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Abstract

Computer systems increasingly rely on dynamic, phase-based system management techniques, in which system hardware

and software parameters may be altered or tuned at run-time for different program phases. Prior research has considereda

range of possible phase analysis techniques, but has focused almost exclusively on performance-oriented phases; the notion

of power-oriented phases has not been explored. Moreover, the bulk of phase-analysis studies have focused on simulation

evaluation; there is need for real-system experiments thatprovide direct comparison of different practical techniques (such

as control flow sampling, event counters, and power measurements) for gauging phase behavior.

In this paper, we propose and evaluate a live, real-system measurement framework for collecting and analyzing power

phases in running applications. Our experimental framework simultaneously collects control flow, performance counter and

live power measurement information. Using this framework,we directly compare between code-oriented techniques (such

as “basic block vectors”) and performance counter techniques for characterizing power phases. Across a collection of both

SPEC2000 benchmarks as well as mainstream desktop applications, our results indicate that both techniques are promising,

but that performance counters consistently provide betterrepresentation of power behavior. For many of the experimented

cases, basic block vectors demonstrate a strong relationship between the execution path and power consumption. However,

there are instances where power behavior cannot be capturedfrom control flow, for example due to differences in memory

hierarchy performance. We demonstrate these both with microbenchmarks and examples from real applications. Overall,

counter-based techniques offer average classification errors of 1.9% for SPEC and 7.1% for other benchmarks, while basic

block vectors achieve 2.9% average errors for SPEC and 11.7%for other benchmarks respectively.

1 Introduction

In recent years, phase behavior of applications has drawn a growing research interest for two main reasons. First, the

increasing complexity and power demand of processor architectures mandate workload dependent dynamic management

techniques. These techniques extensively benefit from tracking application phases to optimize power/performance trade-offs

and to identify critical execution regions for management actions [1, 3, 9]. Second, in parallel with increasing processor

complexities, architectural simulation studies develop agrowing need to research long execution timescales to capture the

increasingly variable behavior of applications. These studies benefit from phase characterizations that summarize appli-

cation behavior with representative execution regions, alleviating the prohibitively high computational costs of large-scale

simulations [28, 32].

Various prior studies demonstrated that phase behavior canbe observed via different features of applications. Most of

these approaches fall into two main categories: In the first category application phases are determined from the controlflow

of the applications or the program counter (PC) signatures of the executed instructions [9, 20, 16, 28, 31, 32, 33, 23]. Inthe

second category, phases are determined based on the performance characteristics of the applications [3, 7, 11, 18, 35, 36].

Although there have been some previous efforts to compare orevaluate phase characterization techniques [2, 8, 22],

they do not perform a direct comparison of the two main approaches. Moreover, there is generally a missing link between

phase characterizations and their ability to represent power behavior, especially with real-system experiments. Such power

characterization is very important for real-systems, as a primary goal of phase characterization is dynamic power management



of running systems.

Following from these motivations, in this work, we compare phase characterizations based on PC signatures and perfor-

mance behavior of applications. Our study primarily evaluates these techniques for accurate power behavior characterization

on a real-system. We compare these with respect to the actual, measured runtime power dissipation behavior of applica-

tions. Specifically, we look at phase analysis based on basicblock vector (BBV) features of an application [32] to determine

regions of similar power behavior. We compare this to phasesdetermined by a particular set of performance monitoring

counter (PMC) events that are chosen to reflect power dissipation [19]. We test the power characterization accuracy of these

methods on 21 benchmarks from SPEC2000 suite and 9 other benchmarks derived from commonly used desktop and mul-

timedia applications. We show that, in general, tracking performance metrics performs better than tracking control flow in

identifying power phase behavior of applications. Additionally, we present specific examples from microbenchmarks and

real applications demonstrating cases where power phase behavior cannot be deduced from code signatures.

There are three primary contributions of this work. First, we have designed an accurate, real-system method for synchro-

nizing BBV signatures, performance events, and power measurements on running machines. This method allows us to study

large-scale application behavior on running systems rather than being limited to simulation approaches. Second, utilizing this

experimental framework, we evaluate how how BBV and PMC based approaches perform from a real power characterization

point of view. Compared to an uninformed phase characterization, both phase based techniques achieve significantly higher

accuracies in identifying power phases, leading to 2-6x less errors for benchmarks with significant power variations. Last,

we compare control flow (BBV) and performance (PMC) based approaches against each other for their power phase classifi-

cation abilities. Overall tracking performance behavior leads to 30-40% less errors than tracking control flow in representing

real power phase behavior.

The rest of the paper is organized as follows. Section 2 discusses the reasons why control flow and performance phases

can significantly differ. Section 3 describes our experimentation platform. Section 4 explains the collection of BBV and

PMC information with our experimental setup. Section 5 describes our phase classification methods. Section 6 describesour

quantitative evaluation and presents the power phase characterization results. Section 7 provides detailed observations from

performed experiments. Section 8 provides a final discussion of BBV and PMC based approaches and their applications.

Section 9 summarizes related work and Section 10 offers our conclusions.

2 What Control Flow Information Does Not Show

Before delving into the details of our experimentation and phase characterization methodology, here we discuss the reasons

why control flow and power/performance behavior of an application may disagree. We then show the extent of disagreement

for one case, with a synthetic benchmark example.

There are multiple aspects of application behavior that cancause the control flow and performance based approaches

to reach different phase characterization conclusions.Dynamic change in data localityduring an application’s execution

can cause the power behavior to significantly change. While this change can be easily recovered from memory related

performance metrics, code signatures cannot reflect this asexecution footprints are not altered.Effectively same execution

represents the converse of the above effect. In various applications, multiple procedures or code segments perform similar

processes, leading to practically identical power behavior. These are considered as fairly different phases in terms of con-

trol flow, which may result in many different phase clusters that do not reflect actual changes in program power. Typical

examples for these are scientific or other iterative processing applications performing different tasks on an input with similar

power/performance implications.Operand dependent behaviormay result in similar effects as the first case, where power

2



and latency of a unit depends on the input operands, despite the same control flow. Typical cases for these are overflow

handling and scaling of execution based on the input operandvalues or widths [4].

