
Power and Thermal Characterization of POWER6 System

Víctor Jiménez † Carlos Boneti ‡
∗

Francisco J. Cazorla †

Roberto Gioiosa † Eren Kursun ? Chen-Yong Cher ? Canturk Isci ?

Alper Buyuktosunoglu ? Pradip Bose ? Mateo Valero †
†

Barcelona Supercomputing Center, Spain
{victor.javier,carlos.boneti,francisco.cazorla,roberto.gioiosa,mateo.valero}@bsc.es

‡
Schlumberger BRGC, Rio de Janeiro, Brazil

{cboneti}@slb.com

?
IBM T. J. Watson Research Center, Yorktown Heights, USA
{ekursun,chenyong,canturk,alperb,pbose}@us.ibm.com

ABSTRACT
Controlling power consumption and temperature is of ma-
jor concern for modern computing systems. In this work we
characterize thermal behavior and power consumption of an
IBM POWER6TM -based system. POWER6 is a processor
for high-end server systems presenting multiple levels of par-
allelism (SMT, CMP and SMP). Thus we believe a detailed
characterization of such a system is of great value for the
HPC and parallel architecture communities. We perform the
characterization at several levels: application, operating sys-
tem, and hardware level, both when the system is idle, and
under load. At hardware level, we report a 25% reduction in
total system power consumption by using the processor low
power mode. We also study the effect of the hardware thread
prioritization mechanism provided by POWER6 on differ-
ent workloads and how this mechanism can be used to limit
power consumption. At OS level, we analyze the power re-
duction techniques implemented in the Linux kernel, such as
the tickless kernel and the CPU idle power manager. At ap-
plication level, we characterize the power consumption and
the temperature of two sets of benchmarks (METbench and
SPEC CPU2006) and we study the effect of workload char-
acteristics on power consumption and core temperature.

From this characterization we derive a model based on
performance counters that allows us to predict the total
power consumption of the POWER6 system with an aver-
age error under 3% for CMP and 5% for SMT. To the best
of our knowledge, this is the first power model of a system
including CMP+SMT processors. Finally, we show that the
static decision on whether to consolidate tasks into the same
core/chip, as it is currently done in Linux, can be improved
by dynamically considering the low-power capabilities of the
underlying architecture and the characteristics of the appli-
cation (up to 5X improvement in ED2P).

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; D.2.8 [Software Engineering]: Met-
rics—Performance measures; D.4.8 [Operating Systems]:

∗This work was done while the author was at BSC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Performance—Measurements; I.6.4 [Simulation and Mod-
eling]: Model Validation and Analysis

General Terms
Design, Experimentation, Measurement, Performance

1. INTRODUCTION
Processor architectures that leverage thread-level paral-

lelism (TLP), as the means of improving system perfor-
mance, have become the common trend in architecture de-
sign. In fact, most chip vendors already employ multi-
threaded processors in their designs that exploit TLP, using
SMT and CMP architectures. As process technologies ad-
vance, the trend is to have more cores per chip, where each
core can further increase the amount of concurrent threads
via SMT, such as the IBM POWER5 [27] and POWER6 [18]
and the Intel i7 [6]. While multithreaded processors provide
better performance per watt ratios than monolithic archi-
tectures, the power dissipation continues to be a key per-
formance limiter also for multithreaded architectures. Con-
sequently, power and thermal characteristics of processors
are one of the primary design constraints, and motivate an
active research area.

Energy, power and thermal management are of paramount
importance in many environments ranging from embedded
and consumer devices to High Performance Computing (HPC)
systems. In the former case, improvements in battery ca-
pacity simply have not kept pace with ever-more-powerful
processors, limiting device use to short time periods. In
the latter case, supercomputers and data centers provide
huge amounts of computation power (necessary, for instance,
for weather forecasting, climate research, molecular mod-
eling and other areas), with very high associated energy
costs. A study from the U.S. Environmental Protection
Agency (EPA) estimates that national energy consumption
by servers and data centers will reach more than 100 bil-
lion kWh annually and representing $7.4 billion in electricity
cost [8]. In HPC systems, besides the heat dissipation issue,
the increasing power consumption leads to additional prob-
lems in the power delivery and energy costs that account for
a considerable percentage of the expenses of a data center.
It is certain that managing and reducing the temperature
and power consumption is a critical problem that must be
addressed in all levels of computing systems, from the ap-
plication layer to the hardware. As an example, most of
the latest processors available in the market employ several
techniques to reduce power consumption [10, 21]. From the
OS perspective, the Linux kernel also implements features
to reduce power [22, 26, 28].

POWER6 is a processor from IBM designed for high-

end server systems. The processor is a dual-core processor
where each core is an SMT capable of running two hard-
ware threads. Moreover, the POWER6 provides power mon-
itoring capabilities and temperature sensors to monitor the
processor status and a special nap mode to control power
consumption. In addition to the low-power nap mode, the
POWER6 processor implements microarchitectural mecha-
nisms for power management such as pipeline throttling,
multiple voltage domains, memory controller dynamic modes
and memory throttling [10]. POWER6 also includes a Hard-
ware Thread Prioritization technique. While this is not de-
signed for power management, it can also be used to improve
the power and thermal behavior of the system [10].

This work specifically focuses on characterizing and mod-
eling the power and thermal behavior of the POWER6 archi-
tecture. We explore power and thermal behavior with vari-
ous power management techniques provided by POWER6
and evaluate their impact at multiple levels: application
level, operating system level, and the hardware level. Such
multi-level characterization is particularly important to un-
derstand the impact of the architectural and system-level
management techniques across the computing system hier-
archy. The experiments are performed on a JS22 blade,
containing a Dual Chip Module (DCM) with two POWER6
processors. The characterizations are performed at the sys-
tem level under multiple operating conditions, from idle
to extreme load conditions using specifically designed mi-
crobenchmarks that stress particular processor resources,
and the SPEC CPU2006 benchmarks. The main contribu-
tions of this work are the following:

• Hardware level: We present the first characterization of
a real hybrid CMP/SMT implementation. We also demon-
strate the impact of POWER6’s hardware-thread prioritiza-
tion mechanism on power consumption. Our results show
that workload-aware manipulation of thread priorities im-
proves the system’s energy-delay product by as much as
25%. Finally, we show the power and thermal characteristics
of the nap mode, and the combined effect of employing the
nap mode and hardware thread priorities. These evaluations
show very significant benefits, reducing up to 26% the core
temperatures and 25% the total system power consumption.

• OS level: We explore the effectiveness of power and
thermal management techniques present in modern OS for
the POWER architecture, including tickless kernel and idle
power managers. We demonstrate the benefits of these ap-
proaches and their dependence on other system components
such as timer interrupt periods.

• Application level: We characterize system behav-
ior with a set of specialized microbenchmarks and SPEC
CPU2006 benchmarks. We correlate power and temper-
ature with performance counters and derive an accurate
model that represents the power and temperature impact
of different workload performance characteristics. We show
that high IPC applications have a bigger effect on the core
temperature and memory-intensive applications do not heat
the cores as much but cause the system to consume more
power [19].

Based on that we derive several conclusions and we show
two use cases to improve power behavior:

• Power Model: We develop a model, based on perfor-
mance counters, to predict the power consumption of a
POWER6 system. The model accurately predicts system
power consumption with an average error under 4.5%. To
the best of our knowledge, this is the first model for real
CMP/SMT processor-based systems.

• OS scheduling: The JS22 system includes two
POWER6 chips, each of which is a CMP/SMT chip. In
such a system, thread placement affects both performance
and power consumption. We show that by placing threads in
a workload- and package-aware manner, we can achieve sig-
nificant energy improvements, without incurring significant
performance degradation, with a 3.7X reduction in energy-
delay product.

The rest of this paper is structured as follows: Section 2
provides the necessary background and details on the pro-
cessor and the Linux kernel features that we analyze. Sec-
tion 3 describes the methodology, the infrastructure and the
benchmarks used in this work. Section 4 shows the results
of our experiments on a JS22 blade, both in idle conditions
and under load. In Section 5 we present two use cases that
follow from our characterization results: (i) a system-level
power model and (ii) power-aware thread placement. Sec-
tion 6 lists the related work and Section 7 concludes this
study.

2. BACKGROUND

2.1 The IBM POWER6 Processor
POWER6 is a dual-core chip where each core can be run

in a two-way SMT mode. POWER6 is an in-order processor
with limited out-of-order execution for floating point oper-
ations. Each core has a 64KB L1 I-cache and D-cache. The
cores have a 4MB private L2 cache connected to the L3 con-
troller and to the memory controller through the symmetric
multiprocessor (SMP) interconnect fabric. The optional off-
die L3 cache is shared by both cores. Depending on the
configuration, each chip has one or two memory controllers
that interface to the DRAM memory.

POWER6 systems integrate a thin hypervisor layer that
abstracts the real hardware and provides the capability of
running several virtual machines simultaneously on the same
physical resources. This virtualization mechanism is com-
pletely transparent and does not require any modification
of the guest OS. However, collaboration between the guest
OS and the hypervisor has significant benefits for improving
chip utilization and throughput as well as for effective power
management.

