
Columbus: Filesystem Tree Introspection for
Software Discovery

Shripad Nadgowda1, Sastry Duri1, Canturk Isci1 and Vijay Mann2

1IBM T.J. Watson Research Center
2IBM Research-India

Abstract—Software discovery is a key management function
to ensure that systems are free of vulnerabilities, comply with
licensing requirements, and support advanced search for systems
containing given software. Today, software is predominantly
discovered through querying package management tools, or using
rules that check for file metadata or contents. These approaches
are inadequate as not every software is installed through package
managers, and agile development practices lead to frequent de-
ployment of software. Other approaches to software discovery use
machine learning methods requiring training phase, or require
maintaining knowledge bases. Columbus uses the knowledge of
the software packaging practices that evolved over time, and uses
the information embedded in the file system impression created
by a software package to discover it. Columbus is able to discover
software in 92% of all official Docker images. Further, Columbus
can be used in problem diagnosis and drift detection situations
to compare two different systems, or to determine the evolution
of a system overtime.

I. INTRODUCTION
Software discovery is a critical function of platform man-

agement and operations. Especially for PaaS cloud providers,
who are exposing their platforms to run customer applications,
virtual machine (VM) or container images. It is important
to know software contained in those images to ensure that
software is free of known vulnerabilities, complies with
licensing requirements. Today various cloud and software
vendors provide images for various software and runtime
distributions that are packaged ready-to-run on cloud. Some
examples to these are Amazon Machine Images (AMIs) and
Docker images among several other offerings. Despite the
emergence of a diverse and prolific image economy for cloud
(such as DockerHub[1], Amazon AWS Marketplace[2], IBM
Bluemix[3]), the existing capabilities provided for defining and
discovering the contents of these image distributions remain
primitive and highly inadequate. In most cases, images come
with bare minimum descriptions, which can be misleading,
error-prone and allow very limited options for content search
and discovery. Techniques for deep image content inspection
and software discovery can greatly enhance the identification
and usability of images in cloud.

Software is installed using package management tools,
or built from downloaded sources, or by copying pre-built
binaries. Figure 1 presents a taxonomy of popular package
management tools. As you can see, each OS distribution,
and sometimes language distribution has its own package
managers. Often more than one package management tool

is used to install software in a system, and in some cases
a package can be installed using different package managers.
For example, in an Ubuntu system, tomcat is installed using
apt, while BeautifulSoup python package can be installed
using either pip or easy install. Having so many methods
of packaging and installing software makes their discovery
complex.

In Columbus we explore generic software discovery tech-
niques that are agnostic to platform and software installation
method. It is inspired by the most fundamental and determin-
istic system characteristic of a software: each software has a
unique filesystem impressions, these impressions are typically
organized across unique namespaces and more generally has
their name embedded into these impressions. And we argue
that this characteristic is consistent, standard and unique across
different OS platforms (like Ubuntu, RHEL etc.) and instal-
lation method used (eg. agt-get install, dpkg -i, make/make
install etc.). Thus, Columbus does not require any machine
learning phase or knowledge database or fingerprint matching
tools. It can discover name of the software right from a given
filesystem impression. This is one of the important highlights
of Columbus as it overcomes the disparities in environment
or tools used to install that software and ensures that a single
solution can be used for discovery.

II. BACKGROUND AND RELATED WORK
One approach to software discovery involves querying

repositories created by package management tools [4], [5].
However, this approach cannot detect software installed
straight from sources. In another popular approach rules based
on file attributes or contents are used to discover software
[6], [7], [8], [9]. Main drawback of rule based systems is
that rules require continous maintenance as software evolves
and there is no standard governing how to write rules or
how to package so that rule writing becomes easy [8]. Ma-
chine learning techniques for software discovery are explored
in[10], [11]. Machine learning approaches can be considered
as a generalized rule based approach in the sense that these
approaches use most if not all file metadata added during
software installation. However, techniques explored in [10],
[11] work only file system changes caused by installation, not
file system state.