Below, we demonstrate a complete case study to show the differences that can arise between control flow and and perfor-

mance based phase tracking for power. This presents one aspect of the sources of disagreement, varying data locality. Wedo

not provide examples to the other two cases here for space limitations. However, we revisit these after presenting our power

phase characterization study, with observations from realexperimented applications.

2.1 Dcache Microbenchmark

We design a simple synthetic example benchmark,dcache, to demonstrate the effect of data locality on power and perfor-

mance. While increasing the address range for data accesses impacts power and performance drastically with reduced cache

affinity, this change of behavior goes unnoticed by the control flow observations.

We implement this in thedcache microbenchmark with a random list traversal over a single dimensional vector. This

vector is constructed such that, each vector element contains the address of the next element to be accessed. Each next access

is determined randomly from the pool of yet “untouched” elements, thus providing uniform probabilities that each access can

be to any location in the vector address space. The last accessed element is linked back to the first vector element, forming a

complete cycle. The main microbenchmark loop then continuously travels through these links for a large number of iterations

to avoid cold start effects.

In Figure 1, we show the relevant C and assembly code snippetsfor the main microbenchmark loop for random list

traversal. Inside the C code, we also layout the generic vector traversal path constructed at initialization. The length of this

vector determines whether the elements reside in L1 cache, L2 cache or memory. For example, for our experimentation

platform, a single threaded Pentium 4 processor, L1 and L2 caches are 8KB and 256KB. Therefore, integer vector sizes less

than 2K and 64K will be mostly resident in L1 and L2 caches respectively.

In both C and assembly codes, the parts in italics represent the main microbenchmark loop.cmpl instruction at 0x804874C

/* FOR VARIOUS ARRAY SIZES: */ 
 
  /* Initialize The Array Data: */ 
            : 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            : 
  /* Main MicroBenchmark Loop */ 
  array_index = 0; 
  for (ind=0; ind<100000000; ind++) 
  { 
    array_index = data[array_index]; 
    count = count + 1; 
  } 
  /* MicroBenchmark END*/ 

 8048736:       call   80483b8 <_init+0x38> 

 804873b:       add    $0x10,%esp 

 804873e:       movl   $0x0,0xffffff88(%ebp) 

 8048745:       movl   $0x0,0xffffff8c(%ebp) 

 804874c:       cmpl   $0x5f5e0ff,0xffffff8c(%ebp) 

 8048753:       jle    8048778 <main+0x258> 

 8048755:       sub    $0x4,%esp 

 8048758:       pushl  0xffffff9c(%ebp) 

 804875b:       push   $0x8048922 

 8048760:       pushl  0x8049a98 

 8048766:       call   80483b8 <_init+0x38> 

 804876b:       add    $0x10,%esp 

 804876e:       lea    0xffffffa0(%ebp),%eax 

 8048771:       incl   (%eax) 

 8048773:       jmp    8048588 <main+0x68> 

 8048778:       imul   $0x4,0xffffff88(%ebp),%edx 

 804877c:       mov    0xffffffb4(%ebp),%eax 

 804877f:       mov    (%eax,%edx,1),%eax 

 8048782:       mov    %eax,0xffffff88(%ebp) 

 8048785:       lea    0xffffff9c(%ebp),%eax 

 8048788:       incl   (%eax) 

 804878a:       incl   0xffffff8c(%ebp) 

 804878d:       jmp    804874c <main+0x22c> 

 804878f:       nop     

 8048790:       mov    $0x0,%eax 

 8048795:       lea    0xfffffff4(%ebp),%esp 

 8048798:       pop    %ebx 

 8048799:       pop    %esi 

 804879a:       pop    %edi 

 804879b:       pop    %ebp 

 804879c:       ret     

�����
����	
��	

Figure 1. Dcache microbenchmark
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is the loop exit condition check andmov instruction at 0x804877F is our “indeterministic load” to retrieve next vector index.

In the assembly code, bold lines show the control flow boundaries, where the execution path may divert.

2.2 Showing Effect of Data Locality on Control Flow, Performance and Power Characteristics with Dcache

We show the control flow, performance and power behavior ofdcache benchmark for three distinct vector configurations:

L1 intensive, L2 intensiveandmemory intensive. In L1 intensive case, data vector practically resides in L1, leading to very

high L1 cache hit rates for the vector element accesses. In L2intensive case, vector accesses incur around 90% L1 misses,but

almost perfect L2 hits. In memory intensive operation, manyof the accesses also initiate a memory transaction. We acquire

control flow information by sampling PC every 1 million instructions (with a random jitter of 100 instructions to eliminate

biased sampling). We collect performance metrics—L1, L2 andmemory access rates, and instructions per cycle (IPC)—by

sampling PMCs. We collect power information from real measurements via a current probe.
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2.5E+09 1.1E+10 1.7E+10 2.4E+10

P
er

fo
rm

an
ce

 R
at

es

0

10

20

30

40

50

60

70

P
ow

er
 [W

]

IPC
L1
PWR

(b) IPC, L1 access rates and power.
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(c) L2 access rates and power.

0

0.01

0.02

0.03

0.04

0.05

0.06

2.5E+09 1.1E+10 1.7E+10 2.4E+10

P
er

fo
rm

an
ce

 R
at

es

0

10

20

30

40

50

60

70

P
ow

er
 [W

]

MEM

PWR

(d) Memory access rates and power.

Figure 2. Control flow, performance and power behavior of dcache microbenchmark during three
modes of operation: L1 intensive, L2 intensive and memory in tensive execution. In each plot, x axis
is executed instructions.

In Figure 2, we show the resultant behavior in terms of control flow (a) and power/performance (b-d) for the three config-

urations. In each plot, the three shaded regions correspondto the three different configurations. First region corresponds to

L1 intensive execution, 2nd to L2 intensive execution and 3rd region to memory intensive execution. Figure 2.(a), the solid

horizontal lines represent the control flow boundaries as shown in the assembly plot of 1. The PC scatterplots show, which

sequential execution parts the sampled instruction addresses fall into.

