
Delivering software with
agility and quality in
a cloud environment

F. Oliveira
T. Eilam

P. Nagpurkar
C. Isci

M. Kalantar
W. Segmuller

E. SnibleCloud computing and the DevOps movement are two pillars that
facilitate software delivery with extreme agility. “Born on the
cloud” companies, such as Netflix®, have demonstrated rapid
growth to their business and continuous improvement to the
service they provide, by reportedly applying DevOps principles.
In this paper, we claim that to fulfill the vision of fast software
delivery, without compromising the quality of the provided
services, we need a new approach to detecting problems,
including problems that may have occurred during the continuous
deployment cycle. A native DevOps-centric approach to problem
resolution puts the focus on a wider range of possible error
sources (including code commits), makes use of DevOps metadata
to clearly define the source of the problem, and leads to a quick
problem resolution. We propose such a continuous quality
assurance approach, and we demonstrate it by preliminary
experiments in our public Container Cloud environment and
in a private OpenStack® cloud environment.

Introduction
The marriage of cloud computing and DevOps is
revolutionizing the way software is delivered as a service
running in a cloud environment. Cloud computing and,
specifically, the infrastructure-as-a-service (IaaS) layer
provide a programmable API (application programming
interface) to provision compute, storage, and network
components. As such, it enables the full automation
of software delivery in a cloud environment.
The DevOps movement [1] proposes a method that

is based on communication and collaboration between
software developers and IT (information technology)
personnel to improve the quality and speed of the
entire software lifecycle. Automation is advocated to
increase deployment frequency, promising faster time
to market, lower failure rates, and shorter time to
recover from failures.
New “born-on-the-cloud” programming models and

architectural patterns (also known as microservices [2, 3]
principles) facilitate agility by promoting fine-grained,
loosely coupled services that communicate through REST

(Representational State Transfer) APIs. Loose coupling
enables independent evolution of each service (by
autonomous development teams). It is achieved by
means of dynamic service binding, dynamic service
configuration, and data denormalization to avoid data
dependencies. Thus, microservices can be updated
independently and much more frequently and easily,
as no cross-service orchestration is necessary.
Together, DevOps and the new microservice

architecture style have revolutionized the way software
is delivered on the cloud [4]. Companies whose software
is primarily developed on the cloud for providing online
services, such as Netflix** and AirBnB, have successfully
applied these DevOps and microservice principles and
have demonstrated the ability to deliver software daily,
rather than in cycles on the order of months, which
are typical of traditional IT environments [5]. As a result,
these companies can perform quick market experiments
to gain insight about their users and define the next set of
functions to be delivered. Moreover, they can scale very
quickly the number of users, not only by consuming more
cloud infrastructure resources, but also by completely
restructuring the software architecture, if needed, to better
suit the growing demand.Digital Object Identifier: 10.1147/JRD.2016.2517498

F. OLIVEIRA ET AL. 10 : 1IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016

ÓCopyright 2016 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/16 B 2016 IBM



In this paper, we describe a set of foundational services
that together form a platform that enables the delivery
of software as an online service following the principles
of microservices and DevOps. We further claim that to
sustain the speed of software delivery enabled by the
cloud, DevOps, and microservice-based design, new
problem determination methods must be developed to
ensure that problems on the continuously deployed
services are quickly found and resolved, so that the quality
of the services is not compromised. We propose such a
method that 1) relies on a built-in cloud data collection
mechanism (such as [6]), 2) uses DevOps pipeline
metadata to clearly define the problem search space,
and 3) applies correlation techniques (e.g., temporal
correlation) to help quickly identify the root cause
of a problem. We implemented and experimented
with our method in two different environments:
1) our public Container Service (available through
Bluemix* [7]) extended with foundational services for
“born-on-the-cloud” software delivery [8], and 2) a private
OpenStack** [9] cloud environment, where UrbanCode
Deploy with Patterns (UCDwP) [10] is used to automate
software delivery.
In what follows, we briefly describe DevOps and

microservice principles. Then, we present our platform
supporting them, summarize the types of DevOps
analytics our platform enables, and delve into our
problem determination approach and experiments. Before
concluding the paper, we review related research efforts.

Background: The principles of
“born-on-the-cloud” software delivery
In this section, we give a short overview of the principles
for delivering software in a fast-paced style. The set of
foundational services we describe later in the paper is
based on these principles, and the problem determination
techniques we present exploit the unique characteristics
of the services.
Programmable infrastructure refers to a cloud

environment where compute, storage, and network can
be provisioned programmatically through APIs. Standard
formats, such as HOT (Heat Orchestration Template) [11],
can be used to specify a single request that refers to an
entire topology of cloud and software resources. This
principle is a basic enabler for the end-to-end automation
also known as infrastructure-as-code.
Automated pipeline, also known as the

“environment-as-code” principle, dictates that all code
and configuration changes be automated and chained.
In particular, code is automatically built and deployed
upon commit, and configuration is automatically applied
using domain-specific languages such as Chef [12],
Puppet [13], UrbanCode Deploy [14], or others.
The infrastructure is never modified manually (“no-touch

infrastructure”), but only through automation code,
which is tracked and versioned like the application code.
Every change is reproducible and can be undone.
“Born-on-the-cloud” architecture (microservices)

refers to the architectural style based on the understanding
that a main concern for the developer is the maintainability
and evolution of the code as a service. Loose coupling
is the key that enables independent evolution of each
service, which is achieved by packaging individual
business functions into separate services accessed by
REST APIs (each such service is termed a microservice).
To obviate the need for deployment orchestration
across multiple microservices, the following practices
are observed: usage of a service registry to dynamically
bind microservices (as opposed to static configuration
files that quickly become sources of errors); usage of
a configuration service to externalize important dynamic
configuration that microservices may depend on; and
data denormalization so that each microservice accesses
only its own data, avoiding data dependencies. The full
breadth of these new emerging patterns is beyond the
scope of the paper (see [3, 4, 15]).
Finally, based on the principle of rolling forward or

back and never updating in place, changes are always
delivered as full-stack deployments. A new environment
is created next to the current one and tested by routing
a percentage of the traffic to it. The amount of traffic
to the new environment is gradually increased up to 100%.