In our view, Minersoft[12] comes closer to Columbus. It
creates Software Graph from file system metadata that captures

Software packaging and installation

OS

Linux MacOS Windows

RHEL

apt/dpkg

Ubuntu/
debain

yum/rpm

homebrew oneGET

Language

python

pip easy_install

ruby

gem

go

go get

javascript

npm

virtualization

Virtual
Machine

Application
images
eg. AWS AMI

containers

Container
app images
eg. Docker image

unikernels

opam

Install from
source

make/
make install

precompiled
binary copy

Fig. 1. Software packaging and installation ontology

structural as well as semantic relationships that exist between
different files using heuristics and operating system specific
tools like yum, ldd, dpkg. The Software Graph is used to
create inverted index to facilitate search. Columbus uses file
system metadata and knowledge of software packaging prac-
tices for discovery. Experiments show that Columbus discovers
software frameworks which are not packages by themselves
but consist of multiple packages, for example, wordpress,
owncloud. Since no operating system specific tools are used
this approach could work across different operating systems.
Further, this approach lends itself for incremental discovery,
that is, to discover what is installed since last scan.

III. SYSTEM DESIGN

In Columbus we have made a deliberate decision to split the
software discovery objective into two incremental but indepen-
dent functions viz. software name discovery and software
version discovery. The number of software packages, their
supported platforms, varied package managers keeps growing.
In such situation, this separation of concerns helps us design
general purpose solution for discovering software names and a
specific solutions for discovering their versions. In this section
we discuss overall system design for Columbus.

A. Filesystem tree introspection
Filesystem is the most fundamental computing paradigm

that is used to organize, store and access data efficiently. And
it is maintained as hierarchical tree with each node being
a directory or file. Every subtree in this filesystem tree is
a namespace identified by name of its root. Some standard
shared namespaces on linux are log-namespace /var/log,
executable binary namespace /usr/bin.

Typically software has different data files associated with it
like configurations, libraries, binaries, log files etc. When it is
installed, it stores these files in the filesystem tree by creating
it own namspace or in a shared namespace. We identify
these changes made by software as filesystem impression of
software.

For example, when rabbitmq is installed, its filesystem
impression includes:
(1)/etc/default/rabbitmq-server
(2)/usr/sbin/rabbitmq-server
(3)/usr/lib/rabbitmq/lib/
(4)/usr/lib/rabbitmq/bin/

(5)/usr/share/doc/rabbitmq-server/

(6)/usr/lib/rabbitmq/lib/
rabbitmq_server3.6.4/ebin

As we can see it creates its own namespace to store
libraries(3,6), documentation(5) and uses shared namespace
to store configuration(1) and binary(2).

Another important characteristic observed is
that software often have their name embedded in
filesystem impressions. In the above example, all
namespaces created [rabbitmq-server(1,2,5),
rabbitmq_server3.6.4(6), rabbitmq(3,4,6)]
contain name of software rabbitmq with some variations
in it.

B. Software name discovery as a pure function of filesys-
tem meta-data

For brevity we like to define couple of terminologies used
in the discussion below, namely token and tag. Token is es-
sentially the raw name of every node in the filesystem tree i.e.
directory or file. Following the rabbitmq example, tokens
generated for filepath (4) are [usr, lib, rabbitmq,
bin] Thus, tokens are the most fundamental filesystem
metadata unit used by Columbus. Tags on the other hand are
discovered by Columbus after processing all tokens. Tags
are most-frequent longest-common-prefix amongst list of
all tokens in the filesystem tree. For example, from list of
tokens for all 6 impressions above ’rabbitmq’ is discovered as
a tag. Columbus uses two techniques to discover tags namely
a) namespace tagging and b) executable file tagging. The only
difference between the two approaches is - in former token
list is created from complete file paths of every impression
while in later case it is created only from the executable
file names in the impression. All common system tokens e.g.
[usr, bin, etc] are then removed from token list and
remaining tokens are further processed and split with common
name delimiters[−,:,]. These tokens are finally aggregated
based on their longest prefix match which is marked as tag
and these tags are then ranked based on their frequency
count. In section IV, we present our new data structure called
frequency− trie that is used to optimally discover and rank
tags from potentially very large list of tokens.