It is clearly seen from Figures 2.b-d that, the three configurations lead to distinctly different execution phases in terms

of both power and performance. All performance metrics showvery different behavior in all three phases. Power behavior

change is subtle, but observable between L1 and L2 intensivemodes. On the other hand, it is distinctly different betweenL2
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and memory intensive execution. While performance metrics easily identify these three phases, there is no observable pattern

in control flow behavior, as major executed code lies in the same control flow boundaries.

3 Software and Hardware Measurement Platform

To collect synchronous PC, PMC and power information duringan application’s execution, we use dynamic instrumenta-

tion via Pin [25]. Pin provides several flexible methods to dynamically instrument the binary at different granularities. This

first step,instrumentation, simply decides where in the native code the additional procedures to analyze the application be-

havior should be inserted. Afterwards, whenever one of these instrumentation checkpoints are reached, Pin gains the control

of the application and injects corresponding analysis routines. During execution, each time the instrumented locations are

visited, their injected analysis routines also execute, providing the dynamic application information. This second phase of

operation is calledanalysis. Although conceptuallyinstrumentationandanalysisare two exclusive processes. Pin operates

similarly as a just-in-time (JIT) compiler. Instrumentation for a code trace happens immediately before it is executedfor

the first time. Therefore,instrumentationandanalysisare usually temporally intermixed, with instrumentation-dominant

execution at the beginning of an application and analysis-dominant execution towards the end, as very few new traces areen-

countered. Pin utilizes a single executable,Pintool, to perform instrumentation and analysis on an application. Each Pintool

contains separate routines for instrumentation and analyses to perform these processes.

Figure 3. Experimental setup for power phase analysis with P in.

Figure 3 presents an overview of our experimental setup for power phase analysis with Pin. In our Pintool, we use trace

level instrumentation to keep track of executed code traces. Our analysis routine consists of three levels of hierarchy. First

level simply provides an account of executed instructions.Second level samples one PC address approximately every 1

million instructions. Highest level analysis is evoked every 100 million instructions. This routine generates one BBVfrom

the 100 PC samples, reads performance statistics from PMCs and logs the measured power history from the serial device file.

These three sources of data collection are shown with the three incoming arrows to the analysis routine of our Pintool.

It is important to isolate application behavior from Pin operation. Pin provides application exclusive control flow informa-

tion, however, performance monitoring and power measurements are independent of Pin operation. Therefore, we provide

handles to our Pin routines to disable the logging of data forpower and performance at routine entries; and to reenable data

logging at routine exits. As we mentioned, instrumentationand analysis are not mutually exclusive temporally. Therefore,

we use these handles during both instrumentation and analysis, as shown with the arrows in Figure 3. Nonetheless, there exist

additional handles exclusive to the analysis tool such as reseting the PMCs and flushing device file at the end of a complete
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(a) Native execution power 
behavior without instrumentation

(b) Flattened power behavior with Pin basic block instrumentation (c) Improved external power behavior with Pin 
trace instrumentation and conditional inlining
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application execution by Pintool
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Figure 4. Effect of Pin instrumentation on application powe r behavior for SPEC gcc benchmark
with 166 dataset. (a) shows the native power behavior without instru mentation. (b) shows Pin
instrumentation overwhelming gcc power behavior with naive BBL instrumentation. (c) shows th e
retained power behavior with trace instrumentation and con ditional inlining with external power
measurement (including both Pin and gcc). (d) shows power behavior assigned to application as
isolated by our Pintool power analysis routine ( gcc only, by selectively disabling device logging
during Pin execution).

sampling period. We provide further details to each of the data collection mechanisms in the following sections, where we

also provide information on the fidelity of our experiments.

All our experiments described in this paper were performed on a 1.4GHz Pentium 4 processor with Linux operating

system, kernel 2.4.7-10. The experiments are carried out with the SPECCPU 2000 benchmarks using reference datasets and

other benchmarks derived from well-known suites and desktop applications. All benchmarks are compiled with gcc and g77

compilers with base compiler flags.

3.1 Instrumentation Details

In our experiments, initially we used basic block level (BBL) instrumentation to collect PC information. In this case, first

analysis routine—called at every basic block entry—kept track of executed instructions. At every 1 million instructions, we

called the 2nd analysis routine to log PC address. However, as on average every 5-7 instructions make a BBL, doing instru-

mentation at this granularity caused the instrumentation tool to overwhelm benchmark power behavior. Although it performs

a minor operation, the 1st routine has been the bottleneck due to its call frequency. As this research relies on collecting real

measured power behavior, the most important specific consideration is to be able to preserve the power variations induced by

benchmark behavior. Therefore, we applied following optimizations to instrumentation to retain variation in power behavior:

- Trace Instrumentation:This is a one level coarser instrumentation than BBL granularity provided by Pin. A trace is a

single entry, multiple exit (unlike single exit BBLs) code region. As we keep track of each trace head (i.e. each change in

control flow), this method still provides required control flow information, while reducing the amount of instrumentation to

1/2−1/3.

- Conditional Inlining:One obvious feature of our analysis hierarchy is that, first level analysis is performed very frequently,

to determine the condition for applying the second level analysis. Here, the condition is, whether 1 million instructions

are executed. Therefore, the task of first level analysis is to simply count instructions up to 1 million, and call the second

level whenever the condition is met, at a much lower frequency. Starting with toolkit 1795, Pin API provides routines for

inlining this first level condition checking. This is seen todrastically improve performance as long as the “then” routine has

significantly lower frequency. Therefore, in our implementation, we make use of this feature. This helps reduce the execution

times by 5x and also helps retain the original power behaviorof applications.

In Figure 4, we show the effects of instrumentation on power behavior forgcc benchmark with166 dataset. Figure
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4.(a) shows the actual measured power behavior ofgcc without any instrumentation. Figure 4.(b) shows the resultof our

initial experiments. Here, power behavior ofgcc is overwhelmed by the frequent calls to the first level analysis routine.