In this paper we are particularly interested in the inter-
action between the guest OS and the hypervisor for effec-
tive power and performance management. POWER6 im-
plements specific methods for the guest OS to release hard-
ware threads and cores when there are no runnable processes
available. This is done by invoking the cede processor hy-
pervisor call, which enables the hypervisor to dispose of the
hardware thread and assign the resources to another vir-
tual machine or to employ power management techniques
on the unused resources. In our environment, we run only
one virtual machine, thus, the hypervisor performs one of
the following operations when the cede processor is invoked
from a given hardware thread: (i) If the other hardware
thread on the same core is under use, the hypervisor turns
off the hardware thread and puts the core in Single Thread
(ST) mode. This effectively assigns more hardware resources
to the running process, thus improving single-thread perfor-
mance. Moreover, while this mode does not directly target
at reducing power, as several functional units are not utilized
during ST mode, overall power consumption also decreases.
(ii) If hypervisor has already turned off the other hardware
thread in the core (i.e., the core is already in ST mode), the
hypervisor puts the core in nap mode.

Nap Mode: POWER6 implements a low-power mode

per core called nap mode. This mode turns off the internal
clocks and restricts the operation of the functional units in
the core. Reducing active power consumption by turning off
the clocks reduces the temperature as well, which further
reduces leakage power. In this paper we show the effect
of nap mode on both system power consumption and core
temperature.

Thread Priorities: POWER6 processor employs a thread
priority mechanism, through software/hardware co-design,
that controls the instruction decode rate for each hardware
thread with eight priority levels [1, 4]. The software-controlled
priorities range from 0 to 7, where 0 means the thread is
switched off and 7 means the thread is running in Single
Thread mode (i.e., the other thread is off). The thread’s
software-controlled priority is enforced by the hardware at
decode stage, which determines the actual number of de-
code cycles assigned to the hardware thread. In general,
the higher the priority of a thread with respect to the other
thread on the same core, the higher the number of decode cy-
cles assigned to the thread. Consequently, the thread with a
higher priority receives more resources and can obtain higher
performance.

The main motivation of the software-controlled priority
is to address instances where biasing thread performance
is desirable because one thread is not really progressing or
because it requires some level of Quality of Service. For
example, as shown in Figure 1, the POWER6 Linux kernel
reduces the priority of the idle process or of any process
spinning on a lock in order to give more hardware resource
to the other running thread. Moreover, depending on the
application, software-controlled priorities can significantly
improve both throughput and execution time [4]. In this
paper, we also show how software-controlled priorities can
be used for power management, to improve the performance-
per-watt ratio.

2.2 Linux Kernel
The Linux guest OS, running on POWER6 implements

several mechanisms to reduce power consumption [22, 28,
26]. These mechanisms are grouped under CPU Idle Power
Manager (PM) Support and tickless kernel.

CPU Idle PM Support: When a CPU is idle (i.e., there
is no process available to run on that CPU other than the
idle process) the OS runs the Idle Process which basically
loops over the code shown in Figure 1. In general, the Idle
Process tries to take advantage of the low-power mechanisms
provided by the underlying architecture if available, other-
wise the process simply executes a long latency instruction.

In POWER6, the guest OS does not have direct access
to the physical hardware and therefore gives the thread up
to the hypervisor (cede processor, line 24 in Figure 1) when
idle. The hypervisor, in turn, decides to put the core in
ST or in low-power mode. It is highly probable that an-
other process becomes runnable shortly after the Idle Pro-
cess has been scheduled on the CPU. Therefore, the kernel
does not directly go into low power mode but waits for some
(programmable) amount of time (snooze loop, lines 8-13) to
improve responsiveness.

Since the snooze loop does not perform any useful work,
the kernel reduces the priority of the Idle Process while in
the snooze loop down to the minimum (HMT low and HMT -
very low). In this way the process running on the other
hardware thread receives more hardware resources and its
performance may increase. At the same time, since HMT -
very low also reduces the number of instructions decoded
per second, the OS also saves power. Thus, by using hard-
ware thread priorities, the OS reduces power consumption

1 i f (g e t c p u v a r (smt snooze de lay)) {
2 s t a r t s n o o z e = ge t tb () +
3 g e t c p u v a r (smt snooze de lay) ∗
4 t b t i c k s p e r u s e c ;
5 l o c a l i r q e n a b l e () ;
6 s e t t h r e a d f l a g (TIF POLLING NRFLAG) ;

8 while (g e t tb () < s t a r t s n o o z e) {
9 i f (need resched () | | c p u i s o f f l i n e (cpu))

10 goto out ;
11 p p c 6 4 r u n l a t c h o f f () ;
12 HMT low () ; /∗ p r i o r i t y 2 ∗/
13 HMT very low () ; /∗ p r i o r i t y 1 ∗/
14 }

16 HMT medium () ; /∗ p r i o r i t y 4 ∗/
17 c l e a r t h r e a d f l a g (TIF POLLING NRFLAG) ;
18 smp mb () ;
19 l o c a l i r q d i s a b l e () ;
20 i f (need resched () | | c p u i s o f f l i n e (cpu))
21 goto out ;
22 }

24 c e de p r o c e s s o r () ;

26 out :
27 HMT medium () ; /∗ p r i o r i t y 4 ∗/

Figure 1: Code snippet from the idle loop for the POWER6 pro-
cessor. This piece of code is continuously called from the function
cpu idle while the system is idle.

while improving system throughput. If no process becomes
runnable after the snooze delay, the OS invokes the hyper-
visor call cede processor (line 24) and releases the hardware
thread to the hypervisor.

In Section 4.1.1 we evaluate the Linux CPU Idle PM Sup-
port implementation for POWER6 processors and analyze
the idle power behavior of the system with different kernel
implementations.

Tickless Kernel: As explained in the previous section,
when a core is idle, the OS tries to put it in low power
mode. One challenge in this power management scheme is
the interrupt behavior of the system. Any interrupt received
in the low-power state forces the CPU to go back to the
active state to handle the interrupt. Timer interrupts are
the most common interrupts received by a CPU and local
timers fire interrupts periodically. Moreover, if the CPU
is idle, the timer interrupt handler does not perform any
operation, while still forcing the CPU to wake up. Thus,
reducing the amount of interrupts delivered to the idle cores
increases the time the cores stay in low power mode and
improves overall system power efficiency.

The tickless kernel mechanism (kernel version ≥ 2.6.21)
reduces the effect of timer interrupts by disabling the peri-
odic timer interrupts when a CPU is idle [26]. In practice,
instead of programming the local timer to expire in 1/HZ
second (periodic timer), the kernel programs the timer to
expire in the next, non-periodic, timer event (e.g., a soft-
ware timer programmed by a task that has called the sleep()
system call). In Section 4.1.2 we evaluate the effect of the
tickless kernel on the power consumption of the POWER6
system.

3. METHODOLOGY
System Infrastructure: In our experiments we use an

IBM JS22 BladeCenter, with two dual-core, 2-way SMT
POWER6 chips running at 4.0GHz. Thus, the system presents
8 logical CPUs to the hypervisor and the OS layer. Our sys-
tem does not include an off-chip L3 cache. Therefore, the

last level of cache in our system is the 4MB L2 cache private
to each core. Only one memory controller per processor is
available in our configuration. The amount of DRAM mem-
ory is 15GB. The system runs SUSE Linux Enterprise 10
SP2 with kernel version 2.6.28 patched with perfmon2 3.8
in order to access the performance counters. Our JS22 blade
is located in a server room where the temperature is kept
constant.

We use the EnergyScale architecture [2] to measure power
and temperature in the JS22 via a standard service proces-
sor, called the Flexible Support Processor (FSP). The En-
ergyScale implementation includes an optional plug-in card,
containing a micro-controller called Thermal and Power Man-
agement Device (TPMD). The FSP and TPMD are con-
trolled by the BladeCenter (chassis) management module.
The sensors incorporated into this device are also used to
protect the system from thermal emergencies and to cap
power consumption in case of necessity. Thus, we can as-
sure that they are calibrated and accurate enough to per-
form our study. Our observations during the experimental
process confirm this claim as well.

We develop an external framework that monitors each
core’s temperature and total system power consumption through
the management module. Although some details on the
physical location of the temperature sensors can be seen
in [10], we mostly treat the information read from the man-
agement console in a black-box fashion. This monitoring
framework allows us to gather temperature measurements
at 1s granularity and power measurements at 1min granu-
larity. Although the architecture performs finer-grain power
measurements, the monitoring interface only exposes 1min
averages for the power. While these granularities are suffi-
cient for characterization purposes, we also develop a power
model that provides fine-grain power estimations by moni-
toring performance counters, as one of the contributions of
this paper. This power model can be used for dynamic power
management policies that operate at smaller time scales.

The power and temperature measurements shown in this
paper are, unless stated otherwise, normalized to the ones
obtained when the system is idle. Because of clearance we
cannot report raw measurements.