C. Software version discovery
Since Columbus works only from the filesystem metadata, it

is able to discover software version if it is encoded in metadata.
For example some numeric version identifier appended as suf-
fix to the tokens. Thus for executable like apache2, php5
or namespces like /usr/lib/rabbitmq/librabbitmq_server−
2.7.1; /usr/lib/python2.7 it can discover version number
and associate with discovered tag. But, as we observed many
software have their precise version number either stored in
VERSION, README files in their namespace or in their
executable binary itself. Columbus currently does not access
file contents and is not able to discover version information
for such software.

IV. IMPLEMENTATION DETAILS

This section discusses implementation details of Columbus.
It requires two inputs from user. First, a filesystem tree rep-
resenting either full filesystem or specific impression of given
software. And second input is token blacklist, which is used
to filter common system tokens like [usr, lib, var,
local] etc. to improve precision and optimize performance.
The token blacklist we used in our experiments was computed
by running Columbus on vanilla platforms of Ubuntu 14.04
LTS, Centos 7, Oraclelinux, Windows 7 and their results for
top 100 tags are combined and blacklisted.

Figure 2 shows architecture of Columbus.
Primarily there are three major components namely
Filesystem Metadata scanner, which generates fileset,
Token processor which tokenizes file paths from fileset and
filters blacklisted tokens, and Tag discovery which identifies
potential software tags.

A. File Metadata scanner

File metadata scanner traverses a given filesystem tree and
creates a fileset. A fileset consists of a set of files and di-
rectories and their metadata —absolute path, and permissions.
Linked files (symlink, hardlink) are included in fileset, but
links are not followed to the originals because during a typical
software installation links are used to make shared libraries on
the system available in software’s own namespace. Since in
Columbus our emphasis is on namespace analysis for discov-
ery, not including linked files from different namesapce into
fileset helps maintain accurate and consistent reflection of
filesystem impression and avoids duplicates. Sample fileset
for nginx software impression would include:
dir:/etc/nginx:666
file:/etc/nginx/nginx.conf:600
file:/usr/sbin/nginx:776

B. Token Processor

Token processor consumes the fileset generated by
scanner, and produces two Trie instances, one for names-
pace and another for executable files. In Tokenizer module
filepath is split into tokens based on (system specific) path-
separator and stored into a list. It generates tuple : (token−
list, isExecutable) for every member of fileset. If a file has

executable permission for any user, isExecutable flag is set
to true otherwise it is set to false. Tokens containing any
name delimiters (:, −) are further split into multiple tokens.
For the nginx example fileset, this output will be as follows:

(["etc", "nginx"], false)
(["etc", "nginx", "nginx.conf"], false)
(["usr","sbin", "nginx"], true)

These tuples are then forwarded to Filter module which
removes blacklisted tokens from token− list. In our example,
it will remove etc, usr, sbin from token-list in each
tuple and forward them to indexer.

Indexer module reads each tuple, traverses the token list
and indexes every token to FTname or frequency trie for
namespace. And for tuple which has isExecutable parameter
set to true, it indexes only the last tag from list (i.e. base
name of the executable file) to FTexec or frequency trie for
executable. Following our example, all 4 nginx∗ tokens get
indexed into FTname, but only one [”nginx”] from third tuple
gets indexed into FTexec.

C. Tag discovery

In Columbus two primary goals are: 1) discover all longest
prefix matches a.k.a. tags from the list of tokens 2) order
and rank tags based on their frequency. To this end we
designed our new data structure called frequency trie or
FT , by extending basic trie data structure and its operation.
Trie[13] is a popular information retrieval data structure used
in applications like partial match, auto complete, longest prefix
match etc.