Consequently, the observed power behavior is rather flat, not reflecting the variations in actual benchmark execution. In

Figure 4.(c), we show the improvement achieved with trace instrumentation and conditional inlining. This figure also shows

the two phases of Pin operation clearly, where the initial stages of benchmark is instrumentation dominant and as lots of

new traces are encountered and later it becomes execution and analysis dominant as mostly the previously entered traces

re-execute. The power behavior reported in this case is from“external” measurements. We mean by this, an external power

monitor is used to collect power information during the execution of the application within Pin. Therefore, what we see is

the aggregate power behavior of both Pin andgcc. As we have briefly discussed, we use Pin to exclusively collect isolated

benchmark power behavior, by excluding power logging during Pin instrumentation and analysis routines. We show in Figure

4.(d) the actual observed power behavior forgcc by our Pintool. Here, we can demonstrate most of the instrumentation (and

analysis) effects are filtered out from the power behavior seen from within Pin with our power monitoring method. Note

that this trace cannot be identical to that of Figure 4.(a). Although what we measure is mostly benchmark execution, there

are inevitable differences due to inlined first level analysis routine, and imperfect synchronization of power and performance

measurements. Nonetheless, it can be seen that the originaltemporal power behavior of the application, as well as the

magnitudes of application power variations are both preserved, which are the most important prerequisites of our research.

3.2 External Power Measurement and Pin Interface

We provide real power behavior feedback to our power phase characterizations via external, live power measurements.

We perform power measurements by measuring the current flow into the processor with a current probe. This measurement

information is then fed back to the measurement system over the serial port interface.

This power measurement is performed continuously at runtime, reflecting the actual power consumption as experienced

by the processor. Therefore, this power behavior reflects the aggregate effects of all the Pin tasks running on the system

at a given time period. As the purpose of our power characterization research is to efficiently identify phases reflecting

real power behavior of an application, it is crucial to be able to disect the application power behavior from Pin analysis

and instrumentation. To perform this, we use certain controls from the instrumentation and analysis routines of our Pintool

eliminating their contribution to collected power information.

In our experimentation system, measured power informationcomes to the serial interface as 15 bytes of ASCII followed

by a newline. By default, this data passes through the serialbuffer, and is silently logged into a 4KB serial device file—if

the serial port is programmatically opened. The tail of thisfile extends as new data is received from the serial port and

current file position advances as data is read by the user level program. In order to log only application execution specific

power data in this file, we use separate controls inside the Pintool routines that can detach/attach serial device driverfrom the

device file viatermios flags. This approach allows us to preserve previous power history, while preventing further logging

while inside an instrumentation/analysis routine. At the exit of a routine, the driver is enabled to log further power data for

continued application execution. At the end of a 100 millioninstruction sampling period, the highest level analysis function

halts logging and reads the logged power history for the pastsampling period. This history is then averaged and is assigned

as the observed power for the past sampling quantum. Afterwards, the buffer is flushed and reenabled for logging at the start

of next sampling interval.

With this approach, we provide a valid matching between application execution flow, performance statistics and applica-

tion specific power behavior. Inevitably, there exist sources of error due to measurements, transient operations that perform

the control functions for selective logging and asynchronous operation of different data sources. However, in the experi-
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mented cases, our selective power collection process produces power information with good fidelity, as compared to native

execution behaviors of applications. Measured power behavior in all cases are similar, both temporally and in terms of delta

variations.

4 Generating BBV and Performance Information from Pin/Hardware Structure

4.1 Program Counter Sampling and BBV Generation

To track control flow based application phases, we use the basic block vector (BBV) approach [32]. BBVs summarize

application execution by tracking both which basic blocks of the application are touched and how many times each basic

block is visited during a sampling interval. BBVs are shown to represent application execution behavior by providing both

working set information and execution frequencies for different basic blocks [8]. BBVs are constructed from executionflow

by mapping executed PC addresses to the basic blocks of an application binary. Originally, each component of a BBV is

a specific basic block, and the magnitude of the component represents how often the corresponding basic block has been

executed for a past sampling period. For practical purposes, BBVs are generally mapped into smaller dimensional vectors

via random projection/hashing or eliminating least significant dimensions [2, 22, 32, 33].

In our implementation, we use Pin to sample the PC addresses at trace heads. Using trace instrumentation provides certain

advantages to BBV generation. As each trace head is also a basic block start address, each sampled PC actually corresponds

to a specific basic block. This eliminates any need for prior profiling of the binary to identify basic block boundaries and

searching through these boundaries at runtime PC sampling to map the PCs to basic blocks. Consequently, different sampled

PCs represent different elements of the BBV and number of samples for a specific PC represents the execution frequency

of the corresponding block. For sampling periods, we use previously published granularities [2]. We sample one PC every

1 million instructions and construct a BBV at every 100million instructions. Thus, each BBV has an L1 norm of 100.

We perform static instrumentation of applications with gccto determine the dimensions of basic block profiles. Even after

eliminating untouched basic blocks and libraries, applications exhibit large BBV dimensions ranging from 33000 (gcc) to

100 (swim). These lead to highly sparse and impractical to implement BBVs. Consequently, we also apply dimension

reduction. For the reduced dimensions, we choose 32 buckets, based on previous work [33]. We use a variation of Jenkins’

32 bit integer hash function [21] to reduce the large and variable BBV dimensions into common 32 dimensional vectors.

As has been discussed in previous studies [22], sampling always incurs some amount of information loss. However, for any

practical implementation of runtime control flow tracking,sampling is inevitable. As we have shown, our choice of sampling

provides acceptable intrusion to program power behavior. In addition, our observations show, our sampled PC information

still leads to similar similarity information for large scale control flow behavior. We compare full-blown BBVs, constructed

from complete PC information, to our sampled BBVs with similarity matrices [32]. Both methods reflect the major phase

content in terms of execution flow similarity and lead to similar phases for small numbers of target phase clusters.

4.2 Monitoring Using Performance Counters

Our performance oriented methods read performance counters at runtime via handles in our Pintool. In order to track

power phases, we use a set of 15 performance counters that aregood proxies for power estimation. The counters include

CPU instruction counts, L1 and L2 access rates, and bus utilizations for memory behavior. The method is similar to prior

research [19], but streamlined to avoid counter rotations.The final set of 15 PMC events can be monitored simultaneously

without conflicts. Therefore, no PMC configuration is required except at the initial Pintool startup.