Benchmarks: Real applications present phases and sig-
nificant dynamic variations during their execution, which
complicates fine-grain architectural characterization. Mi-
crobenchmarks with well-defined characteristics simplify this
problem by allowing us to understand the behavior of the
different architectural components in isolation, where we can
independently quantify the effects of the mechanisms we
want to study. Therefore, we develop a set of synthetic mi-
crobenchmarks that stress different parts of the POWER6
microarchitecture. Several of these microbenchmarks can
be concurrently executed as MPI processes. This allows
us to create multiprogrammed workloads and mix of work-
loads with different characteristics. We use six of these mi-
crobenchmarks in our evaluations: cpu int, cpu fp, ld l1, ld -
l2, ld mem and st mem.

The microbenchmarks are composed of a main loop that
iterates for a configurable number of iterations. Table 1
describes the loop body for the ones used in this study. cpu -
int mainly executes integer arithmetic operations accounting
for 85.5% of the total executed instructions. cpu fp is an
FP-intensive benchmark, where 94% of the instructions are
floating point arithmetic operations. ld l1, ld l2 and ld mem
are benchmarks mostly performing memory load operations
(approximately 95% of the instructions are loads). They
stress different levels of the memory hierarchy. ld l1 always
hits in L1 cache. ld l2 always hits in L2 cache but always

Name Loop Body

cpu int a = a + (it ∗ (it− 1))− xi ∗ it : xi ∈ {1, 2, . . . , 54}

cpu fp
Sequence of approximately 200 FP operations (fadd,
fsub, fmul) using SW pipelining for increasing ILP.

ld l1
p = *p; // repeated 100 timesld l2

ld mem
st mem Memory store operations.

Table 1: Loop body of the different microbenchmarks.

misses in L1 cache. Finally, ld mem always misses in both
L1 and L2, and brings the data from main memory. All of
them perform a pointer traversal across an array which is
configured to produce the desired memory access behavior.
st mem continuously performs memory writes missing in all
levels of the cache hierarchy. This high rate of misses forces
to evict lines from the L2 cache and effectively access the
main memory.

We also use SPEC CPU2006 benchmarks [16] for our char-
acterizations and to evaluate our power model. Other bench-
marks aiming to stress system’s I/O could have been used.
However, I/O subcomponents are not typically energy-pro-
portional and thus, their power consumption is approxi-
mately the same across different workloads [3]. We use IBM
XL (XLC 10.1 and 12.1 XLF) to compile all the benchmarks
(except for bwaves, gamess, zeusmp, tonto and xalancbmk,
which are compiled with gcc 4.1.2 due to compile-time is-
sues with XL).

4. RESULTS AND ANALYSIS
In this section we present and analyze our experimental re-

sults for the POWER6 power and thermal characterization.
This characterization is divided into two parts. The first
part analyzes the system when it is idle (no processes are
running besides services and background processes). The
second part studies the behavior of the system when it is
under load.

4.1 Idle System Characterization
Several techniques have been proposed to reduce temper-

ature and power consumption when the system is idle, both
at hardware and software level. This section evaluates their
effectiveness for our POWER6 system.

4.1.1 Low Power Mode
POWER6 employs several power reduction techniques for

idle cores. Here we quantify the effects of these capabili-
ties. Specifically we look at the effects of thread prioritiza-
tion and enabling nap mode via cede processor. We consider
four power management policy combinations: (i) No power
saving represents the baseline behavior without any power
management. In this case all calls to cede processor and
HMT xxx1 have been disabled. (ii) HMT enabled only en-
ables hardware thread prioritization. Enabling the calls to
HMT xxx allows the snooze loop to be executed with low
priority. (iii) CEDE enabled only enables the calls to cede -
processor so that the cores can go into nap mode, disabling
the clock of most of the circuits inside the core. This policy
does not manipulate hardware thread priorities. (iv) Both
enabled enables all calls to both cede processor and HMT -
xxx, and thus represents the most aggressive power manage-
ment policy.

Table 2 shows power and temperature characteristics ob-
served for the idle system with these four policies. With

1Prioritization functions such as HMT medium, HMT low
and HMT very low

1 2 3 4
No power HMT CEDE Both

saving enabled enabled enabled

Temp
savings

(%)

core 0 0 8.2 24.6 26.2
core 1 0 6.8 22.0 23.7
core 2 0 8.6 22.4 24.1
core 3 0 9.4 21.9 23.4

Power savings (%) 0 8.7 23.3 24.3

Table 2: Temperature and power savings when the system is
idle using different low-power-saving mechanisms in the processor.
Values are normalized to the first configuration.

tickless non-tickless tickless non-tickless
100 100 1000 1000

total ticks/s 30 399 39 3993

temp
increase

%

core 0 0 0 0 2.3
core 1 0 0 0 0
core 2 0 0 0 2.3
core 3 0 0 0 2.1

power increase
0 0.46 0.46 2.75

%

Table 3: Timer interrupts for tickless and non-tickless kernel
configurations (HZ=100 and HZ=1000). Power and temperature
are normalized to the first configuration.

no power saving policy, all the cores reach the highest tem-
perature and the highest total system power consumption.
We will consider these values as the baseline for this sec-
tion, showing the reduction compared to this baseline for
the rest of configurations. HMT enabled mode considerably
reduces the activity within the core and both power con-
sumption and temperature are considerably reduced. The
core temperatures and the system power decrease 7-9% and
8.7% respectively using only hardware thread prioritization.
We see much more dramatic improvements with the CEDE
enabled policy. In this case, although we prevent the proces-
sor from reducing thread priorities in the snooze loop, higher
power savings are achieved by enabling POWER6 nap mode.
Compared to the baseline configuration, the core tempera-
tures and the system power consumption are reduced by 22-
24% and 23.3%, respectively. Finally, applying both power
management approaches in the both enabled policy further
reduces system power consumption by 1%. This shows lim-
ited improvements for the idle system with hardware thread
priorities when the nap mode is enabled. However, the nap
mode can only be enabled when both threads in a core are
idle, whereas hardware thread prioritization does not have
such restrictions. When only one thread is idle, by using pri-
oritization, more resources can be given to the other thread,
increasing both performance and energy efficiency. Over-
all, combining nap mode and hardware thread prioritization
significantly reduces the energy consumption when the pro-
cessor is in idle mode.

4.1.2 Linux Tickless Kernel
In this section we measure the effect of the tickless mech-

anism on the temperature and power, monitoring interrupts
and events on an idle system. As the system is idle, the num-
ber of external interrupts is negligible and thus, the system
is mainly disrupted by timer interrupts (tick events).

We develop four kernel versions to evaluate the impact of
the tickless mechanism, as shown in columns of Table 3. We
build tickless and standard tick-based kernels with different
tick rates (timer events per second) of 100Hz (default value
for a server configuration) and 1000Hz. We measure idle
core temperatures and system power in all these configura-
tions. For this section and the rest of the paper we choose
configuration 4 in Table 2 as the baseline for all power and
temperature results. For that configuration the system is
idle and both low-power mechanisms analyzed in the previ-

time

p
o
w
e
r

Pidle

Pexec

Psnooze

≈

≈

tup tdowntsnoozetawake

≈

Figure 2: Power spikes due to tick time events

ous section are active, leading to the minimum power con-
sumption and core temperature.

In terms of number of tick timer events, there is a signif-
icant difference (row 1 of Table 3). The number of events
per second in a non-tickless system is much higher than in a
tickless system, increasing by 13X (from 30 to 399) for the
100Hz kernel and 102X (from 39 to 3993) for 1000Hz kernel.
These results show the effect of employing a tickless kernel,
reducing the number of times that the cores have to wake
up from their idle state to handle each of these interrupt
requests.

Temperature and power results shown in Table 3 demon-
strate the power and the thermal effects of the tickless ker-
nel. It is interesting to notice that the first three configu-
rations (tickless-100, non-tickless-100 and tickless-1000) do
not show any significant variation. However, the last config-
uration, non-tickless-1000, has a power consumption 2.75%
higher than the rest, with a slight increase in temperature.
The reason for this increase is that the number of timer
events per second is much higher in this configuration than
the rest (10X compared to non-tickless-100 and 54X com-
pared to tickless-1000). As the number of timer events per
second grows, cores are more disrupted and cannot stay
much in the nap mode. This is not as significant for the
non-tickless-100 kernel due to the smaller number of ticks
generated by the lower resolution timer.

Figure 2 depicts the interrupt timing behavior in more
detail. Each of the spikes in the figure represents an expira-
tion of the tick timer. When the system is idle it consumes
Pidle (configuration 4 in Table 2) and on every tick timer
expiration the following actions are carried out:

• The core wakes up from nap mode to active mode.
This transition takes tup µs. In [2] it is shown that
tup fits in the context switch delay, that is, in the or-
der of few microseconds. Our results show that for
the POWER6 processor, tup equals 4 µs. As we have
seen in Table 2 (configuration 1), during this period
the system power consumption is the highest among
the four configurations shown. Pexec represents the
absolute power for that configuration.

• Once in active mode, we have to account for the time it
takes the interrupt handler to run and to go from user
mode to kernel mode and vice-versa, tawake. In the
interrupt handler, the OS checks whether there is any
job to do. As shown in [11, 12] both steps take in the
order of few microseconds (1-3µs). We assume 3 µs in
this paper. During this period, the power consumption
remains at Pexec.

