ELE 515 - CPT SUMMER RESEARCH REPORT
 IBM TJ Watson Research,
Reliability and Power Aware Microarchitecture Group

July 6-September 6 2004

Canturk Isci

Advisor: Margaret Martonosi

Description:
This report briefly presents the research we have done in IBM TJ Watson during my CPT period. The described work is directly related to our phase detection and prediction work based on performance counters in Princeton, with distinct differences in terms of methodology and taken directions, which can be summed up as below:

- Our previous work focused on a Pentium 4 machine due to its aggressive clock gating. The phase characterization was based on similarity analysis for the component-wise power estimations, which relied on the performance monitoring tool developed by us. In IBM, we focus on an IBM POWER4 processor with AIX OS, and use internal performance monitoring tools, which provide higher sampling rates, but lack the flexibility of our tool. As the POWER4 performance monitoring API allows the counters to be read in fixed groups of 8.
- As there is no direct counterpart of power estimators on the new platform, we directly use performance measures in similarity analysis for phase characterization.
- In addition to the original composite (normalized and absolute) manhattan distance similarity measure, we also look at similarities based on individual metrics and a restrictive subset based similarity that has to be satisfied for all metrics in a group.
- As the IBM performance monitoring tool provides uneven samples, we focus on rates rather than values to provide consistency.

Motivation:

The motivation for the whole area of phase characterization, detection and prediction is the fact that most applications exhibit highly variant behavior in terms of power and performance. With the current high demand for power management solutions as power densities keep shooting up, this behavior should be exploited for both power/thermal emergency avoidance and battery life extensions. Several techniques such as power gating, DVS, processor scaling can benefit from the knowledge of future or current application characteristic behavior.
In specific, our research targets at a hardware solution that can detect and predict specific phases and that can assign management actions to those.

Methodology, Progress and Results:

First we had to setup the experiment environment which involved acquiring the performance monitoring tools and API to talk to the POWER4 performance counting hardware. After setting up the PMAPI, we started with the HPM toolkit, which produces aggregate counter information and later on moved to ‘ticker’ tool that can generate sampled performance counter traces and program counter samples for a specific process. Afterwards, we developed tools to utilize ticker and collect this information, and later on to process the performance counter rates to identify phases in application execution. We first started with small microkernels with deterministic behavior, which also served for validation of the tools. Later on we moved to SPEC CPU2000 suite, for a more realistic set of applications.

In order to decide on the performance metrics to represent application behavior, we chose an initial set of 18 groups and collected counter information for 126 metrics, for 25 benchmarks with 45 different datasets. We have looked at error in representation for each metric across each group, and also the amount of distinct phase groups each metric leads to. We summarize our results under 3 terms: “sensitivity”, “efficiency” and “accuracy”. These represent how well each metric detects the major application phases, how much ability they have in terms of producing a small number of major phases, and how accurately can a single metric characterize the behavior of others in a group. The results of this analysis showed that several anticipated metrics such as IPC, L1 references, FPU and FXU instructions completed perform well, while some other important metrics such as separate utilizations for each functional unit, DTLB and ITLB misses perform worse. The latter two are due to effects of blending over aggregate measures for small quantity metrics. In addition, we have seen that the choice of metric is usually dependent on the application.
In addition to the performance metrics, we also looked at the sampled PC similarity information and constructed sparse basic blocks for applications. The results for small kernels showed that PC information alone is not distinctive enough to represent performance behavior. Nonetheless, this is not conclusive as we don’t have a direct comparison to actual “instruction-by-instruction” basic block distributions and the results are not generalized to SPEC. This remains to be an avenue to explore in future for a final conclusion.
After this first step of phase characterization and identification analysis, we started to move to phase prediction, which involves choosing a dynamic management application, specifying metrics to track based on produced information, and specifying meaningful phases based on these metrics and application. We project that this is done by specifying corners for each of the metrics to be followed, and later on looking at the signature information for each application to realize which of these corners are actually encountered to reduce our phase space. Later on a history based predictor that needs to be tolerant to some timing and value jitter needs to be tried to predict phases.
However, before tackling the harder phase prediction problem, we started with the easier problem of metric value prediction. We showed that with a simple “Transition Guided, History Based Statistical IPC Predictor”, which looks at a dynamic history window for IPC, based on encountered stable IPC durations, we can predict next IPC value within acceptable error bounds. Afterwards in an orthogonal approach, we started looking at duration prediction methods, which are targeted towards predicting how long a stable phase will last, which is a valuable information for dynamic management systems. We are currently looking at characterizing the stable phase length distribution for a large (40+) set of benchmarks, and evaluate the efficiency of different functions to predict durations.
Current & Future Directions:

This work is currently still in progress. After the duration prediction part, we will be merging the IPC value and duration prediction together, and will probably add an improvement based on gradient prediction as well as value for a 1st order prediction rather than a 0 order one. This final method will be used together with a choice of dynamic management method, which is most likely to be DVS, to predict phases for a number of metrics which will in turn guide the dynamic management state.

After this, longer term projection is the table based phase predictor as described above, which will lead to the phase predictor general implementation.