We developed several handles to control PMC monitoring fromwithin our Pintool. At Pintool initialization, we use
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PrepCntrscall to configure the 15 events to be monitored. This is the most heavyweight call, and is called only once,

before application execution commences. We provideStartCntrsandStopCntrscalls to selectively start/halt performance

monitoring at instrumentation and analysis routine exits/entries. These are used to avoid polluting the PMC information with

Pin execution. Although we provide the start/stop handles to all routines, after our initial experiments, we do not invoke them

for instrumentation and 2nd level analysis routines, as their costs are seen to be comparable. Note that, this trade-offonly

effects PMC information, without any effect on BBV generation and power measurements. Our experiments show that, PMC

information still performs superior in phase characterization and most of the large scale phase behavior is preserved.After

every 100 million instruction execution, the highest levelanalysis routine callsReadCntrsto collect the past performance

statistics for the current sampling period. These 15 event rates are used to construct a 15 dimensionalPMC vectorwhich is

used the gauge the similarity of execution samples in a similar manner as BBVs. After the collection of PMC information,

the analysis routine resets the counters withResetCntrsand initiates monitoring for the next sampling interval.

5 Phase Classification

We cluster gathered BBV and PMC vector samples into phases with multiple clustering algorithms. First, we develop a

fast, but less accurate method based on the descriptions of previous work [18]. This method is more suitable for runtime

analysis as it assigns samples to phases as they are observed. We call this methodFirst Pivot Clustering. To corroborate

the observed characterization results are not due to the choice of clustering, we also experiment with a very computationally

expensive method,Agglomerative Clustering. We use two variations of this method:complete linkageandaverage linkage.

Patil et al. [28] show in their representative phase generations, SPEC INT and FP lead to on average 4 and 5 phases respec-

tively. Therefore, in this study, to provide consistent results and error metrics across all applications, we target towards 5 final

phases for all benchmarks. Afterwards, we show that observed results are consistent as the target number of phases changes.

5.1 First Pivot Clustering

First Pivot Clustering usespivot samples to represent different phases. In the original description of this method, a new

gathered sample is compared to all previous pivots, i.e. starters of different phases. If the current sample is within a specified

threshold distance of a pivot, it is assigned to that phase. If it is not within the similarity distance of any of the pivots, it

starts a new phase and is added to the list of pivots as the representative sample for the new phase. By this way, The original

description can assign samples to phases at runtime. This approach provides an upper bound to the distance within each

phase, but it does not guarantee a fixed number of phases.

We change this to an iterative process, where the threshold is changed dynamically based on both the acquired and target

number of phases. With this modification, we classify both BBVs and PMC vectors into 5 final phases after a few iterations.

5.2 Agglomerative Clustering

Agglomerative clustering is a tedious bottom-up approach to clustering samples into phases. In this approach, clustering

algorithm starts with an initial clustering solution ofN clusters, whereN is the number of samples. At each iteration, the

algorithm compares all pairwise combinations of the current set of clusters and finds the best candidate pair of clustersto

combine into a single cluster. The pairs are compared based on a linkagecriterion, which determines the best candidates.

This iterative process continues until a final target numberof clusters are reached or a distance threshold among clusters

is exceeded. For agglomerative clustering, we experiment with two types of linkages, complete and average linkage. We

describe these below.
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5.2.1 Average Linkage

Average linkage compares the average distance between all sample pairs belonging to two different clusters. For two clusters

with i and j samples respectively, it computes the distance between allthe i · j pairs and finds the average distance between

the clusters. Performing this operation for all cluster combinations, it chooses to combine two clusters with the minimum

average distance. This leads to clusters with similar ranges in all dimensions, but can result in significantly different ranges

for different clusters.

5.2.2 Complete Linkage

Complete linkage does similar comparisons as average linkage. However, it compares the maximum pairwise sample-distance

among clusters. It combines the clusters with the least maximum distance among all their pairs. Consequently, the final set

of clusters have similar ranges among most of their samples,although the range across each dimension can be different.

In all our analyses we use L1—manhattan—distance, as our measure of distance between two samples. For BBV based

clustering, we compute the L1 distance between the two corresponding 32 dimensional BBVs. For PMC based clustering, we

use the two 15 dimensional PMC vectors to gauge the similarity between points. We apply above three clustering methods

and evaluate clustering criteria based on these distances.

6 Power Phase Characterization: Evaluation of Techniques and Results

We apply our described power phase classification methods toseveral benchmarks. Using both control flow and perfor-

mance features, we cluster each benchmark into 5 phases withmultiple clustering methods. Here, we discuss first how we

evaluate the fidelity of these phases in terms of power behavior characterization. Afterwards, we provide the complete set of

results based on these evaluations. With the demonstrated results, we show how code signatures and PMC phases perform in

identifying power behavior characteristics with respect to a “gold standard” phase classification as our lower bound and an

“uninformed” classification as the upper bound. We also present a direct comparison between BBV phases and PMC phases

for power characterization.

6.1 Evaluating the Error of Power Phase Characterization

We evaluate the quality of generated phase clusters by comparing the measured power at each sample to the aggregate

power for the whole cluster the sample belongs to. For a benchmark with N samples, each samplei (i = 1, . . . ,N) is an

element of one of the final phase setsPj ( j = 1, . . . ,5). Each sample has a corresponding set of data[bbvi , pmci , pwri ], where

bbvi andpmci are the corresponding BBV and PMC vectors used during phase clusterings, andpwri is the measured power

value during samplei’s execution. For each phasePj , we compute a “representative power”,Rj , as the arithmetic average of

the power values for the totalNj samples belonging to that phase. Then, for each samplei, we compute the squared difference

between the sample’s actual power valuepwri and the representative powerRj for its owner phasePj . We denoteRj values

corresponding to each samplei with R ji . Afterwards, we compute the rooted average of these squareddifferences over all

samples for our final RMS error figureERMS. We summarize this error computation in Equation 1.