• In an idle system most of the time the OS just contin-
ues in the idle loop and enters the snooze delay loop
checking if a context switch is needed. As the hard-
ware priority is reduced when entering the snooze de-
lay loop, the system power consumption goes down to

Psnooze (Table 2 shows a 8.7% reduction over Pexec).
This phase lasts for tsnooze, which by default is 100 µs
in Linux. Changing the hardware priorities requires
executing an OR operation, so we assume a delay of 0
µs.

• Finally, the system goes back to nap mode in a transi-
tion that takes tdown µs. Our results show that for the
POWER6 processor, tdown equals 4 µs. During this
period, the power consumption increases again up to
Pexec and gradually decreases to Pidle.

The effect of ticks on the power consumption is repre-
sented by Equation 1, where ttotal is the observation period
and #ticks is the number of ticks occurred during that pe-
riod.

P =
(

[(tup + tawake + tdown) × (Pexec − Pidle)

+ tsnooze × (Psnooze − Pidle)] × #ticks

+ ttotal × Pidle

)
/ttotal

(1)

We now apply Equation 1 to understand the low impact
of the tickless mechanism (especially for HZ=100). In the
previous section, Table 2 displays the power consumption
for the idle loop using different configurations. These mea-
surements are conducted when all four cores are in the same
state, therefore for the rest of this analysis we will assume
that all cores treat the tick-timer expiration at the same
time. If we considered expirations independently, their num-
ber would be higher but system power consumption would
be significantly lower as only one core would be active at a
time. Thus, both analysis would lead to very similar results.

For non-tickless-100 we have approximately 100 tick-timer
expirations per second in the whole system. Using Equa-
tion 1, the computed power consumption under this scenario
is 0.24% over Pidle. For the case of non-tickless-1000, there
are approximately 1000 wake-ups per second, which leads to
a power consumption of 2.3% over the baseline. Both results
are close in absolute terms to the actual measurements in
Table 3.

Overall, we conclude that the tickless mechanism does not
significantly reduce the power consumption for a standard
tick resolution (HZ=100) as the number of times the cores
exit the nap mode is not enough to noticeably increase the
power consumption during the period of one second. This
observation may change for other systems with the follow-
ing characteristics: 1) the time to go from/to the low-power
(tup and tdown) mode is high. This may happen in pro-
cessors in which low-power modes introduce changes in the
supply voltage, in which case tup can be much higher; 2)
the difference between Pexec and Pidle is high; or 3) tsnooze

is relatively long. Such formulation of the interrupt behav-
ior can help evaluate different kernel configurations for the
POWER6 system without the need to deploy them in an
actual system.

4.2 System Under Load Characterization
Next, we analyze the power and thermal behavior of our

POWER6 system when it is under varying load levels. We
also demonstrate the impact of dynamically varying the num-
ber of active cores on power consumption. In this sec-
tion, because of space constraints, we use a subset of SPEC
CPU2006 with distinct representative behavior (e.g., inte-
ger/floating point, high/low IPC, high/low memory access
count, etc.).

cpu_int ld_l1 ld_l2 ld_mem st_mem cpu_fp
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1T/1C 2T/1C 3T/2C 4T/2C

Benchmarks

R
el

at
iv

e
po

w
e r

Figure 3: METbench power consumption for different number
of threads (T) and cores (C).

cpu int, cpu fp cpu int,ld l1 cpu int,ld mem

Cores 1 1 1
Tavg (%) 18.2 19.6 17.1
Pavg (%) 6.6 7.2 8.2

Aggregated Performance Counters
IPC 1.77 1.56 1.31

L1 MPKC 0.00 0.00 1.97
L2 LD MPKC 0.00 0.00 1.95
L2 ST MPKC 0.00 0.00 0.00

Table 5: METbench temperature/power results for 2 threads
(mixed workloads). Power and temperature are relative to the
idle system.

4.2.1 Effect of Workload Characteristics on Power
and Thermal Behavior

It is well established that power and thermal behavior of
computing systems strongly depend on dynamic character-
istics of the running workloads. To characterize the effect
of workload characteristics on POWER6, we conduct several
experiments with different applications from METbench and
SPEC CPU2006 benchmark suites. While, in general, power
and thermal behavior change with the amount of activity in
the system, there is not a single characteristic factor that
directly reflects the power consumption of the system. It
is rather a combination of application features such as its
IPC and memory intensity. We present measured power and
thermal characteristics for METbench and SPEC CPU2006
benchmarks in Table 4. The table shows measured average
temperature, Tavg (percentage over the baseline), average
system power, Pavg (percentage over the baseline), IPC, L1
misses per kilo-cycle (L1 MPKC), and L2 load and store
misses per kilo-cycle (L2 LD MPKC and L2 ST MPKC) for
each benchmark.

The results presented in Table 4 show the strong influence
of different workload characteristics on power and thermal
behavior. We observe strong deviations among benchmarks
in terms of their power and thermal behavior and their as-
sociated performance metrics. Below we look at specific
benchmark categories and derive the relations between ma-
jor workload features and their impact on power and tem-
perature.

CPU-bounded benchmarks: We see that high-IPC
and highly-CPU-bounded benchmarks generally lead to higher
core temperatures. Among the METbench microbenchmarks,
cpu int has the highest IPC and a core temperature that
is 7-9% higher than the other microbenchmarks. Within
SPEC CPU2006, the benchmarks that cause higher core
temperatures are h264ref, bzip2 and cactusADM. These three
benchmarks also present the highest IPC among the SPEC
CPU2006 benchmarks used in this work 2.

Memory-bounded benchmarks: Interestingly, while

2METbench microbenchmarks are designed to exercise a
single resource in the system at a time. In contrast,
SPEC CPU2006 stress different parts of the system at once.

cpu int ld l1 ld l2 ld mem st mem cpu fp h264ref bzip2 gcc dealII lbm cactusADM mcf milc soplex

Types INT INT INT INT INT FP INT INT INT FP FP FP INT FP FP
Tavg (%) 19.8 12.5 13.0 10.2 14.6 10.2 22.7 20.7 16.8 19.8 15.5 21.4 14.8 15.5 15.5
Pavg (%) 6.0 5.1 5.6 6.4 9.4 4.1 7.8 7.4 7.3 7.6 13.1 10.0 7.7 9.4 8.3

Aggregated Performance Counters
IPC 1.32 0.26 0.034 0.0020 0.018 0.47 1.16 0.79 0.44 0.66 0.39 0.85 0.12 0.19 0.32

L1 MPKC 0.0 0.0 32.5 1.94 3.62 0.0 11.0 8.9 5.8 5.9 29.5 29.3 5.58 8.3 8.2
L2 LD MPKC 0.0 0.0 0.0 1.94 0.0 0.0 0.00 0.05 0.66 0.25 0.25 0.06 1.20 1.84 0.95
L2 ST MPKC 0.0 0.0 0.0 0.0 3.61 0.0 0.02 0.13 0.16 0.02 5.6 0.51 0.05 0.46 0.37

Table 4: METbench and SPEC CPU2006 temperature/power results when executing 1 thread. Power and temperature are relative to
the measured values when the system is idle.

CPU-bounded benchmarks achieve higher temperatures, they
do not consume the most power. As Table 4 shows, mem-
ory intensive benchmarks generally consume more power.
This is because of the accesses to main memory, which carry
significant power cost. Among the microbenchmarks, ld -
mem and especially st mem are the workloads with the high-
est power consumption. Although ld mem power consump-
tion does not differ significantly from the other microbench-
marks when only one process is used, Figure 3 shows the
increasing power gap with increasing number of threads.
For the SPEC CPU2006 benchmarks we see a similar trend.
Memory-intensive benchmarks like milc and, especially, lbm
consume more power than the rest of the benchmarks. For
instance, relative to the baseline, lbm consumes 5.3% more
than h264ref, with significantly lower temperature in com-
parison. The core temperatures are generally low for memory-
intensive benchmarks as they spend most of the time waiting
for data from the main memory.

mcf is a low-IPC benchmark with a considerable amount
of L2 cache misses per kilo-cycle and with similar charac-
teristics to milc. However, the power consumption of mcf
is considerably smaller (1.7% less). The most significant
difference between them is the number of L2 store misses
per kilo-cycle, which is 10X higher for milc. As we have
seen before in Figure 3, accessing main memory because of
a store operation leads to a higher power consumption. Ac-
cordingly, lbm, which has the highest number of L2 store
misses, also shows the highest power consumption among
the evaluated benchmarks.

FP benchmarks: An interesting application in this cat-
egory is cpu fp. Despite having a medium IPC (0.47), it
achieves the lowest core temperature. We believe that the
reason for this behavior is related to the fact that the floating
point unit (FPU) occupies a bigger area than other struc-
tures. Therefore, a fully utilized FPU has a lower power
density than other fully-utilized parts of the core, such as
the fixed point unit (FXU), which is stressed by cpu int.
Hence cpu fp yields a lower temperature.

Comparing the execution of METbench and SPEC CPU2006,
we also notice that SPEC applications tend to consume
more power and reach higher temperatures. METbench mi-
crobenchmarks are very specific and they “light up” fewer
parts of the processor than SPEC CPU2006 benchmarks do.