Figure 1

Three versions of a microservice, each taking a percentage of the
traffic

10 : 2 F. OLIVEIRA ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



The previous environment is kept in place as a backup
so that, if a problem is found, it is always possible
to roll back (see Figure 1). A foundational service
that implements this principle, Active Deploy [8], was
delivered by our team and is available on Bluemix [7].
It is easy to see how these principles work together to

radically simplify the scaling, management of failures, and
independent evolution of each individual microservice.
However, we claim that, in order to fulfill the promise of
extreme agility with quality, problem determination, and
incident management must be approached differently.
Traditional IT service management techniques assume
a relatively static environment and, in many cases, are
compartmentalized: operations data is not correlated
with code development data. Moreover, even in the
operations space, data collection mechanisms frequently
are specific to individual runtime environments, resulting
in fragmented views and high setup overhead. Adopting
these prior techniques in fast-paced environments based
on the above principles would be counterproductive,
creating an impediment to agility. We therefore propose
an approach for problem determination that takes
advantage of the specific characteristics of fast-paced
environments. Our approach relies on a built-in cloud
data collection platform for continuously collecting logs,
runtime data, metrics, and other types of data from all
components of distributed applications and across all
layers of the software stack. Such a data collection
mechanism is built into the Bluemix platform [6]. Our
approach uses context and metadata available from an
automated pipeline that delivers the software, enabling a
significant reduction of the problem search space. In the

next sections, we will describe the platform we built
and the experiments we have performed with this new
approach to detection of problems in fast-paced cloud
software-delivery environments.

Cloud DevOps and DevOps analytics platform
In this section, we describe the essential building blocks
to enable both agility and analytics-driven quality in
delivering cloud applications. As shown in Figure 2, at
the center of our system is the target cloud environment,
which hosts both user applications and foundational
services used by applications developed using
microservice principles. This environment consists of
several layers from the hardware resources, the systems
software that constitutes the infrastructure-as-a-service
cloud computing platform, and, in some cases, an
additional platform-as-a-service layer. In our experiments,
we target two cloud environments: IBM’s Bluemix
public-cloud environment, offering Docker containers as
infrastructure (Container Cloud) and microservice-centered
DevOps tools, and a private cloud environment that uses
OpenStack-based virtual machines and more traditional
enterprise DevOps tools. Our approach is equally
applicable to both.
The DevOps platform consists of tools that provide

the abstractions, control, and automation necessary to
continuously build, test, deploy, manage, and improve
cloud applications. Automation, integration, traceability,
and ease-of-use are the key characteristics of this platform,
enabling agility. The continuous delivery pipeline shown
in Figure 2 provides users a mechanism to create a
customized, automated, and repeatable flow to introduce

Figure 2

System architecture DevOps and DevOps analytics platform

F. OLIVEIRA ET AL. 10 : 3IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



code changes into production, beginning with code
commits made to a Git revision control repository.
Predefined stages in this pipeline can include different
types of testing for security and quality, software artifact
and image build, deployment, and live testing. Restricting
changes to be introduced only through such a pipeline
ensures consistency and traceability in addition to the
speed enabled by automation. IBM provides a delivery
pipeline service targeted at individual microservices
for its Bluemix cloud environment [16]. Other examples
include Jenkins [17], a very popular open-source self-serve
solution, and hosted services like TravisCI [18] and
CloudBees** [19].
The delivery pipeline we adopt for our experiments

with the public Container Cloud uses two other building
blocks that constitute our DevOps platform: a Build
Service and the Deployer (the Active Deploy Service [8]).
The Build Service creates and pushes Docker images
to the registry used by our target cloud environment.
The Deployer enables users to update their running
applications without incurring downtime. It achieves
this goal by providing policies to introduce new versions
and manage request traffic between them so that easy
roll-forward or roll-back are possible depending on
whether the new deployment was satisfactory or not.
Like the delivery pipeline, the Deployer is also currently
targeted at microservices that are stateless and can be
individually managed. For deployments that require
complex orchestration between multiple components
of an application, tools like UCDwP [10] are commonly
used. We present scenarios using both UCDwP and
Active Deploy.
Active Deploy supports several automated policies

for updating microservices such as timed, blue-green
deploy [20]. Netflix’s Asgard [21], CodeDeploy from
Amazon Web Services** [22], and Application Upgrade
for Microsoft Azure** [23] address the same needs as
Active Deploy, varying in the scope and features provided.
Aside from our DevOps platform, Figure 2 also

refers to our DevOps Analytics platform, which is
responsible for collecting operational data from the cloud
environment, including logs, metrics, and runtime data,
as well as data and metadata across the entire lifecycle
of cloud applications from the continuous delivery
pipeline and the Deployer. All collected data is indexed
and made searchable in a cross-silo data repository
on top of which analytics solutions, including those
for problem determination, can be built. In our system,
we use Elasticsearch [24] as our cross-silo data repository.
Collecting data from the underlying cloud (Container
Cloud or OpenStack) and from users’ containers and
VMs (virtual machines) is accomplished by data crawlers
that run as part of our infrastructure, invisible to users. In
addition to Elasticsearch, other open-source components

we use in our data collection and DevOps analytics
substrate are Apache Kafka [25], Logstash** [26], and
Kibana** [27]. In the next section, we discuss different
types of analytics at different points in the DevOps
lifecycle with a more in-depth exploration of one
of them. Also, we provide more details on our
DevOps analytics and data collection architecture
when describing our experiments.