Rj =

∑
i∈Pj

pwri

Nj
( j = 1, . . . ,5)

ERMS=

√

√

√

√

√

N

∑
i=1

(pwri −R ji)
2

N (1)
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This error value represents the quality of power phase characterization for a given phase classification method on the

evaluated benchmark. The methods are the combinations of tracked feature (BBVs or PMCs) and clustering algorithm (first

pivot, agglomerative with average or complete linkage). Weuse this error measure to gauge the effectiveness of BBV and

PMC based features in representing power phase behavior of applications in our experiments with various benchmarks.

6.2 Error Boundaries

To gauge the ability of the phase classification techniques in discerning application power behavior, we also provide the

error boundaries that can be achieved with perfect knowledge of power information—lower bound—as well as without any

knowledge of application behavior—upper bound.

To compute lower error bounds, we look directly at the measured power, which is the independent target experiment

parameter in all other analyses. We apply all three clustering algorithms to each benchmark’s power information and foreach

case choose the smallest error value achieved. We refer to this “gold standard” measure asbaseline errorin our results.

For the upper error bounds, we design a separate clustering method, which assigns each sample to any of the final target

phases randomly, without using any application behavior information. We refer to the results of this “uninformed” phase

characterization asrandom error. We show the results achieved with these approaches to for each benchmark. These

demonstrate opportunities for improvement that remain andhow much improvement each tested phase analysis feature brings

to power characterization.

6.3 Experimented Benchmarks

For our power phase analysis experiments, we obtain controlflow, performance and power characteristics for several

benchmarks on our test machine. We look at 11 SPEC INT benchmarks—all exceptperlbmk due to compilation problems—

and 10 SPEC FP benchmarks—excluded are F90 benchmarks. We experiment with all reference datasets for the 21 SPEC

benchmarks leading to a total of 37 different experiments.

In addition to SPEC, we also use 9 other benchmarks from previous studies and derived from well-known applications.

These benchmarks areghostscript, dvips, gimp, lame, cjpeg, djpeg, mesh, stream andmdbnch. For some cases, we

alter the dataset or iterations for the benchmarks to achieve longer execution times. We describe these benchmarks and any

modifications here.

In the first category,ghostscript anddvips are conversion utilities commonly used in document creation. Their behavior

can depend on the nature and layout of the input document. Next, gimp, lame, cjpeg anddjpeg and media processing tools,

used to convert among formats or manipulate media files. Last, mesh, stream andmdbnch are iterative applications with

multiple sequential functions similar to many scientific computation tools.

Forghostscript anddvips we use a large document of 190 pages, with different size images in the middle of document.

ghostscript converts a postscript input to pdf, anddvips converts dvi input to postscript.

Gimp is an image manipulation tool [13]. We usegimp in batch mode to perform several image processing operations

such as blurring, filtering and applying digital effects. Depending on the computation and memory intensity of the applied

functions, they can lead to different power behavior. We uselame MP3 encoder [34] to encode a wave file under varying

quality settings. Both power levels and the total executionincrease with the quality settings.Cjpeg anddjpeg are image

compression and decompression programs from MediaBench [24]. We usecjpeg to encode a very large (110 MB) ppm

image file into jpeg anddjpeg to decode the jpeg file into ppm. Their power behavior also changes during execution and

with input data.

Mesh is a well-known program used in dynamic program optimization studies [10, 30]. It performs various computations
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over the input mesh edges and faces, with sequentially executed repetitive functions. Our mesh input consists of 10K nodes

and 60K edges, leading to very quick iterations. To emphasize the execution of separate functions, we alter the originalmesh

code to repeat each function 100-200 times.Mdbnch is a relatively older, scalar molecular dynamics benchmark[12]. It

performs seven different molecular dynamics tasks with different sizes or complexities. To extend its execution, we increase

the number of time steps for each task by 4-50x. Bothmesh and mdbnch have similar iterative properties of scientific

computation. Although they iterate within different control paths, each task usually has similar computation properties—

except for changes in memory intensity. These lead to fairlyflat behavior with small data footprints.Stream is actually a

synthetic benchmark, commonly used to measure sustainablememory bandwidth [27]. It iterates over four small tasks doing

different computations. Similar to the above two applications,stream also exhibits a stable power behavior during normal

operation. However, it has a loop carried positive feedbackthat eventually overflows the inputs for its tasks, resulting in a

drastic change in power behavior. For ourstream experiments, we use an iteration count of 275 and data size of2million

entry arrays.

6.4 Power Phase Characterization Results

We show the overall results for our experiments in Figures 5-7. Three figures show phase characterization errors for

the three clustering algorithms. In each figure, we show the upper—random—and lower—baseline—error bounds for each

application and the achieved error with BBV and PMC based approaches. We also show the average accuracies for SPEC

INT, SPEC FP and other experimented benchmarks.

First, obtained characterization results are consistent,independent of the applied clustering algorithm. In general Figure 5

shows relatively higher errors due to the cheaper clustering method. However, the general accuracy relation between BBVs

and PMCs are preserved.

Comparing among the three sets of applications, SPEC FP applications lead to relatively low errors even with random

phase clustering for some cases. This is due to the generic flat power behavior of these benchmarks (applu, art, sixtrack,

wupwise). In some other cases, benchmarks go through specific initialization (i.e. equake) or periodic (i.e.ammp) phases

with significant changes in all control flow, performance andpower features. In these cases, both BBVs and PMCs achieve

very good power characterizations approaching baseline errors.

SPEC INT shows significantly higher errors for all approaches due to higher variations in behavior. In many of the shown

cases, BBVs and PMCs are seen to have significant improvementover random clustering. This shows the benefits of phase

tracking for power behavior characterization.

Most of the other experimented benchmarks show significantly higher error ranges due to their high power variability

based on input data characteristics and functional behavior. In these cases, applying phase analysis, especially withPMCs,

proves to be very useful in identifying similar power behavior.

Overall, for the three benchmark sets, BBV phases achieve errors on average 52% of random clustering errors, for bench-

marks with non-flat power behavior. PMC phases lead to 34% of random errors. For PMC based approach, power char-

acterization accuracies vary between 2-6x improvements over random clusterings for these benchmarks. Performing same

comparisons with respect to baseline errors show, BBVs on average achieve 2.9x higher errors compared to baseline, while

PMCs errors 1.8x of baseline figures. These comparisons show, BBV and PMC phase analyses have significant benefit in

characterizing power behavior. However, there still existopportunities to improve power phase behavior characterization of

applications.