In Table 5 we also look at the impact of heterogeneous
workload mixes. Here, we see that co-scheduling a computation-
intensive benchmark and a memory-intensive one leads to
both high core temperatures and a high power consumption.
For example, considering cpu int and ld mem, one thread
continuously performs arithmetic operations while the other
exercises the memory subsystem. In contrast, a more homo-
geneous mix, such as cpu int and cpu fp leads to lower power
consumption. In this case the core temperature is higher as
the core is more stressed.

Figure 3 also alludes to an important characteristic of the

Therefore, some SPEC CPU2006 benchmarks consume more
power than METbench.

POWER6 processor. As we increase the number of used
cores from one to two, we see a significant jump in power
consumption. This is due to the fact that a second core has
to exit the nap mode to serve the threads. We demonstrate
in the following sections that every core that leaves the nap
mode adds a constant power increment of approximately
5% to the system power consumption. We will refer to this
increment as PAC in the following sections.

Using the relations derived in this section, we develop a
power model for the POWER6 system in Section 5.

4.2.2 Effect of Core Usage on Power and Thermal
Behavior

In this section we execute several copies of a microbench-
mark from the METbench suite in an incremental way. First
we execute 2 copies on contexts 0 and 1 (one core), then 4
copies on threads 0, 1, 2 and 3 (two cores), and so on until
using the 8 threads (four cores). We name each of these
steps an execution step. Each execution step is roughly 9
minutes long (360 iterations3), considerably longer than the
granularity that we are allowed to read the power informa-
tion.

cpu int: Figure 4 shows the results with cpu int. In the
figure we notice that power remains quite stable in the in-
tervals between execution steps. Power noticeably increases
when two more copies of cpu int are started and a new core
is used. We observe the first increment around one minute
after the program is started. This is because of the 1min
access granularity of the TPMD for power measurements.

From this experiment we estimate that for every two new
copies of cpu int that are running on the system, the system
power consumption increases approximately 7.6%. Another
observation is the interaction between cores within the same
chip. In the figure, around t = 50 seconds, we see that
the temperature of core 1 increases approximately 8% when
core 0 starts executing the benchmark. Later, around t =
600 seconds the temperature of core 0 further increases 7%
when core 1 starts running. This is due to the lateral heat
conduction between the cores within the chip. On the other
hand, as the two chips are physically separated, we do not
see any inter-chip effect in temperature.

As cpu int is not using any shared resources between the
cores, the aggregated throughput does not reduce as we in-
crease the number of used cores. This can be seen in Ta-
ble 6a. The IPC is stable around 0.85 per thread and the
aggregated throughput increases linearly with the number
of threads being executed.

ld mem: This benchmark continuously executes load in-
structions always missing in all levels of the cache hierarchy.
Therefore, it always needs to go to main memory to get
the data. As shown in Table 6b, its IPC is much less than
for cpu int. As we have previously stated, memory-intensive
workloads typically consume more power than computation-
intensive loads. This can be seen again comparing the incre-

3METbench can iterate a benchmark a certain number of
times in order to obtain better stability in the results.

� ��� ���� ���� ����

�

����

���

����

���

����

���

����

���

����

�

�

��

��

��

��

��

�	
����	�� �	
����	�� �	
����	�� �	
����	�� �	�����	����	�

��
	���	�����

�
	
��
��
�
	
��
	

�
	
��
��
�	
��
�
�

�
	
��
��
�
	
��
�
�
	
��
��
�

��	�

��	����	�

��	�
��	�

Figure 4: Several copies of cpu int are used to create an incremental execution (2, 4, 6 and 8 hardware threads). The values are relative
to the power and temperature measurements when the system is idle.

#threads

IPC per thread

aggregated IPC Pavg (%)
chip0 chip1

core0 core1 core2 core3
0 1 2 3 4 5 6 7

2 0.8482 0.8483 1.6965 8.3
4 0.8480 0.8480 0.8489 0.8489 3.3938 16.5
6 0.8478 0.8478 0.8489 0.8489 0.8485 0.8485 5.0904 23.9
8 0.8480 0.8480 0.8481 0.8481 0.8487 0.8487 0.8486 0.8486 6.7868 31.2

(a) cpu int

#threads

IPC per thread

aggregated IPC Pavg (%)
chip0 chip1

core0 core1 core2 core3
0 1 2 3 4 5 6 7

2 0.0017 0.0017 0.0034 10.6
4 0.0011 0.0011 0.0011 0.0011 0.0044 17.0
6 0.0010 0.0010 0.0010 0.0010 0.0016 0.0016 0.0072 26.2
8 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0088 33.0

(b) ld mem
Table 6: IPC, aggregated IPC and power consumption for the incremental execution of multiple processes. The power consumption
values are normalized with respect to the ones obtained when the system is idle.

mental executions of cpu int and ld mem where power con-
sumption is always higher for the latter in every execution
step.

It is interesting to notice the reduction in IPC as more
ld mem threads are run. For instance, by comparing the
cases where two threads (on the same core) and four threads
(on the same chip) are executed on the system, the IPC
for the first thread in the core 0 decreases approximately
36%. This suggests that there is contention in the shared
hardware resources between cores. Looking at the results for
six threads, we observe that the IPC for contexts four and
five is approximately the same as it was in the case of two
threads for contexts zero and one. The drop in IPC occurs
within a chip when going from two to four contexts. Thus,
the contention occurs within the chip, probably in the SMP
interconnect fabric, as both L1 and L2 cache are private to
each core and each core has its own memory controller and
channels interfacing the main memory.

4.2.3 Effect of Hardware Thread Priorities on Power
Consumption

It has been previously demonstrated that the hardware
prioritization mechanism in POWER processors can improve
system throughput [4]. Here we look at hardware prioriti-
zation from a power management angle. We show the ef-
fect of applying this mechanism in a power-aware manner
and present use cases where thread prioritization can im-
prove not only system throughput, but also system power
consumption. Although there are multiple priority levels in
POWER6, we present only a subset of them, as we are more

interested in showing their possible use to improve energy
efficiency, rather than doing an extensive characterization.

In Section 4.1.1 we showed that by using hardware thread
prioritization, the power consumption for an idle system can
be reduced up to 9%. In this case, since the system was
solely running the idle loop, performance was not a major
concern. In the case of a system that is executing workloads,
hardware thread prioritization cannot be blindly used to re-
duce power consumption in a performance-agnostic man-
ner. Careful consideration of power-performance trade-offs
is needed to choose the appropriate priority levels. We show
that by exploiting workload characteristics, we can use hard-
ware thread prioritization to reduce power consumption and
increase system throughput.

Table 7a shows the results of executing a high-IPC appli-
cation (h264ref) together with a low-IPC, memory-intensive
one (lbm). With the standard priority configuration, (4,4),
the system has a power consumption 16% over the baseline.
lbm is the main contributor to that consumption. If the pri-
ority configuration is changed to (5,4), so that the priority of
the high-IPC workload is increased, the system power con-
sumption is slightly reduced as less memory requests are per-
formed by lbm. Moreover, the aggregated IPC is increased
as more computational resources are given to h264ref, thus
obtaining a better relative energy-delay product (EDP) [5].
It is important to notice that in this case the individual IPC
for lbm is not drastically reduced (approximately by 11%).
In the most extreme configuration (6,1) the power is further
reduced and the performance is increased again. However,
this comes at the expense of significantly reducing the per-
formance of the memory-intensive workload (lbm).

Priorities 3,4 4,4 5,4 6,1

IPC
h264ref 0.32 0.55 0.72 1.15
lbm 0.36 0.35 0.31 0.01

Aggregated 0.68 0.9 1.03 1.16
Pavg (%) 15.1 16.1 15.1 8.7

EDP (relative) 1.73 1 0.75 0.56
ED2P (relative) 2.29 1 0.65 0.43

(a) Mixed workload (h264ref and lbm)

Benchmarks cpu int ld mem
Priorities 1,1 4,4 1,1 4,4

Aggr. IPC 0.07 1.80 0.0030 0.0034
Pavg (%) 3.9 6.9 8.7 9.6

EDP (relative) 642.9 1 1.2 1
ED2P (relative) 16508.8 1 1.5 1

(b) Effect of priority (1,1)
Table 7: Power results using prioritization for a single core.
Power values are normalized to consumption when idle. EDP
and ED2P normalized to configuration (4,4).

We consider priority one as a special case for power man-
agement. Table 7b characterizes the effects of this priority
mode, where it shows the results of executing a CPU-bound
(cpu int) and a memory-bound (ld mem) workload with pri-
orities (4,4) and (1,1). We notice that the effect of hardware
thread prioritization depends on the characteristics of the
workload. For instance, running ld mem with priority (1,1)
does not significantly affect its IPC, as it is an extreme low-
IPC memory-bound benchmark. The power consumption is
also not significantly affected as this benchmark consumes
most of the power in the memory subsystem. For cpu int,
a high-IPC workload, the behavior is completely different.
The power consumption is decreased 3%, at the expense of
reducing the IPC from 1.8 to 0.07. In general, the higher
the core activity, the higher the power reduction obtained
with priority one and the higher the performance impact.