DevOps analytics
In the new world of fast-paced IT, there are two main
challenges: making sure agility does not compromise
quality and that slow and tedious processes to address
operational issues do not hamper agility and uninterrupted
operation. Assimilating, correlating, and analyzing data
across the entire lifecycle to generate actionable insights
is the key to sustaining agility and achieving operational
excellence. Next, we briefly describe three broad
categories of DevOps analytics, shown as three green
boxes at the top right of Figure 2.
Continuous delivery analytics aim to quantify and

improve the overall efficacy of the entire DevOps Process.
The main goal is to increase the frequency of code change
and reduce mean time to delivery. Tools and techniques
aimed at tracking and reporting, finding and improving
bottlenecks, and predictive modelling to enable what-if
explorations fall into this category.
Continuous quality and experimentation refers to

the analytics and tools necessary to automate, speed up,
and enable quality control processes like pre-deployment
and post-deployment testing for correctness, security
compliance, performance, adherence to service-level
agreements, and other relevant metrics. Traditionally,
these processes take hours, if not days, and can involve
significant human effort. Users are also increasingly
interested in immediate feedback on new experimental
features as the deployed code evolves, which requires
correlation and analysis of code change, deployment,
as well as operational data.
Continuous operation refers to the analytics and tools

aimed at ensuring continuous operation by minimizing
downtime and the impact of outages. Tools and techniques
for problem detection, determination, resolution, and
avoidance fall into this category. Data silos and inherent
complexity are the main hindrances to agility in this
area. An important side-effect of data silos is the limited
resources available for real-time problem determination
without having to cross department or organizational
boundaries. Our hypothesis is that the complexity in
automating problem determination, resolution, and
avoidance can be reduced by using DevOps data
and metadata (deployment context). Next, we explore
this hypothesis via experiments to perform problem
determination for full-stack deployments in the context

10 : 4 F. OLIVEIRA ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



of two different cloud environments, using different sets
of DevOps tools. We especially focus on empowering
developers rather than IT operators.

Problem determination for Active Deploy and
IBM Containers
We now discuss our early prototype for quickly
diagnosing problems that may happen when new versions
of microservices are being built, deployed, and gradually
subjected to request traffic. Our prototype, illustrated
in Figure 3, targets the IBM Container Cloud and uses
Active Deploy to transition from the current version of a
microservice to a newly introduced one without taking the
service offline. The Docker images for the microservice
are built by our Build Service. Active Deploy serves
the Deployer function explained before and depicted
in Figure 2.
A key component of Container Cloud is a data crawler

(see Figure 3), which observes all running containers
from their hosts and periodically collects containers’ log
events from log files identified as relevant, usage metrics,
and runtime data on the file system in general (and
configuration files in particular), operating system
packages, running processes, and network connections.
All data is sent to a data pipeline whose entry point
is an Apache Kafka cluster. Further down the pipeline,
the data is fetched from Kafka and properly indexed
onto Elasticsearch, where it becomes searchable.

Data types, metadata, and features
Critically, each piece of collected data is properly typed.
For instance, our types of operational data include
“file” (representing file system objects), “config”
(representing files identified as configuration files),

“process” (corresponding to operating system processes),
“package” (for operating system packages), “os”
(representing general operating system information),
and “connection” (encapsulating information on network
connections). Each data type has a set of known attributes
whose values define an instance thereof. We refer to
each data type instance as a “feature.”
Besides its data attributes, each feature contains

important metadata. In particular, each feature is
associated with a “namespace” attribute, which is a
logical representation of the container from where the
feature originated. One example of namespace would
be microserviceA/v1/dbff7c4181d9. In this case, the
namespace identifies the name of the microservice,
its version, and the ID of the container in question.
Aside from namespace, other important metadata
associated with features include the ID of the Docker
image from which the container was created, the image
version, the name and ID of the user owning the container,
and a timestamp corresponding to the time when the
features were collected by the data crawler.
As one can realize, some metadata attributes

associated with a feature annotate it with DevOps-related
information, such as microservice names and versions,
and Docker images and versions, augmenting the
data with a deployment context. In addition, we also
define DevOps data types, such as “dockerfile,” used
to index the information pertaining to Dockerfiles that
prescribe how to build images.