Frequency Trie Node: A standard trie node contains data
storage for one character of the key, a flag representing if the
current node is end of key and array of pointers. Each pointer
in the array represents possible next character of keys. In
Columbus, this basic data structure is extended with additional
fields. Each node in FT is structured as:

t y p e d e f s t r u c t TrieNode {
char d a t a ;
boo l i s L e a f ;
i n t f r e q u e n c y ;
boo l i s T a g ;
Node∗ c h i l d r e n [POSIX CHARSET SIZE] ;

}Node ;

We allow every POSIX file name character in FT node.
Further we store two additional parameters with each node,
namely frequency count and boolean isTag indicating
whether there is a tag terminating at this character node.
Utility of these new fields is discussed below.

Frequency Trie Insert: Unlike traditional applications, we
do not use FT for search but only operation we ever perform is
insert. We have extended insert operation with two additional
steps namely frequency count update and tag discovery.

During each token insertion, for every character in the token,
frequency count of existing trie node is incremented and for
new node count is initialized to 1. In Fig.3(a), for first token
(mysql), every trie node is set to frequency count 1, and when

Filesystem
Tree state

Filesystem
Metadata	
scanner

Tokenizer Filter

Token Processor

Insert
Tag	

discovery Rank

Merge

FTname

Insert
Tag	

discovery Rank

FTexecIndexer

Token
blacklist

Tags

Fig. 2. Columbus Architecture

{m,1}

{y,1}

{s,1}

{q,1}

{l,1}

{d,1}

{u,1}

{m,1}

{p,1}

{m,2}

{y,2}

{s,2}

{q,2}

{l,2}

{d,1}

{u,1}

{m,1}

{p,1}

{s,1}

{h,1}

{o,1}

{w,1}

{d,1}

{b,1}

{i,1}

{p,1}

{r,1}

{o,1}

{x,1}

{y,1}

Insert [mysqldump] Insert [mysqlshow, dbiproxy]

Tags[] Tags[mysql]
(a) (b)

{q,6}

{l,6}

{l,1}

{a,1}

{p,1}

{s,2}

{h,1}

{o,1}

{w,1}

{d,2}{a,2}

{d,1}

{m,1}

{i,1}

{c,1}

{c,1}

{e,1}

{u,1}

{m,1}

{p,1}

Insert [mysqlslap,
mysqladmin, mysqlaccess,
mysqld]

Tags[mysql, mysqla, mysqld, mysqls]

(c)

{n,1}{s,1}

{s,1}

Fig. 3. Frequency Trie data structure. For each node only (data, frequency)
is shown.

second token (mysqlshow) is inserted(Fig.3(b)), frequency
count for first five common nodes {m,y,s,q,l} is incremented
to 2. One important thing to note is in Columbus, there is no
ordering enforced for token insertion. Thus if the same set of
tokens are inserted in different order, the intermediate states
of frequency trie could be different. But final state of the trie
and frequency count of respective nodes are always same.

Tag discovery is performed by comparing the frequency
count of current trie node (after update) to it’s immediate
parent node. If frequencyparent > frequencycurrent, then
starting from root node, concatenation of characters from every
node along the path till parent node is identified as a tag. And
frequency count of tag is same as the frequency count of this
parent node. Parent trie node is updated to set isTag flag to
true. And newly discovered tag is added to a map along with
frequency count.

As shown in In Fig.3(b), when new token (mysqlshow)
is inserted into frequency trie, at it’s sixth node
(mysql"s"how), since it’s frequency count {s,1} is smaller
than it’s parent node {l,2}, concatenation of characters till
parent ("mysql") is discovered as a tag with frequency
count of 2.