One major advantage presented by this priority-based power-
performance management scheme is the ability to make“small”
changes to the system behavior to achieve desired power-
performance targets. Unlike most dynamic adaptation schemes
that expose drastically different operating points, the prioritization-
based approach can provide small shifts in power and perfor-
mance with very small impact to runtime behavior. Another
advantage of this mechanism is its very short latency until
the applied power management actions take effect. The re-
sponse time of this mechanism is dramatically faster com-
pared to external mechanisms such as dynamic voltage and
frequency scaling (DVFS). Therefore, hardware thread pri-
oritization can be used as a fast and flexible initial response
in the case of a thermal/power emergency [10].

5. APPLICATION OF THE RESULTS
In this section we apply some of the learning from the

characterization work that is presented in the previous sec-
tions. Section 5.1 discusses an analytical power model that
relies on performance counters. Section 5.2 analyzes the im-
pact of the power and thermal behavior of the system on
the OS scheduler.

5.1 Power model
The possibility to obtain temperature and power measure-

ments is a useful feature that is provided by POWER6 based
systems. However, some configurations may not include the
external microcontroller responsible to obtain these mea-
surements (TPMD). Moreover, in some systems, it may not
be possible to access the console that provides the temper-
ature and power measurements. Typically, the console is

0.00 0.02 0.04 0.06 0.08 0.10 0.12
1.2

1.21

1.22

1.23

1.24

1.25

1.26

1.27

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Aggregated IPC Relative power Linear Regression
for Relative power

L1 misses per cycle

R
e

la
tiv

e
 p

o
w

e
r

IP
C

(a) L2 accesses effect

0.000 0.002 0.004 0.006 0.008 0.010 0.012
1.24

1.26

1.28

1.3

1.32

1.34

1.36

0.0

0.5

1.0

1.5

2.0

2.5

Aggregated IPC Relative power Linear Regression
for Relative power

L2 misses per cycle

R
e

la
tiv

e
 p

o
w

e
r

IP
C

(b) Memory accesses effect

Figure 5: Effect of accesses to L2 cache and main memory on
system power consumption. Power values are relative to the idle
system consumption. Several instances of the same benchmark
are executed to create a higher power delta. The regression line
is just an approximation to show the increasing trend.

password protected and plain users do not have access to it.
Clearly, it is beneficial for users to understand the power and
thermal behavior of their applications. In another context,
since direct access to TPMD from the OS is not possible,
OS cannot use power and thermal information to improve
its decisions such as better scheduling in terms of power
consumption.

In this section, we present a model based on performance
counter (PMC) data to estimate power consumption of the
system that is under study. Since performance counter data
is available and accessible by the OS, an analytical model in
this form can alleviate all the shortcomings highlighted pre-
viously. This model follows a similar thinking as presented
in [3]. To the best of our knowledge, this is the first simple
analytical power consumption model for a POWER6-based
system. The model presents a good accuracy and it only
relies on the performance counters as the hardware support.
Moreover, since the set of performance counters required is
minimal, it is easier to implement it in run time systems
that take decisions based on performance counters data.

Similar to [3] we select a group of PMC that captures the
activity in different components of the system such as CPU,
memory, disk etc. In our case, we concentrate on the CPU
and memory parts since, as shown in [3], there is not a sig-
nificant variation in power consumption due to activity in
the other components (95% of the dynamic power consump-
tion is due to activity in CPU and memory). The selection
of the right set of performance counters for the model relies
on a hybrid scheme, where expert knowledge and pruning
techniques based on statistical analysis are utilized. The
scheme leads to a set of performance counters that obtain
significant accuracy in prediction POWER6 system power
consumption.

The power consumption due to activity in the chip is mod-
eled by using IPC and the number of L1 load misses per
cycle (L1LDMPC). The memory system contribution to the
power consumption is modeled by using the number of L2
misses per cycle (L2LDMPC and L2STMPC). As the sys-

tem does not have a L3 cache, every miss to the second level
cache goes to the main memory, thus L2 misses per cycle
are good indicators of memory power consumption. In [3],
authors do not differentiate between load and store misses.
However, as discussed in Section 4.2.1, in Table 4, bench-
marks with a high count of L2 store misses consume more
power than other type of workloads. Thus, the analytical
model includes L2 store misses to improve accuracy.

As we only have total system power consumption, it is im-
portant to understand the power behavior of different com-
ponents and whether a linear model of those components is
sufficient. For this purpose, we use two microbenchmarks
which can vary the miss rate both for L1 and L2 from zero
to cache/memory saturation point. Figure 5a displays the
power consumption variation as the L1 miss ratio grows
which provides an insight on the L2 cache power contri-
bution to the system power consumption. Figure 5b shows
a similar information for L2 misses reflecting the memory
power contribution to the system power. In both figures, we
observe that the power consumption values grow linearly as
the number of misses increase. Thus, we define the model
as a linear combination of these different factors that con-
tribute to the power consumption.

Equation 2 shows the model with its several components
that account for the total power consumption of the system.
The power is predicted as a percentage over the baseline
when the system is idle (i.e., no user-process is being ex-
ecuted and the cores spend most of the time in the nap
mode). From the characterization step in Section 4.2.1, we
observe that for each core that exits the nap mode there is
an increment in the power consumption (PAC). NAC is the
number of active cores, so multiplying it by PAC gives the
power consumption of all the cores in the system which are
not in nap mode.

P = NAC × PAC + α× IPC + β × L1LDMPC

+ γ × L2LDMPC + σ × L2STMPC
(2)

We conduct several descriptive statistic tests for the pa-
rameters in the data set (e.g., normality test for residuals,
and non-presence of non-random patterns in the residuals).
We also look at the significance of the parameters and their
correlation to the response variable.

It is important to note that the coefficients that are found
by regression are subject to change if size or type of the
components of the system are changed (e.g., memory). Mo-
tivated by this fact, we follow two different approaches to
train the model. (i) The first model (METbench training)
creation efforts rely on METbench data to train the model.
Since METbench runs five time faster than SPEC CPU2006,
the amount of time to collect training data for a new model
is considerably reduced. Thus, we only use METbench re-
sults to train the model, and we test the model with SPEC
CPU2006 data. In the case of a new model requirement for
a different system configuration, we can do it quickly by just
using METbench to collect the data and later to train the
model. (ii) The second model (shared training) creation ef-
fort combines all the data (METbench and SPEC CPU2006)
into a pool, and then relies on this dataset to train the
model. A more general and accurate model is possible when
a heterogeneous set of workloads are used. To cross-validate
the model, we use leave-one-out cross-validation technique.
Leave-one-out cross-validation is a standard statistic tech-
nique to estimate the accuracy of a regression model [15].

METbench training. Figure 6 shows the relative er-
ror in percent between our model estimation and the actual
power measurement. Different bars for a benchmark cor-

−2 −1 0 1 2 3
−2

−1

0

1

2

3

normalized measured power

n
o
rm

a
liz

e
d
 e

s
ti
m

a
te

d
 p

o
w

e
r

(a)

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

20

40

60

80

100

120

normalized residuals

re
la

ti
v
e

 f
re

q
u

e
n

c
y

(b)

Figure 7: Model validation using all the available data (MET-
bench and SPEC CPU2006). (a) shows the normalized measured
vs. estimated power. The values are normalized by subtracting
the mean of the error and dividing by the standard deviation of
the error. (b) shows the residue error distribution with the cross-
validation process. The residuals are normalized by dividing to
the actual measure value.

respond to different CMP configurations (1T1C, 2T2C and
4T4C), and hybrid CMP+SMT ones (2T1C and 4T2C). As
shown in Figure 6, most of the benchmarks are predicted
with an error equal or less than 5%. The relative error for
1T1C configuration is below 1% for almost all benchmarks.
The maximum error occurs for cactusADM when it is run as
four processes in SMT mode. We compute the average error
using the geometrical mean. The error is under 4% for all
the configurations.

In general, the estimation error increases as more pro-
cesses run on the system. We observe this effect for both
CPU-bound and memory-bound workloads. We attribute it
to the accumulation of the errors that are made to predict
the power consumption for each core in the system. When
both SMT and CMP capabilities are used, the estimation
error grows with respect to the CMP case. Specifically, the
error is more evident in high-IPC workloads such as h264ref,
cactusADM and dealII. These benchmarks present a higher
degree of interaction when they are co-scheduled on the same
core. For memory-intensive benchmarks such as lbm, mcf
and milc there is no significant error increase when both
SMT and CMP capabilities are used. Nonetheless, the aver-
age error for the CMP+SMT case is between 2.5% and 5%
for two and four processes, respectively.

Shared training. By combining data from METbench
and SPEC CPU2006 to train the model, we capture wider
resource usage patterns, and thus we obtain a model that
could potentially predict unobserved data points in a more
accurate way. Figure 7a shows the normalized measured vs.
estimated power consumption. Model predictions are con-
siderably close to the real measurements for most of the data
points. The residual distribution with the cross-validation
process, shown in Figure 7b, resembles a normal distribu-
tion, with mean, µ = −7.2 · 10−5, and only 4.6% of the in-
dividuals are out of the confidence interval [µ− 2σ, µ+ 2σ].
The error is under 6% for all the cross-validation steps.