The diff service
The diff service, also shown in Figure 3, provides
users with a high-level abstraction layer for querying
and analyzing all cross-silo indexed data. In a nutshell,

Figure 3

Problem determination with Active Deploy and the diff service (A_v1 version 1 of microservice “A”; A_v2 version 2 of microservice “A”)

F. OLIVEIRA ET AL. 10 : 5IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



it supports two main functions: retrieving the state of any
container at any point in time, and performing analytics
to compute state differences (“diffs”).
After being indexed on Elasticsearch, a feature (data

type instance) can be queried by the values of any of
its data and metadata attributes. As namespaces identify
microservices, versions, and containers in the entire
Container Cloud, queries on namespaces can be thought of
as spatial queries. Temporal queries and reasoning, on the
other hand, are enabled in two different ways. First, the
timestamp attribute associated with each feature can be
used to retrieve the entire state of a container at any given
point in time. Second, the diff service allows tagging
DevOps-related, significant points in time. Thus, aside
from using timestamps to perform queries, temporal
queries can also be performed by using these user-created,
semantically significant “bookmarks.” The diff service
keeps a mapping between each bookmark and the
timestamp corresponding to when it was created, allowing
the users to focus on relevant events rather than raw
timestamps. Examples of bookmarks created by the
DevOps pipeline include those indicating when Docker
images have been built, and when a microservice version
has been deployed.
In this context, we define the state of a container as a

snapshot containing a set of features originating from that
container tagged with exactly the same timestamp assigned
by the data crawler. Clearly, the frequency at which the
crawler collects data determines the amount of snapshots
available and hence the supported time granularity for
state queries. When asked for a container’s state given a
timestamp as input, the diff service maps the input
timestamp to the closest discrete snapshot the crawler has
collected based on the indexed timestamps. The user may
indicate to the diff service, as input, whether to return the
closest snapshot considering both directions (past and
future), or one direction only (past or future).
Individual containers can be reasoned about in terms of

their corresponding namespaces, which typically link them
to specific microservices and versions. From this
perspective, keeping in mind the aforementioned
discretization of the state, the diff service can determine,
for example 1) the state of a namespace, considering all
feature types or a subset, at any point in time, (2) for a
given namespace, how its state has changed (state diff)
within a time interval, considering all feature types or a
subset, and 3) given two pairs of the type (namespace,
timestamp), the differences between the namespaces’ states
taken at the respective points in time, considering all
feature types or a subset. Analogous queries can be
performed using bookmarks rather than timestamps.
When computing the state diff for two distinct

namespaces or for the same namespace within a time
interval, the diff service returns three sets of data:

(1) features present in the first state snapshot, but not in
the second; (2) features present in the second state
snapshot but not in the first; and, (3) features present in
both state snapshots, but containing different values for at
least one attribute, and what the different values are.
The functionality provided by the diff service has many

potential applications. When two versions of a
microservice are running side-by-side, it would be
appealing to compare them, especially when a problem
arises with the new version and a roll-back is required.
Next, we report on an experiment of this type we have
performed, exercising all building blocks depicted in
Figure 3.

Using the diff service: Performance problem in
new microservice version
In this experiment, we used a Java** application written
according to the microservice architecture principles,
along with a Dockerfile prescribing how to build a
Docker image for our microservice so that we could
deploy it on Container Cloud. The next paragraphs
describe the scenario portrayed by our experiment.
The Build Service produces the version “v1” of

the image of microservice “A,” labeled “A_v1”
in the image registry depicted in Figure 3. Using
Active Deploy, developers deliver the version “v1” of
microservice “A,” labeled “A_v1,” running as containers
on Container Cloud.
Sometime later, a defect is filed with respect to the

microservice. The developers deem this defect as a
low-risk, easy fix. The defect owner fixes the defect and,
when satisfied with her local tests, triggers a new build.
Rigorous tests are skipped because of the low risk and
difficulty attributed to the defect. After the build produces
image “A_v2,” the developer instructs Active Deploy
to deploy it and gradually shift traffic from “A_v1”
to “A_v2.” Confident that the easy-fix is done and no
problems will occur, the defect owner leaves office
while Active Deploy is managing the transition from
“v1” to “v2.”
Several hours later, the developer on duty on the

night shift starts being notified of performance-related
exceptions on “A_v2,” which is now taking some live
user traffic. The developer in charge uses Active Deploy
to roll-back to A_v1, so that A_v2 is no longer taking
any live traffic, and then proceeds to diagnose the problem
with A_v2. Looking for clues, the developer in charge
resorts to the diff service to learn the differences between
containers “A_v2” and “A_v1.” He asks the diff service
to diff (“A_v2,” “A_v2_deployment”) and (“A_v_1,”
“A_v1_deployment”), where the second element
of each pair is the bookmark name associated with
the end of deployment of each respective microservice
version.

10 : 6 F. OLIVEIRA ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



The diff service analytics indicates that a Java process
running on container “A_v1” was not on “A_v2,” and a
Java process running on “A_v2” was not on “A_v1.”
Inspecting the command-line attribute of each process
feature revealed that the only difference between
them was the addition of “-Xmx250m” to “A_v2”’s
process command line, indicating that the heap size of
“A_v2” was limited to 250 MB, which was far less than
the default value of 1 GB used in “A_v1.” Furthermore,
the other difference found by the diff service was that the
“A_v2” container had a file on its file system that was not
present on “A_v1,” namely, “/root/wlp/usr/servers/
daytrader/jvm.options.” This indicates that the developer
who made the change had in his work environment a
“jvm.options” file for testing purposes. This file
contains values for options used to configure a JVM**
(Java Virtual Machine**). The file was not related to the
defect fix introduced in A_v2, and had been inadvertently
committed and picked up by the Java process of the new
microservice version, leading to the “-Xmx250m” flag in
the process command line.