Fig. 3(c) shows progression of this sample FT after insert-
ing more tokens. As we can see there are multiple tags dis-
covered along the same insert path e.g [mysql, mysqla,
mysqld, mysqls]. To mitigate this we enforce certain

policy rules for tag discovery. For example, (a) minimum
length (b) minimum frequency count. Default policy used
is length >= 2 and freqeuncy >= 3. Only when a node
satisfies these policies, their isTag flag is set to true and a
valid tag is discovered. Under these policies no tag will be
discovered in Fig.3(b) and in Fig.3(c), single mysql tag will
be discovered with count 6.

Another important policy implemented specifically for
FTname is that only one tag can be discovered along any
given file path. For example consider this fileset:
/usr/share/java/tomcat-jasper.jar
/usr/share/java/servlet-api-2.5.jar
/usr/share/java/tomcat-jdbc-7.0.56.jar
/usr/local/tomcat/webapp
After tokenizing and insertion of first three file paths,

Columbus only discovers single tag [java]. ’tomcat’ is not
discovered yet, since it is nested in the other parent namespace.
Although, frequency count of every trie node of ’tomcat’ is
kept updated. When fourth file path is inserted, since now
’tomcat’ appears in its own namespace, it is identified as a
tag. This optimization helps reduce candidate tags.

Each frequency trie maintains two counts separately namely
tokencount and tagcount. tokencount is total number of tokens
inserted into that trie. And tagcount is the frequency count of
the last trie node of a tag. E.g. tagcount for ’mysql’ tag would
be the frequency count of trie node mysq”l”. Then a tagscore
is computed as:

tagscore =
tagcount

tokencount
(1)

Output of each frequency trie is a list of tags ordered by
their tagscore. Finally, topK results from FTname and FTexec

trie are merged. During merge first common tags are merged-
sorted and then remaining unique tags are merged-sorted to
produce final topK output of Columbus.

Other applications of frequency trie: Frequency trie can
be used to obtain other operational insights into cloud. For
example, we can compute and compare frequency trie of two
similar systems to identify differences between them for fault
detection. Likewise, we can compute and compare frequency
trie of same system at different times to identify changes in
its namespace.

Elk Name-
space

node
(12.23)

kibana
(4.99)

logstash
(4.1)

jruby
(2.65)

gems
(3.95)

babel
(0.98)

ruby
(0.6)

python
(0.58)

aws (0.43) elastic
(0.39)

Exec-
utable

index
(4.19)

python3
(1.15)

jquery
(0.8)

babel
(0.48)

java
(0.38)

elastic-
search
(0.38)

acorn
(0.38)

uglify
(0.33)

node
(0.28)

logstash
(0.24)

owncloud Name-
space

owncloud
(8.66)

apps
(4.07)

perl
(1.21)

punic
(0.8)

apache
(0.53)

aws
(0.48)

swift
(0.27)

symphony
(0.26)

rackspace
(0.25)

memcache
(0.14)

Exec-
utable

apache2
(1.29)

perl
(0.9)

check
(0.6)

- - - - - - -

TABLE I
Columbus scorecard. Discovered tags along with their tagscore in % are shown

.

V. EXPERIMENTAL EVALUATION

We performed discovery experiments on images in Docker
Hub[1], a public repository accessible to all. Docker Hub
contains public images in excess of 100k. A Docker image
consists of several layers, and is built using Dockerfile. Each
line in the Dockerfile encapsulates filesystem changes caused
by commands in that line in a separate read-only layer. Thus
we naturally get filesystem impression by accessing individual
layers of an image. These images are constructed using various
OS distributions, with alpine, debian, Ubuntu and Centos being
more popular. We also observed that often software is installed
using standard package managers like apt, yum, gem, npm,
and pip. In some, software is built from sources using tools
like make/make install. In other cases, software is installed by
simply copying pre-built binaries. We predominantly used the
images pulled from DockerHub. In some cases, however, we
built docker images using modified versions of Dockerfile to
create layers with desired characteristics to evaluate Columbus.
We ran these experiments on an Ubuntu 14.04 LTS VM
with 16 GB memory and and a 300GB. We used docker
client/server version 1.10.2 with btrfs as storage backend.