As above measures also indicate, in almost all experimentedcases, PMC based phase analysis performs better than BBV

based approach for representing power behavior. Direct comparison shows, PMCs lead to 2.2% and 1.4% errors for SPEC
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Figure 5. Power characterization errors (absolute) for BBV and PMC phases with first pivot clustering.
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Figure 6. Power characterization errors (absolute) for BBV and PMC phases with agglomerative
clustering-average linkage.
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Figure 7. Power characterization errors (absolute) for BBV and PMC phases with agglomerative
clustering-complete linkage.

INT and FP, while BBVs achieve 3.4% and 1.5% errors. For the other experimented benchmarks, PMCs and BBVs have

7.1% and 14.7% average errors respectively. For most of the benchmarks PMCs achieve 30-40% less errors than BBVs with

an average of 33%. This direct comparison between BBVs and PMCs show, although both techniques provide useful features

to identify power phase behavior, in general PMCs features are better candidates for identifying power phases.

6.5 Sensitivity to Different Target Number of Phases

We have presented our complete analysis for a fixed target number of 5 phases for consistency. However, we have also

experimented with various number of target phases to verifythe reliability of our results. We show these in Figure 8.

Here, we show the effect of target phases with agglomerativeclustering/complete linkage. For all the benchmarks, we

perform clusterings for final phase numbers varying from 1 to5000. We show the achieved errors as both RMS and maxi-
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Figure 8. Variation of errors with respect to number of final p hases.

mum observed values. For each benchmark, we compute the RMS and maximum error figure for each target phase count.

Afterwards, we average these values over all benchmarks to reach a single error figure for each target phase count.

Intuitively, for a single final phase, both BBVs and PMCs willreach the same error, equivalent to the power standard

deviation of the whole benchmark samples. Afterwards, as the number of phases increase, errors for both methods will

decrease with different slopes. As phase numbers grow towards infinity, both error curves will converge to 0, i.e. where each

phase is a singleton sample.

In Figure 8, we show the behavior up to 100 phases for demonstration purposes. As phase counts grow beyond 100, both

curves reach 0. For all practical purposes, PMC based phasesperform consistently better, independent of the number of final

phase clusters.

7 Observations from Experimented Applications

Initially we discussed some of the possible reasons that cancause control flow information and performance statis-

tics to arrive at different conclusions about application power behavior. We showed how control flow information and

power/performance characteristics of an application differ under varying data locality with thedcache microbenchmark.

Here, we show our observations from actual applications that we experimented on. We demonstrate the effects of other

sources of disagreement,operand dependent behaviorandeffectively same execution.

7.1 Operand Dependent Behavior

We show an interesting example to operand dependent behavior with the stream benchmark.Stream performs four

repetitive operations with simple vector kernels. It operates on three vectors,a, b andc. The four operations arecopy

(c[ j] = a[ j]), scale(b[ j] = scalar∗c[ j]), add(c[ j] = a[ j]+b[ j]) andtriad (a[ j] = b[ j]+scalar∗c[ j]). It targets at measuring

sustainable memory bandwidth with vectors larger than cache sizes and by avoiding data reuse. Here, we use this application

to show an interesting operand dependent behavior and its implications on power. There exists a positive feedback between

each iteration of the four described operations. This causes the the FP operations to overflow at iteration 261, where first

vectora overflows attriad. This is then propagated to vectorsb andc in the next iteration. This overflow causes the three

FP kernels to experience a slowdown larger than 10x, while the copyoperation is not significantly effected. Consequently,

power dissipation experiences a drastic phase change, while execution path is still conserved.

In Figure 9, we show the resulting behavior in terms of power,BBV signatures and PMC signatures. Figure 9.(a) shows,

the power (top) and BBV signatures (bottom) with respect to executed instructions. We show BBV signatures as stacked

vector sample bars, where magnitude of each vector component adds on top of the stack. Here, we see the repetitive BBV

vector patterns throughout the execution, corresponding to the 4 different operations repeated 275 times. As the control flow

is repetitive, the sudden power drop goes undetected with BBVs. In Figure 9.(b), we show the same execution with few of

the PMC vector samples. Here, we show the execution with respect to cycles, to emphasize the actual effect of overflow
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Figure 9. Power phase change at overflow condition for stream benchmark. (a) shows BBV signatures,
unable to detect the phase change, (b) shows PMCs detecting t he change. (b) is drawn with respect
to elapsed cycles to show the actual time behavior.

on elapsed time in different power phases. While, the lower power phase occupies less than 6% of executed instructions,

the time spent in this phase is more than half of total execution. Tracking PMCs easily identifies this power phase change

resulting from operand dependent behavior ofstream.

7.2 Impact of Effectively Same Execution

Phase characterizations of applications have two related outcomes. First, phase characterizations provide feedbackfor

identifying phase changes in program behavior. Second, they classify applications into similar regions of execution.These

two aspects have an inverse relation, which can be considered in terms ofsimilarity andgranularity [15]. Dictating more

restrictive similarity features within each phase resultsin higher number of phases with smaller granularity. These may, then,

lead to numerous false alarms for spurious phase transitions, as many of the small variations in tracked features do not reflect

in application (power) behavior. Thus, a desired property for phase characterization is to lead to high granularity phases that

capture major application behavior; balancing similarityand granularity.

Effectively same execution represents a characteristic behavior when PMC and BBV approaches perform differently in

achieving this balance. In many occurrences, applicationswalk through different code paths, while performing similar

computational tasks. These lead to different code signatures, indicating different phases, while actual power phase behavior

is similar.