Problem determination for UCDwP and the
OpenStack cloud
Next, we discuss our extension of an IBM product in
the DevOps arena, enabling it to help users diagnose
problems that occur at full-stack deployment time in
private OpenStack clouds (see Figure 4). This product,
IBM UCDwP, automates the deployment of entire
software stacks in an OpenStack private cloud setup.
It serves the Deployer function described earlier in
the DevOps platform and consumes deployable
application components produced by the build stage
of the delivery pipeline. Each application artifact is

associated with automation code, typically written using
an infrastructure-as-code tool (e.g., Chef [12]), that
encapsulates the logic to deploy and configure the
corresponding application component. UCDwP
environment blueprints (illustrated as “A,” “B,” and
“C” in Figure 4), which are written in the HOT [11]
domain-specific language, reference application artifacts
and deployment/configuration automation code. When
the deployment of an environment is triggered, the
user is asked to provide values for several deployment
parameters exposed by the environment blueprint, which
typically include choosing the target cloud, flavors of
cloud resources, and specific versions of the application
artifacts. Finally, UCDwP orchestrates the full-stack
deployment, by interacting with the target cloud to
provision the requested cloud resources, and interacting
with the automation tool to execute the various pieces
of automation logic responsible for deploying and
configuring the application components.
When deploying an entire application environment,

many problems may arise. Problems may occur, for
instance, due to bugs in the automation logic (e.g.,
Chef recipes), invalid usage of cloud resources, and
cloud infrastructure capacity, misconfiguration, or
transient errors. Troubleshooting requires a holistic
knowledge of the entire stack and infrastructure, including
the build system, the application code, and the deployment
automation logic, as well as all cloud subsystems, which
can overwhelm and frustrate the team. To mitigate the
troubleshooting complexity in such an intricate setting,
it is imperative that insights for problem determination be
given to users.
To that end, we implemented an extension to the

UCDwP DevOps pipeline aiming to reduce the time to

Figure 4

Problem determination with UCDwP and the PD (problem determination) service

F. OLIVEIRA ET AL. 10 : 7IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



diagnose problems. We have added a problem
determination (PD) service to the pipeline and changed
the UCDwP product so as to make it directly interact
with the PD service to get insights into problems
pertaining to the context of specific application
environments. Our proposed PD service currently
supports OpenStack as the target cloud.

Problem determination service
Figure 4 illustrates the interplay between the PD service
and UCDwP, as well as our data crawler embedded
into a private OpenStack cloud. The data crawler collects
log events produced by the various cloud subsystems
(compute, storage, network, etc.). The crawler is
configured to properly parse the log events from each
monitored OpenStack subsystem, annotating each event
with semantic information extracted from it, such as the
log level, the component from where the event originated,
and codes returned by corresponding OpenStack calls.
Moreover, all information pertaining to an exception is
coalesced and indexed as a single event properly tagged,
and each event is associated with the originating target
OpenStack cloud. These annotations allow the PD service
to later retrieve log events by running queries that carry
relevant semantic meaning. For example, the service
would be able to retrieve all log events either tagged as
exceptions or identified as a log level of error from a
specific OpenStack subsystem belonging to a specific
OpenStack target cloud.
Aside from collecting OpenStack log events, the data

crawler also takes snapshots of the OpenStack cloud state,
capturing the current state of storage volumes, networking
and pools of IP addresses, virtual images, security groups
and rules, and tenants.
As shown in Figure 4, the main components of the PD

service are the search engine and the analytics engine.
The former implements the logic to access and query all
indexed data (OpenStack log events and state snapshots).
The latter interacts with the search engine to query the
data and extract from it the pieces relevant to the problem
being diagnosed. The analytics engine is engaged, for
instance, when the PD service is answering a REST call
to retrieve suspicious log events and cloud state changes
(“diff”) that may be associated with a problem that caused
a deployment failure in a particular application
environment. As a result, the engine not only selects
relevant, suspicious log events, but it also returns, when
applicable, cloud state changes derived from a subset
of the “diff” between cloud state snapshots. When
selecting relevant, suspicious log events, the analytics
engine contextualizes queries (e.g., by scoping the query
with a time interval that may be related to the problem
being diagnosed), and correlates the query results with
information in the environment blueprint (e.g., referenced

virtual images, security groups, etc.). Queries can be
provided by the PD service users or generated by the
analytics engine.
When showing the list of deployments, UCDwP

presents to the user the option of “diagnosing” the
problem of a failed deployment by selecting an icon.
That action triggers a REST call to the PD service,
requesting suspicious cloud log events and suspicious
cloud state changes relevant to the context of the used
blueprint and the deployment start, end, and last-update
times. The PD service can return as a result either the
raw selected log events and cloud state changes or a
link to a customized Kibana [27] dashboard. The Kibana
dashboard is dynamically created by the service to render
the data showing the time correlation of a few selected
log events from different cloud subsystems, as well
as a few selected changes in cloud state when applicable.
The dynamically-created Kibana dashboard customized
for the deployment problem in question is depicted by
the rectangle labeled “PD dashboard” in Figure 4.

