflt.html

 (Quick to apply, but incomprehensive information about fault simulation)

 [3] Mentor Graphics Corp., “SimView Common Simulation User’s Manual, Software

Version 8.5_1l”, Unpublished, Oregon, 1995

 (Worthy information about dofiles, waveform databases, scripts and batch simulation)

[4] Bhasker, J., “A VHDL Primer”, New Jersey: Prentice Hall, Revised Edition, 1995,

ISBN 0-13-181447-8

 (Well presented information on VHDL for inexperienced users)

[5] Naylor, D. and S. Jones, “VHDL: A Logic Synthesis Approach”, London: Chapman &

Hall, 1997, ISBN 0-412-61650-5

 (Information about design synthesis)

 [6] Morling R. C. S., “Designing for Testability”, MSc VLSI System Design, Univ. of

Westminster, Dec. 2000

 (Very brief information on DfT and fault simulation terminology)

Appendices 140

XI-APPENDICES

A – GENERATED VHDL CODES

B – STRUCTURAL DESIGN SCHEMATICS IN RENOIR

C – VHDL LEVEL SIMULATION RESULTS

D – FAULT SIMULATION DATA

E – MATLAB SCRIPTS