A. Evaluation criteria

For comparing and validating the result of Columbus we
needed ground truth about what software packages are in-
stalled in selected images. We used docker history, and
Dockerfile to construct ground truth. Docker history, however,
does not contain information about software packages that
are installed as dependencies. The goal for Columbus is to
discover atleast as many software packages as possible using
docker history alone. For discovered tag to be a success
it should match exactly with the expected software package
name. Thus, when Columbus returned couch as a tag, we con-
sider it a failure as the software package is named couchDB.

We conducted three sets of experiments to evaluate Colum-
bus namely Micro Experiments, Macro Experiments and
Case Study. For each set of experiments we ran Columbus
to discover top 10 software tags.

B. Micro Experiments

In this set of experiments our objective is to evaluate discov-
ery scope and system properties of Columbus. We selected two
software suites viz. ELK(elasticsearch, losgatsh, kibana) stack
and owncloud(online collaboration and file sharing frame-
work). And instead of individual layers, we ran Columbus

on whole filesystem tree of these images. The results for
top 10 tags discovered by Columbus are shown in Table I.
Few important observations here are:

(a) Columbus discovered all expected software tags. In
addition, it discovered tags for dependent packages and third
party tools. In ELK image, along with elasticsearch, logstash
and kibana, it also discovered java, jquery, and node. In
owncloud image, along with apache, swift, and memcache,
it also discovered client libraries for aws, and rackspace.

(b) Columbus can discover software suites such as owncloud
or wordpress which are not technically software packages.
Such discovery is not possible through standard package
manager queries. For example, owncloud is a collective name
for the complete software suite rather than a single software
package. Since this suite creates its own filesystem names-
pace for organizing its files Columbus is able to discover it
in FTname. Further, as there’s no runnable for it, it’s not
discovered in FTexec.

(c) Relevant tag discovery is feasible even in the case of
large filesystem impressions. In this experiment, Columbus
analyzed complete filesystem which often is larger than single
docker layer. For example, for ELK image, the size of filesys-
tem was 900MB containing 85K files and directories. with
around 4K executable files. For this case Columbus, generated
total of 761K tokens and after filtering inserted 574K & 2K
tokens into FTname and FTexec respectively. Figure 4 shows
distribution tagscore for top 200 & 100 tags for FTname and
FTexec respectively. We observed same pattern in owncloud
case. As we can see this is a long-tail distribution and the
number of tokens contributing to tag discovery are typically
small. Also in Table I we can observe even for discovered top
ranked tags their score is low. For example in case of ELK
image, elasticsearch is discovered in FTexec even with
a low score of 0.38%. This essentially proves the fundamental
and most generic hypothesis for Columbus.

(d) Table II shows memory overhead of our Frequency Trie
data structure. FTexec has relatively low memory footprint as
compared to FTname. The increase in the memory footprint
is not linear with number of tokens, primarily because large
number of trie nodes gets shared and we only increase their
frequency count in such scenarios.

C. Macro Experiments

In this set of experiments, our objective was to establish
usefulness of Columbus as a general purpose solution. We
considered two software namely mysql and haproxy. These

 100

 1000

 10000

 100000

 0 100 200
 0

 40

 80

F
re

q
tr

ie
 s

c
o

re
 (

lo
g

s
c
a

le
)

F
re

q
tr

ie
 s

c
o

re

discovered tags

namespace executable

Fig. 4. Micro Experiment

 0

 20

 40

 60

 80

 100

m
ysqlP12

m
ysqlP42

m
ysqlP21

m
ysqlP31

haproxy
P21

haproxy
P31

haproxy
P13

%
 t
a
g
s

namespace executable

Fig. 5. Macro Experiment

tokens Size(MB)
namespace runnable namespace runnable

ELK 574K 2154 286 14
owncloud 234K 1146 208 9

TABLE II
Frequency Trie Memory Overhead

software are installed using four different installation methods
on three different platforms as shown in Table III. Then,
we ran Columbus discovery and validated that it is able to
discover tags for mysql & haproxy as top ranked tags.
Their individual report is shown in Fig. 5.