Using the problem determination service:
Storage capacity problem
In this scenario, using UCDwP, we created an
environment blueprint specifying the installation of
a Java application onto a VM to be provisioned from
a Fedora 20 virtual image and connected to a public
network. The blueprint also indicated that a storage
volume of 12 GB must be created and attached to
the VM. Before starting the deployment of an actual
environment from this blueprint, we selected the
OpenStack “m1.small” flavor for the VM. Next, UCDwP
triggered the deployment, interacting with OpenStack’s
orchestration engine to provision the required resources,
which was interrupted with a generic error message.
Following what users would normally do, we looked

for clues on the OpenStack dashboard, which showed
that the stack we had tried to deploy was in failed state.
Looking for further details, we noticed that the VM
was successfully created but the storage volume could
not be created by OpenStack. The error message next
to the volume stated the following: “ResourceInError:
Went to status error due to Unknown.”
We then invoked the PD service through UCDwP

to obtain more insights into the problem. As a result,
a dynamically-created Kibana dashboard appeared
on the UCDwP GUI. The PD service selected logs
from only two OpenStack subsystems, namely, Heat
(orchestration engine) and Cinder (block storage service).
The first Cinder log event selected (which appears at the
top of the list) by the PD service read “Insufficient free
space for volume creation. . . (requested/avail): 12/7.0.”
This log message implies that although we have requested
a 12-GB storage volume, the server had only 7 GB

10 : 8 F. OLIVEIRA ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



available and thus could not fulfill the request. That was
indeed the root cause of the problem.
The dashboard for diagnosing this problem also

exhibited on a timeline clusters of three log messages,
one from Heat and two from Cinder. Each cluster was
about 20 seconds apart, representing multiple failed
attempts at creating a Cinder storage volume initiated
by Heat. The selected Heat log event was an exception
when trying to create the volume, whereas the three
Cinder log messages included the aforementioned
one at the top of the list.

Using the problem determination service: Security
group problem
This scenario also starts with a blueprint for deploying
the previously used application onto a VM. This
time, however, the blueprint specifies that the VM be
added to a security group whose rule dictates that 8080
is the only network port that must be open, which is
the one exposed by the application for users’ network
connections. Deploying the application environment
through UCDwP succeeds, and the application works
as expected.
Sometime later, a new version of the

application-deployable artifacts is produced by the
build system. Before we started deploying a new
application environment with the latest version, an
OpenStack administrator inadvertently edited the
security group referenced by the environment blueprint,
commanding that the port 8080 be closed. Although
the deployment of the application succeeds, users
can no longer establish connections with the application
web server. Given that there were no OpenStack errors,
we immediately called the PD service from UCDwP
to diagnose that particular environment deployment.
The resulting Kibana dashboard selected one log event
from Nova, the OpenStack compute service, which
read “Revoke security group ingress MTM_security,”
where MTM_security was the name of the security group
referenced by the environment blueprint. Furthermore,
this time the Kibana dashboard dynamically generated
by the PD service also showed OpenStack cloud
state changes indicating that the security rule with the
following attributes “from_port=8080, to_port=8080,
ip_protocol=tcp, ip_range=0.0.0.0/0” had been deleted
from the security group “MTM_security.” Both findings
were consistent with the root cause of the problem.
In both scenarios described above, without the PD

service, users would have to start by inspecting the
OpenStack dashboard. Finally, they would have to identify
relevant log files out of dozens, probably spread across
several OpenStack hosts, and examine many log events,
all assuming there is sufficient OpenStack expertise
and knowledge of the environment blueprint.

Related work
Although little work so far has studied how to make
effective use of DevOps data combined with operational
data for problem determination, many research efforts
have been made to address problem determination in
different contexts. Huang et al. [28] proposed a tool
that attempts to automate problem determination based on
rules provided by human experts. Other research efforts
apply causality analysis to help identify misconfigurations
or the root cause of performance anomalies [29–31].
Alternatively, to address misconfiguration problems in
Windows Registry, PeerPressure [32] compares a
problematic configuration state with a large set of healthy
configurations, whereas Lao et al. [33] combine high-level
symptom descriptions and low-level system state.
Some studies emphasize data collection for problem

determination. Cohen et al. [34] devised a method for
indexing, clustering, and retrieving a system’s state
in order to distill the signature of observed problems
so that a recurring problem can be detected by similarity.
Verbowski et al. [35] proposed a method for monitoring,
efficiently storing, and analyzing all system’s
persistent-state interactions to improve systems
management, including problem diagnosis. These
efforts do not consider data from DevOps processes.
Representative of a body of research on tracing

requests as they flow through the system for failure
detection, Pinpoint [36] applies clustering techniques
on the traced requests to determine what components are
likely to be the root cause of failures.
Similar in spirit to testing multiple versions of a

microservice in production to decide whether or
not an update is satisfactory, a technique for validating
human operator actions has been proposed [37, 38]
where the system components operated on are tested
with live requests and compared with functionally
equivalent components that are known to be
working properly.
Many research efforts have been made to use

logs as a means to detect problems. For instance,
Xu et al. [39] propose a technique to parse log events
based on source-code analysis, and convert the parsed
events into machine learning features that are then
subjected to a machine learning algorithm for detecting
operational problems. On the other hand, Distalyzer [40]
uses machine learning to compare two sets of logs,
one for a normal system and one for a system exhibiting
performance problems, to determine associations between
systems components and performance. Our PD service,
on the other hand, correlates log events with DevOps
data and with cloud state in order to pinpoint suspicious
events.
In a different vein, Yuan et al. [41] have proposed a

misconfiguration troubleshooting technique that identifies

F. OLIVEIRA ET AL. 10 : 9IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



invariant configuration access rules and predicts what
configuration access to expect given a stream of accesses.
Considering the context of the entire software stack
and its operating environment, EnCore [42] exploits the
interaction between configurations and the executing
environment as well as correlations between configurations
in order to learn configuration rules from a set of
configurations. EnCore uses an approach similar to
ours for collecting operational data.
A body of research has been conducted in the software

evolution domain to analyze code changes as new code
is committed to revision control repositories. Some
research in this domain combine release history data and
code commits to help understand how the code and its
intra-dependencies change over time [43, 44]. On the
other hand, our work combines information from
traditionally isolated sources, namely DevOps and
operations, to help users understand problems.
Finally, Weaver [45], a DevOps domain-specific

language and runtime, was designed to orchestrate the
execution of deployment automation and the provisioning
of cloud resources. Weaver allows the definition of
pre-deployment validation rules that check for potential
problems before they happen. Although pre-deployment
validation is helpful, its scope is limited by the rules
that someone needs to manually write. Our approach
of highlighting changes in the operational environment
contextualized by DevOps metadata does not rely on
manually written rules.