Overall, both of the approaches that are used to construct
the model obtain quite accurate results, with errors less than
6%. This level of accuracy is sufficient for users to study
the power consumption behavior of their applications. In
addition, this level of accuracy is also attractive for OS to
implement such a model to deploy optimization policies.

5.2 Thread Placement
With the arrival of SMT and CMP architectures, ensuring

fairness between the different running processes has become
an important issue. Several techniques such as scheduling

0

1

2

3

4

5

6

7

benchmarks

re
la

ti
v
e
 e

rr
o
r

(%
)

pe
rlb

en
ch

bz
ip
2

le
sl
ie
3d

na
m

d

go
bm

k

de
al
II

so
pl
ex

po
vr

ay

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

gc
c

lib
qu

an
tu

m

h2
64

re
f

to
nt

o
lb
m

om
ne

tp
p

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

bw
av

es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct
us

AD
M

av
er

ag
e

1T/1C

2T/2C

4T/4C

2T/1C

4T/2C

Figure 6: Estimation accuracy for the power model trained with METbench data only, for different number of threads (T) and cores (C).

For instance, 4T/2C means 4 threads are run on 2 cores (using SMT capabilities). The error is computed as:
|measured−predicted|

measured
×100.

1 2 3 4 5 6

Pattern
1100 1010 1000 1111 1100 1010
0000 0000 1000 0000 1100 1010

HW threads 2 2 2 4 4 4
Cores 1 2 2 2 2 4

Pavg (%) 9.6 13.3 12.8 20.2 19.3 29.4
IPC 1.75 2.33 2.34 3.51 3.51 4.68
EDP 1.74 1.01 1 1.65 1.64 1
ED2P 2.32 1.02 1 2.18 2.14 1

(a) h264ref

1 2 3 4 5 6

Pattern
1100 1010 1000 1111 1100 1010
0000 0000 1000 0000 1100 1010

HW threads 2 2 2 4 4 4
Cores 1 2 2 2 2 4

Pavg (%) 15.1 17.9 22.0 22.0 29.4 34.9
IPC 0.41 0.44 0.76 0.42 0.83 0.88
EDP 3.24 2.88 1 3.97 1.08 1
ED2P 6.01 4.98 1 8.33 1.14 1

(b) lbm
Table 8: Effect of core configurations on power and performance.
Power is normalized to the idle power. EDP and ED2P values
are normalized to the best configuration within each group (2 or
4 threads).

domains, load balancing and cache affinity have been imple-
mented in actual operating systems.

Job scheduling techniques have also been used in order
to reduce power consumption. For instance, Linux pro-
vides a setting, sched mc power savings, that attempts to
save power consumption by grouping several processes into
a single chip, therefore leaving other chips idle. An analo-
gous setting, sched smt power savings, exists to consolidate
several processes into a single core [28].

In this section we study the effect of thread placement
on the power consumption. Given a set of processes, there
are different possible ways of assigning them to hardware
threads, considerably varying the impact on power and per-
formance. In order to analyze this impact we conduct sev-
eral experiments where multiple processes are executed with
different core usage patterns. The second row in Tables 8a
and 8b shows the core usage pattern used. For instance,
the binary pattern 1000 1000 means that the first hardware
thread in the first core in every chip is used to execute one
process.

CPU-bounded workload: Table 8a shows the effect of
thread placement for 2 and 4 instances of the CPU-bounded
benchmark h264ref. The first thing we notice is that SMT
configurations (columns 1, 4 and 5) present lower power con-
sumption with respect to the other scheduling options using
the same number of threads. For example, the configuration

on column 1 reduces power consumption by 3.2% (1− 1.096
1.133

)
with respect to the configuration in column 2. Analogously
configuration 5 is 7.8% better than configuration 6. How-
ever, as h264ref is CPU-bound, running both processes in
SMT mode on the same core affects the performance (24.9%
and 25%, respectively). The energy-delay product is worse
for these configurations as the small power reduction does
not make up for the loss in performance. Similar conclusions
were obtained in [19].

More interestingly, the power consumption remains the
same between using 2 cores in a single chip (configuration
2) and using one core in each chip (configuration 3). We
expect that in configuration 2, the second chip would be in
low power mode most of the time, leading to a power con-
sumption reduction. However, the POWER6 saves power
at the core level, without any extra reduction when a whole
chip is idle. Therefore, what really matters is the number of
idle cores and not whether they are in the same chip or not.
The same behavior can be observed when using 4 threads
in configurations 4 and 5. If the processor were able to re-
duce the power consumption when a whole chip is idle, it
would certainly be possible to consolidate several processes
into one chip in order to reduce total energy consumption.

Memory-bounded workload: For memory-intensive work-
loads the situation clearly changes. As they are not bounded
by the pipeline resources, executing 2 threads on the same
core in SMT mode does not significantly hurt the perfor-
mance. Comparing the IPC for configurations 1 and 2 in
Table 8b, we observe that the IPC reduces only by 6.8%
(from 0.44 to 0.41). The same behavior is observed for con-
figurations 5 and 6, where four threads are run and the IPC
decreases by 5.7%.

lbm is a memory-intensive application and it saturates the
memory bandwidth of the first chip, as we saw before in the
incremental execution of ld mem (Section 4.2.2). As each
chip has two memory channels (one per core), distributing
the processes across both chips will better use the available
bandwidth to memory, compared to consolidating them into
one chip. In Table 8b we can observe that the performance
nearly doubles when we go from single chip configurations
(1, 2 and 4) to double chip ones (3, 5 and 6).

Effects on scheduling: Recent versions of Linux use
scheduling domains for representing the CPUs hierarchy with
a tree-based shape. In our system, at the first level there are
different chips or packages in the system. The second level
has the cores belonging to the chips from the previous level.
Finally, the third level contains the HW threads or contexts
for every core.

When using the default behavior, the Linux scheduler tries
to distribute the threads throughout all the cores in the sys-

1 2 3 4 5 6

Pattern
H0L0 H000 L0L0 L0H0 H0H0 H0L0
0000 L000 H000 L000 L0L0 H0L0

HW threads 2 2 3 3 4 4
Cores 2 2 3 3 4 4

Pavg (%) 21.1 19.7 26.2 26.6 34.9 32.6
IPC 1.54 1.56 1.60 1.93 2.78 3.06
EDP 1.05 1 1.45 1 1.23 1
ED2P 1.07 1 1.74 1 1.36 1

Table 9: Effect of core configurations for a mixed configuration
(h264ref and lbm). Power is normalized to the idle power. EDP
and ED2P values are normalized to the best configuration within
each group (2, 3 or 4 threads).

tem, avoiding to run two threads on the same core unless it is
not possible (i.e., there are more running threads than cores
in the system). As we have seen, running two threads in
SMT mode is not very efficient mainly when the threads are
CPU-bound. Linux prevents putting threads into the same
core as long as there are free ones available. However, if the
sched smt power savings flag is active, Linux will group pro-
cesses degrading overall performance and energy efficiency.
We have also seen that when using processors with power-
saving techniques at the core level, grouping the threads in
the same chip, leaving other idle, introduces no benefit. This
is due to the fact that what really matters is the number of
active cores. In this case, sched mc power savings would not
lead to a power reduction.

In terms of performance and energy efficiency, we analyze
the effect of grouping the threads into a single core/chip.
In general, the major source of slowdown between threads is
sharing the caches. In our setup, the L2 is private so threads
do not suffer any slowdown, due to the cache, whether they
are placed on different chips or on the same chip. However,
we have seen that there are other resources shared at the
chip level that have to be taken into account for memory-
bound threads. In this scenario, multi-chip configurations
are much more efficient in terms of energy-delay product
with reductions up to 2.9X (configuration 3 vs. 2) and 3.7X
(configuration 4 vs. 5) as shown in Table 8b. Thus, the deci-
sion on whether to consolidate tasks into the same core/chip
cannot be static. It depends on the low-power capabilities
of the underlying architecture and the characteristics of the
application.

Mixed workload: A scheduler that is aware of the work-
load characteristics can use this information to increase the
system performance and/or reduce the power consumption.
Table 9 shows the results of executing a mixed workload con-
sisting of several h264ref and lbm processes 4. Comparing
configurations 5 and 6 we observe that the latter is a hetero-
geneous workload mix at the chip level (each chip executes
a CPU-bound and a memory-bound workload), whereas the
former is a homogeneous mix at the chip level. This will
affect both performance and power consumption. The per-
formance of configuration 6 is 10% better and the power
consumption is 2.3% less. This leads to a 18.7% improve-
ment in EDP and 26.3% in ED2P.

An even more noticeable situation is seen in configurations
3 and 4. As in the previous case, placing both memory-
bound workloads on the same chip limits their performance,
without decreasing the total system power consumption.
Thus, by co-scheduling the high-IPC and the memory-intensive
workloads on the same chip we can reduce the interference
between them, boosting the performance and reducing the
energy consumption (1.7X improvement in the ED2P).

Effects on scheduling: Current implementation of the

4In this case, the patterns are composed of Hs and Ls, stand-
ing for h264ref and lbm, respectively.