Ubuntu Oraclelinux Centos

yum-install - P12 P13
apt-install P21 - -

make-install P31 P32 P33
source-copy P41 P42 P43

TABLE III
Platform/Install Path Matrix

Few important observations here are: (a) when software
is installed with package managers such as yum, apt, its
filesystem impression includes namespaces for its dependent
packages and executable scripts for installation of every pack-
age (e.g. .preinst, .postinst, .prerm, .postrm for apt). As a result
tagscore in FTname is relatively very low when compared with
tag scores in corresponding FTexec. For example, namespace
trie scores for : mysqlP12 is 6% , mysqlP21 is 20%, and
4% for haproxyP13. But at the same time, corresponding
scores in executable trie are 37% for mysqlP12, 54% for
mysqlP21 and 83% for haproxyP21. Thus, scores from both
the tries compliments each others and for high confidence tag
discovery, we take both scores into account.

(b) when software is installed from source, the filesystem
impression it creates contains files specific to software: header
files, source files, and binaries. Thus we observe high tagscore
for discovered tags. For example, for haproxyP31, it creates
a single haproxy binary, thus tagscore is 100% in FTexec

but low 1% in FTname. On the other hand for mysqlP31

filesystem impression holds man pages, test-cases, libraries
and executable binaries. As a result, we see high score for

both FTexec and FTname. Similarly for mysqlP42.
Thus, although we observe variations in the filesystem

impressions for same software across platforms and installa-
tion paths, they still exhibit namespace localization and with
Columbus we are able to parse and discover precise tags for
them.

D. Case study

In this case study, we evaluate Columbus on all 115
docker official images to assess how it performs in real-
world situations. We observed that these images were built
using 13 different OS distributions with debian 8 (66%) and
ubuntu 14.04(7%) being the popular ones. Size of the images
varied from 7MB to 1.5GB with median being 400MB and
average 452MB. These images are built leveraging various
installation methods including apt-install, dpkg -i,
yum install, npm install, pip install, gem
install, make install, binary copy etc.

Then for every image, we ran Columbus for every layer
of that image and validated that discovered tags are matched
with software name. We were able to discover tags for 92%
of the images. Discovery failed primarily for basic platform
images like clearlinux, vmware photon etc. and
ones which just contains 2-3 files with application binaries
and their config files like thrift, value, traefik. For
other images Columbus also discovered tags for dependent
software or third-party libraries. In some cases, we found that
discovered tags are prefixes of real software names, for exam-
ple, tags couch, mongo correspond to software packages
couchdb, mongodb, respectively. Although these tags are
representative enough, but in our future work we are trying to
make discovered tags match with real software name.

Software for which tags were discovered successfully, we
further processed them for software version identification.
Only 16% of the software had their version number embedded
in their namespace. For example,

mariadb:
/usr/share/doc/mariadbserver10.1/mysqld.sym.gz
/usr/share/doc/mariadbserver10.1/INFO BIN

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500

T
im

e
 (

s
e
c
)

Image Size (MB)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500

T
im

e
 (

s
e
c
)

Image Size (MB)

(a) FTexec runtime (b) FTname runtime
Fig. 6. Case Study - Performance Evaluation

 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100 120 140
 0

 20000

 40000

L
a
y
e
r

S
iz

e
 (

K
B

)