Conclusion
We have proposed a set of cloud foundational services
that facilitate the extreme agility needed for delivering
software as a service in fast-paced environments
according to the principles of DevOps and microservices.
To truly fulfill the DevOps promise of agility, even in
light of problems and failures, we have also proposed
an approach to problem determination, native to
such fast-paced environments, that takes advantage
of the DevOps processes to contextualize virtually all
data produced by a cloud data collection substrate. With
such a contextualization, our problem determination
services can reduce the problem search space and
correlate traditional operational data with DevOps data
and metadata, presenting insights to the user to allow
quicker problem resolution.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both

**Trademark, service mark, or registered trademark of Netflix, Inc ,
OpenStack LLC, CloudBees, Inc , Amazon Technologies, Microsoft
Corporation, Elasticsearch Corporation, or Oracle America in the
United States, other countries, or both

References
1 M Huttermann, DevOps for Developers New York, NY, USA

Apress, 2012
2 M Fowler, Microservices [Online] http //martinfowler com/

articles/microservices html
3 S Newman, Building Microservices North Sebastopol, CA,

USA O’Reilly, 2015
4 A Schaefer, M Reichenbach, and D Fey, “Continuous

integration and automation for DevOps,” IAENG Trans Eng
Technol , vol 170, pp 345–358, 2013

5 “The Netflix Tech Blog,” Netflix, Los Gatos, CA, USA
[Online] Available http //techblog netflix com/2012/12/
videos-of-netflix-talks-at-aws-reinvent html

6 Agentless System Crawler [Online] Available https //
developer ibm com/open/agentless-system-crawler/

7 Bluemix [Online] Available http //www ibm com/cloud-
computing/bluemix/

8 The IBM Active Deploy Service [Online] Available
https //www ng bluemix net/docs/services/ActiveDeploy/
index html

9 OpenStack [Online] Available https //www openstack org/
10 IBM UrbanCode Deploy with Patterns [Online] Available

https //developer ibm com/urbancode/products/urbancode-
deploy-with-patterns/

11 Heat Orchestration Template (HOT) [Online] Available
http //docs openstack org/developer/heat/template_guide/hot_
spec html

12 Chef [Online] Available https //www chef io/
13 Puppet [Online] Available https //puppetlabs com/
14 IBM UrbanCode Deploy [Online] Available http //www-03

ibm com/software/products/en/ucdep
15 M T Nygard, Release it! Design and Deploy Production-ready

Software Frisco, TX, USA Pragmatic Bookshelf, 2007
16 IBM Bluemix Delivery Pipeline Service [Online] Available

http //www ibm com/developerworks/topics/delivery__pipeline__
service/index html

17 Jenkins [Online] Available https //jenkins-ci org/
18 Travis CI [Online] Available https //travis-ci org/
19 CloudBees [Online] Available https //www cloudbees com/
20 J Humble and D Farley, Continuous Delivery Reliable

Software Releases through Build, Test, and Deployment
Automation Reading, MA, USA Addison-Wesley, 2010

21 Netflix Asgard [Online] Available https //github com/
Netflix/asgard

22 Amazon Web Services CodeDeploy [Online] Available
http //aws amazon com/codedeploy/

23 Microsoft Azure [Online] Available http //azure
microsoft com/

24 Elasticsearch [Online] Available https //www elastic co/
products/elasticsearch

25 Apache Kafka [Online] Available http //kafka apache org/
26 Logstash [Online] Available https //www elastic co/products/

logstash
27 Kibana [Online] Available https //www elastic co/products/

kibana
28 H Huang, R Jennings III, Y Ruan, R Sahoo, S Sahu,

and A Shaikh, “PDA A Tool for Automated Problem
Determination,” in Proc LISA Conf , Dallas, TX, USA,
2007, pp 153–166

29 Y Su, M Attariyan, and J Flinn, “AutoBash Improving
configuration management with operating system causality
analysis,” in Proc ACM SOSP, Stevenson, WA, USA, 2007,
pp 237–250

30 M Attariyan and J Flinn, “Automating configuration
troubleshooting with dynamic information flow analysis,”
in Proc Symp OSDI, Vancouver, BC, Canada, 2010,
pp 1–14

31 M Attariyan, M Chow, and J Flinn, “X-ray Automating
root-cause diagnosis of performance anomalies in production
software,” in Proc Symp OSDI, Hollywood, CA, USA, 2012,
pp 307–320

10 : 10 F. OLIVEIRA ET AL. IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



32 H J Wang, J C Platt, Y Chen, R Zhang, and Y -M Wang,
“Automatic misconfiguration troubleshooting with Peerpressure,”
in Proc Symp OSDI, San Francisco, CA, USA, 2004,
pp 245–257

33 N Lao, J -R Wen, W -Y Ma, and Y -M Wang, “Combining
high level symptom descriptions and low level state information
for configuration fault diagnosis,” in Proc LISA Conf , Atlanta,
GA, USA, 2004, pp 151–158