Linux scheduler does not take into account workload charac-
teristics. This means that the scheduler may fail to achieve
the optimal performance and/or the minimum energy con-
sumption. For instance in Table 8b the scheduler may choose
either configuration 2 or 3, as none of them uses SMT. If the
former configuration is chosen, a 5X ED2P deterioration will
be experienced. In Table 9 the scheduler may choose either
configuration 3 or 4, leading to a 1.7X ED2P worsening.
These results show the importance of considering the work-
load characteristics and interaction in order to take more
efficient scheduling decisions.

6. RELATED WORK
Several papers focus on the energy/thermal power behav-

ior of CMP/SMT processors. However, either they do not
consider a hybrid CMP/SMT processor, like the POWER6 [3,
21, 13] or they use a simulation framework [25, 19] or they
only consider temperature but not power consumption [7].
To the best of our knowledge, we show the first characteri-
zation of a real hybrid CMP/SMT implementation.

There are different studies that characterize and propose
techniques to improve power consumption and to reduce the
temperature on real machines. Choi et al. [7] propose a
thermal-aware task scheduler for the IBM POWER5. They
use heat slack in order to reduce the temperature by using
thread migration. Hanson et al. [14, 13] conduct a tem-
perature and power characterization on an Intel Pentium M
processor. They also create a runtime system which mon-
itor the temperature on the system and tries to maximize
the performance while ensuring the system is working un-
der safe power and thermal constraints. Kursun et al. [17]
characterize how process variation affects the temperature
on the processor. They also develop a scheduling technique
that aims to reduce the possible hotspots created by process
variation.

Using performance counters to estimate power consump-
tion on a system is an active topic where different studies
exist. Pusukuri et. al [24] propose a simple model that uses
cycle count and L3 misses to estimate power consumption
on AMD processors. Powell et al. [23] develop a technique
that estimates power consumption for the different parts of
a processor. They do so by correlating activity in these
parts with the power consumption using a few performance
counters. Bircher and John [3] use performance counters to
estimate power consumption for the whole system including
memory, chipset, I/O, disk and the processor. The model
for the IBM POWER6 processor presented in this work is
similar to the last one mentioned.

Fan et al. [9] perform a study on power consumption in
a Google’s data center. They show that servers spend a
considerable percentage of the time in idle mode between
work requests. They also state that if the idle power of
a system can be reduced down to 10% of its peak power
consumption, the energy consumption can be reduced by
50%. Therefore, initiatives like Linux tickless are very useful
in order to create systems that are more energy-efficient.
In the same direction, Meisner et al. [20] try to bring the
power consumption close to zero when the system is idle by
switching off all the non-critical components in the system
until a new work request arrives. In addition, they compare
their approach to DVFS.

7. CONCLUSIONS
In this work we present a power and thermal character-

ization for a multichip POWER6-based system comprising
two chips. We characterize the power consumption and the

thermal behavior both when the system is idle and when it is
under load. Several levels are analyzed: hardware, operating
system and application.

Our results show that 1) At the hardware level: workload-
aware manipulation of thread priorities improves the sys-
tem’s energy-delay product by as much as 25%. The com-
bined effect of employing the nap mode and hardware thread
priorities show very significant benefits, reducing 24% both
the core temperatures and the system power consumption.
The increase in power consumption for one active core in the
system is approximately 7.6%. When a core is under load
its temperature increases which also affects the tempera-
ture of its sibling core, up to 8%. 2) At the OS level: The
tickless mechanism does not significantly reduce the power
consumption for a standard tick resolution (HZ=100) as the
number of times the cores exit the nap mode is not enough
to increase the power consumption. 3) At the application
level: We show that the most relevant factor affecting core
temperature is how much computing-intensive a workload
is. Typically, a workload with high IPC will increase core
temperature more than a low IPC one. A difference up
to 22.7% can exist within a single core. However, the to-
tal system consumption is not dominated by the workload
IPC. Memory intensive workloads consume more power than
high-IPC ones. Workloads resulting from the combination of
memory-intensive and computing-intensive benchmarks are
the ones which lead to a higher power consumption and core
temperature.

From the characterization study and using the informa-
tion provided by the performance counters we build a power
consumption model for the whole system. Moreover, by
using microbenchmarks we create this model by combin-
ing the CPU and the memory subsystem power consump-
tion. We test the accuracy of the model by running a set of
SPEC CPU2006 benchmarks and comparing the estimated
power consumption with the actual measurements. The re-
sults show that our model is considerably accurate with an
error below 3% for the CMP case and below 5% for the
CMP+SMT case.

Finally, we show that by placing threads in a workload and
package-aware manner, we can achieve significant energy im-
provements, without incurring significant performance degra-
dation, with a 3.7X reduction in energy-delay product. We
expect that characterizations, like the one done in this pa-
per, will help in the design of power and temperature-aware
schedulers for fully exploiting the low-power and thermal ca-
pabilities of the underlying CMP/SMT processors. Our two
case studies show examples of such applications.

Although the results obtained in this characterization are
not directly portable to other systems or architectures, we
believe that the methodology presented in this work, based
on a combination of microbenchmarks stressing different
bottlenecks in the system, and industry-standard bench-
marks such as SPEC CPU2006, can indeed be used for char-
acterizing other systems or architectures. It is left as future
work envisioning ways to automatically characterize a sys-
tem, provided a description of the architecture, following
this methodology.

8. ACKNOWLEDGMENTS
This work was supported by a Collaboration Agreement

between IBM and BSC with funds from IBM Research and
IBM Deep Computing organizations. It has also been sup-
ported by the Ministry of Science and Technology of Spain
under contract TIN-2007-60625 and grants AP-2005-3776
and AP-2005-3318, and by the HiPEAC Network of Excel-
lence (IST-004408).

9. REFERENCES
[1] Power ISA Version 2.06, 2009. http://www.power.org/resources/

downloads/PowerISA_V2.06_PUBLIC.pdf.
[2] B. Behle et al. IBM EnergyScale for POWER6 Processor-Based

Systems. IBM White Paper, 2009.
[3] W. Bircher et al. Complete system power estimation: A

trickle-down approach based on performance events. ISPASS,
2007.

[4] C. Boneti et al. Software-Controlled Priority Characterization
of POWER5 Processor. ISCA, 2008.

[5] D. M. Brooks et al. Power-Aware Microarchitecture: Design
and Modeling Challenges for Next-Generation Microprocessors.
MICRO, 2000.

[6] J. Casazza. Intel Core i7-800 Processor Series and the Intel
core i5-700 Processor Series Based on Intel Microarchitecture
(Nehalem), 2009.

[7] J. Choi et al. Thermal-aware task scheduling at the system
software level. ISLPED, 2007.

[8] EPA. EPA Report to Congress on Server and Data Center
Energy Efficiency. Technical report, U.S. Environmental
Protection Agency, 2007.

[9] X. Fan et al. Power provisioning for a warehouse-sized
computer. ISCA, 2007.

[10] M. S. Floyd et al. System power management support in the
IBM POWER6 microprocessor. IBM J. Res. Dev., 51(6), 2007.

[11] R. Gioiosa et al. Analysis of System Overhead on Parallel
Computers. ISSPIT, 2004.

[12] R. Gioiosa et al. Transparent Incremental Checkpoint at Kernel
level: A Foundation for Fault Tolerance for Parallel Computers.
SC, 2005.

[13] H. Hanson et al. Power, Performance, and Thermal
Management for High-Performance Systems. HPPAC, 2007.

[14] H. Hanson et al. Thermal response to DVFS: Analysis with an
Intel Pentium M. ISLPED, 2007.

[15] F.E. Harrell, Jr. Regression Modeling Strategies.
Springer-Verlag New York, Inc., 2006.

[16] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Computer Architecture News, 2006.

[17] E. Kursun et al. Variation-aware thermal characterization and
management of multi-core architectures. ICCD, 2008.

[18] H. Q. Le et al. IBM POWER6 microarchitecture. IBM J. Res.
Dev., 51(6), 2007.

[19] Y. Li et al. Performance, Energy, and Thermal Considerations
for SMT and CMP Architectures. HPCA, 2005.

[20] D. Meisner et al. PowerNap: Eliminating server idle power.
ASPLOS, 2009.

[21] A. Naveh et al. Power and thermal management in the Intel
Core Duo processor. Intel Technology Journal, 10(2), 2006.

[22] V. Pallipadi. Cpuidle - Do nothing, efficiently... Linux
Symposium, June 2007.

[23] M. D. Powell et al. CAMP: A technique to estimate
per-structure power at run-time using a few simple parameters.
HPCA, 2009.

[24] K. K. Pusukuri et al. A Methodology for Developing Simple
and Robust Power Models Using Performance Monitoring
Events. WIOSCA, 2009.

[25] R. Sasanka et al. The energy efficiency of CMP vs. SMT for
multimedia workloads. ICS, 2004.

[26] S. Siddha et al. Getting maximum mileage out of tickless.
Linux Symposium, June 2007.

[27] B. Sinharoy et al. POWER5 system microarchitecture. IBM J.
Res. Dev., 49(4/5), 2005.

[28] V. Srinivasan et al. Energy-Aware Task and Interrupt
Management in Linux. Linux Symposium, 2, August 2008.