#
 f
ile

 p
a
th

s

Container image layer

layer size file paths

Fig. 7. Case Study: Scale Evaluation

python:
/usr/local/lib/python3.5/sitepackages/..
/usr/local/include/python3.5m/..
We identified other two common heuristics to discover

software version namely readme and version files. Software
more generally tends to encode their version information either
in a file named ”version” or ”readme”. So these file contents
can be read and parsed to potentially extract the software
version information. So for each software, we searched for
these files in the namespace identified by their corresponding
tag. Our analysis showed 22% software had version file
while 25% had readme. In cloud environment users may
not be comfortable to let other tools read contents of their
files. For this reason, accessing file content should be done
with explicit user permission. In the current design, Columbus
works only from the filesystem metadata and do not access
any file contents. Thus, Columbus is not able to discover
software version from these file contents. Although, we are
exploring to enable this capability in Columbus along with
a policy manager, wherein user can selectively enable file
contents parsing to improve the software version discovery.

Figure 7 summarizes Columbus result across all layers of
all images. This graph shows statistics for the image layers in
which we successfully discovered tags. We observed that there
were 54% layers with size 0B. These empty layers represent
no filesystem changes during image build process. These
layers are ignored in the experiments. Here are important
observations:

(a) valid software tags discovered 48% of layers. Thus
there’s an opportunity to optimize our filtering techniques even
further.

(b) tags were discovered from layers with size varied from
less than 10KB to greater than 1.2GB.

(c) tags were discovered for filesystem impression size in
number of files from as low as 4 to as high as 31K.

(d) Figure 6 shows discovery time for Columbus across all
images. Since there are limited number of executable files in an
image across all sizes, they are processed quickly and FTexec

discovery time (Fig. 6 (a)) is typically less than 10seconds.
On the other hand for FTname, since every file is processed
discovery time is relatively higher (Fig. 6 (b)).

Thus, regardless of the size of filesystem impression or num-
ber of files accounted in impression, Columbus is effectively
able to discover software tags. And attributed to our new
frequency trie data structure, Columbus exhibits an optimal
performance discovering these tags.

VI. CONCLUSION

In this work we presented design and implementation of
Columbus as a general purpose software discovery technique
that does not require any package manager query, knowledge
database or fingerprint matching tools. Experimental evalua-
tion show that it can discover software for around 92% of
official Docker images. Columbus can even detect software
suites like wordpress, owncloud and compositional software
like ELK . In future work, we plan to extend Columbus as a
general purpose cloud operational insights solution for fault-
isolation, tag-correlation and system behavioral analysis.

REFERENCES

[1] “Docker Hub,” https://hub.docker.com/.
[2] “Amazon AWS Marketplace,” https://aws.amazon.com/marketplace.
[3] “IBM Bluemix,” www.ibm.com/cloud-computing/bluemix/.
[4] “Clair,” https://github.com/coreos/clair.
[5] “Agentless system crawler,”

https://github.com/cloudviz/agentless-system-crawler.
[6] “Open source software discovery,” http://ossdiscovery.sourceforge.net.
[7] “Endpoint manager relevance language guide,”

https://github.com/bigfix.
[8] “Rule Writing for OSS Discovery: Guide to identifying open source

software,” http://ossdiscovery.sourceforge.net/WritingProjectRules.pdf.
[9] “OpenIOC,” http://www.openioc.org/.

[10] H. Chen, S. S. Duri, V. Bala, N. T. Bila, C. Isci, and A. K. Coskun,
“Detecting and identifying system changes in the cloud via discovery
by example,” in Proceedings of IEEE International Conference on Big
Data, pp. 90–99, IEEE, 2014.

[11] H. Chen, A. Turk, S. S. Duri, C. Isci, and A. K. Coskun, “Automated
system change discovery and management in the cloud,” IBM Journal
of Research and Development, vol. 60, no. 2-3, pp. 2:1–2:10, 2016.

[12] M. D. Dikaiakos, A. Katsifodimos, and G. Pallis, “Minersoft: Software
retrieval in grid and cloud computing infrastructures,” ACM
Transactions on Internet Technology (TOIT), vol. 12, no. 1, p. 2, 2012.

[13] “Trie,” https://en.wikipedia.org/wiki/Trie.