34 I Cohen, S Zhang, M Goldszmidt, J Symons, T Kelly,
and A Fox, “Capturing, indexing, clustering, and retrieving
system history,” in Proc ACM SOSP, Brighton, U K , 2005,
pp 105–118

35 C Verbowski, E Kiciman, A Kumar, B Daniels, S Lu,
J Lee, Y -M Wang, and R Roussev, “Flight data recorder
Monitoring persistent-state interactions to improve systems
management,” in Proc Symp OSDI, Seattle, WA, USA, 2006,
pp 117–130

36 M Y Chen, A Accardi, E Kiciman, J Lloyd, D Patterson,
A Fox, and E Brewer, “Path-based failure and evolution
management,” in Proc Symp NSDI, San Francisco, CA, USA,
2004, pp 1–14

37 K Nagaraja, F Oliveira, R Bianchini, R P Martin, and
T D Nguyen, “Understanding and dealing with operator
mistakes in internet services,” in Proc Symp OSDI,
San Francisco, CA, USA, 2004, pp 61–76

38 F Oliveira, K Nagaraja, R Bachwani, R Bianchini,
R P Martin, and T D Nguyen, “Understanding and
Validating Database System Administration,” in
Proc Usenix Annu Tech Conf , Boston, MA, USA,
2006, pp 213–228

39 W Xu, L Huang, A Fox, D Patterson, and M I Jordan,
“Detecting large-scale system problems by mining console
logs,” in Proc ACM SOSP, Big Sky, MT, USA, 2009,
pp 117–132

40 K Nagaraj, C Killian, and J Neville, “Structured comparative
analysis of systems logs to diagnose performance problems,”
in Proc Symp NSDI, San Jose, CA, USA, 2012, pp 1–14

41 D Yuan, Y Xie, R Panigrahy, J Yang, C Verbowski, and
A Kumar, “Context-based online configuration-error detection,”
in Proc Usenix Annu Tech Conf , Portland, OR, USA, 2011,
pp 1–14

42 J Zhang, L Renganarayana, X Zhang, N Ge, V Bala,
T Xu, and Y Zhou, “EnCore Exploiting system
environment and correlation information for misconfiguration,”
in Proc Conf ASPLOS, Salt Lake City, UT, USA, 2014,
pp 687–700

43 M Fisher and H Gall, “EvoGraph A lightweight approach
to evolutionary and structural analysis of large software
systems,” in Proc IEEE WCRE, Benevento, Italy, 2006,
pp 179–188

44 M Pinzger, M Fischer, and H Gall, “Towards an Integrated
view on architecture and its evolution,” in Electron Notes
Theoretical Comput Sci , vol 127, no 3, pp 183–196,
Apr 2005

45 M Kalantar, F Rosenberg, J Doran, T Eilam, M Elder,
F Oliveira, E Snible, and T Roth, “Weaver Language and
runtime for software defined environments,” IBM J Res Dev ,
vol 58, no 2/3, pp 10 1–10 12, 2014

Received June 4, 2015; accepted for publication
June 29, 2015

Fábio Oliveira IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (fabolive@
us ibm com) Dr Oliveira is a Research Staff Member at the
IBM T J Watson Research Center He earned a Ph D degree
in computer science from Rutgers University in 2010 His
research interests include systems management, distributed
systems, cloud computing, and operational and DevOps
analytics

Tamar Eilam IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (eilam@
us ibm com) Dr Eilam is an IBM Fellow working on next
generation cloud, DevOps, and DevOps analytics She received
her Ph D degree in computer science from The Technion, Israel
Institute of Technology in 2000

Priya Nagpurkar IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (pnagpurkar@
us ibm com) Dr Nagpurkar is a Research Staff Member and
Manager of the Cloud DevOps group at the IBM T J Watson
Research Center She received her Ph D degree in computer science
from the University of California, Santa Barbara, in September
2007 Her research interests include program analysis, debugging,
problem determination, performance analysis and optimization,
and DevOps analytics

Canturk Isci IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (canturk@
us ibm com) Dr Isci is a Research Staff Member in the Cloud
Computing division at the IBM T J Watson Research Center,
where he leads the Scalable Data Center Analytics team in
the Research and the Operational Analytics Squad within IBM
Cloud Services He received a B S degree in electrical engineering
from Bilkent University, an M Sc degree with distinction in VLSI
(very-large-scale integration) System Design from University of
Westminster, and a Ph D degree in computer engineering from
Princeton University His research interests are cloud computing,
operational and DevOps analytics, novel monitoring techniques
based on virtualization and containerization abstractions, and
energy-efficient computing at multiple levels of compute hierarchy,
from microarchitectures to data centers

Michael Kalantar IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (kalantar@
us ibm com) Dr Kalantar graduated from Cornell University and
has taught at Shandong and Shiyou Universities, and he now works
at IBM Research His research interests are system management
and distributed systems

Wolfgang Segmuller IBM Research Division, Thomas J
Watson Research Center, Yorktown Heights, NY 10598 USA
(werewolf@us ibm com) Mr Segmuller is a Senior Software
Engineer at the IBM T J Watson Research Center He has
researched systems management, network management, and
distributed systems for more than 30 years at IBM

Edward Snible IBM Research Division, Thomas J Watson
Research Center, Yorktown Heights, NY 10598 USA (snible@
us ibm com) Mr Snible is a Software Engineer and member
of the Cloud DevOps group His research interests include
visualization of software deployments and the detection of
errors in distributed systems

F. OLIVEIRA ET AL. 10 : 11IBM J. RES. & DEV. VOL. 60 NO. 2/3 PAPER 10 MARCH/MAY 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