We demonstrate the impact of this effect with themesh benchmark. During its execution,mesh first reads an input mesh

configuration and performs various tasks on the input mesh. Most of these tasks have computationally similar properties,

leading to effectively same execution behavior—while in different execution address spaces. In Figure 10, we show part of
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Figure 10. Mesh power and BBV signatures (top) and generated PMC and BBV phas es with target
cluster numbers of 5 (middle) and 3 (bottom). Multiple contr ol flow phases with effectively same
power characteristics disguise actual power phases in BBV b ased classification. Actual power
phases are labeled as H, L and M, for high, low and medium power dissipation regions.

the execution characteristics formesh. In the figure, we first show the measured power behavior. We can easily separate

mesh execution into three power phases by observing the power trace. We label these “actual” power phases asH, L and

M on the power trace. Representing phases with high, low and medium power consumption. Underneath the power trace,

we show the corresponding BBV vector patterns for each sample. Again, we present the 32 dimensional BBVs as stacked

bars, where each vector component adds up to the stack based on its magnitude. Several distinct control flow phases are

observable from the BBV patterns. We separate each of these regions with vertical dotted lines. These correlate well with

mesh tasks. First high power phase corresponds to the sorting task after reading nodes and initialization. This task sorts

nodes based on their types. It operates mainly in L1 cache andperforms several arithmetics. The following low power phase,

results fromSetBoundaryDatatask which sets the values for boundary nodes. This task mostly accesses L2, and has low

overlapping computation, which leads to less power. After this task,mesh repetitively operates on three computation tasks,

namely,ComputeForces(), ComputeVelocityChange()andSmoothenVelocity(). These constitute the medium power phase of

mesh. All these tasks also make significant L2 accesses. However,their overlapping higher FP computations lead to relatively

higher power.
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In the lower two plots of Figure 10, we show the phase classifications performed by BBVs and PMCs. We apply agglom-

erative clustering with complete linkage and use target phase numbers,N, of 5—as our general choice—and 3 for a more

restrictive case. In these plots, y axis shows different phases ranging from 1 to 5 for the first case and 1 to 3 for the second.

For each sample, we add a tick mark above the horizontal line corresponding to its phase assigned by BBV classification.

We also add a tick mark below the horizontal line that corresponds to each sample’s PMC phase. These marks then form the

bands of phases seen in these plots. For example, for the casewith 5 phases, low power phase ofmesh is classified into phase

“1” by BBVs and phase “3” by PMCs.

These plots show the significant impact of effectively same execution in phase classification. ForN = 5, PMCs correctly

identify the three actual power phases. BBVs on the other hand, collapse the high and low power phases into a single phase,

leading to a false characterization. This is because, BBVs identify several different large-scale control flow phases.Clustering

starts to overlap these based on their L1 distances, and these result in combining the high and low phases of power. The three

repetitive control flow phases with effectively same power behavior are seen as the more different phases by BBVs, and are

assigned to different clusters. These indicate several false alarms to spurious phase changes. ForN = 3, BBV phases still

show more sensitivity to the three repetitive tasks of medium power phase and assign them to three different phases. In this

case, all high, low and parts of medium power phases are assigned to same phase (“1”) by BBVs. In comparison, PMCs show

very good fidelity. They successfully identify three power regions and assign them to different phases.

This example demonstrates the clear impact of effectively same execution on control flow based power phase character-

ization. It is important to note that, this effect has implications for not only phase characterizations, but also runtime phase

detection. Various control flow phases, with similar power behavior can cause a detection framework to produce several false

alarms for phase transitions. These in turn lead to worsenedreceiver operating characteristics and pollution of actual phase

behavior.

In general, there exist other cases where differences between PMC and BBV approaches arise including some SPEC

benchmarks such asmcf. We do not present these here for brevity. Nonetheless, overall both BBV and PMC phases provide a

good account of application power phase behavior; in many cases showing good correlation between power and both control

flow and performance measures. PMCs usually show a better binding to power behavior due to both their proximity to the

actual flow of power in the processor, as well as these discussed sources of disagreement between power and code signatures.

8 Summary and Recommendations

Here, we first make a final comparison of BBVs and PMCs for powerphase characterization. We discuss different pros

and cons of the two approaches. Afterwards, we recommend a combination of methods and discuss their applicability to

different dynamic management techniques.

BBVs are widely studied and are shown to have several benefitsfor summarizing application performance or tracking

application phases. Most important advantage of BBVs is therepeatability of the observed phase behavior. Tracked code

signatures do not change due to system effects or with the application of dynamic management actions that affect system

power and performance.

The biggest disadvantage of BBVs lies in runtime applicability. It is impractical to collect full blown BBV information

during application runtime. Sampling methods, as applied in this study, provide acceptable resolution, but BBV generation

still requires mapping PC samples into control flow blocks. These require additional profiling or instrumentation of applica-

tions. Another related issue is the high dimensionality of BBVs that requires processing for dimension reduction. In addition

to these, false alarms due to changes only in control flow are an important consideration for a runtime detection system. Fi-
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nally, the indifference of BBVs to varying data locality canbe a significant impediment also in power phase characterizations

for certain real applications [2].

The important advantages of PMCs are, their straightforward runtime applicability and their proximity to processor power

consumption. PMCs are easily accessible at runtime with lightweight interfaces, which makes them good candidates for

dynamic applications on real-systems. Several PMCs show good correlations with processor power behavior, therefore they

don’t suffer significantly from false alarms. Also as simultaneously monitored PMCs are on the order of 10, they require no

data processing for dimension reduction during phase characterizations.

The most important consideration with PMCs is repeatability. As PMC data comes from several event counts over the

processor, the values are not identical among repetitions of phases. A phase detection method that utilizes PMCs requires

to consider event count ranges or has to track deltas together with events to detect phases or phase changes. Our previous

studies show, quantization can be unreliable, while tracking deltas produce higher fidelity. PMC based approach also requires

range considerations. Different dimensions of PMC vectorsare not of similar strength. For example, memory access counts

and instructions issued have different orders of magnitude. Therefore, scaling of vector components or normalizations may

be necessary to emphasize the impact of certain events.

Our quantitative results showed that PMCs have relatively higher fidelity in characterizing power phase behavior. However,

we believe a better solution can be achieved by combining thestrengths of BBVs with PMC approach. For a general power

phase characterization study, we suggest a hierarchical approach between BBVs and PMCs. We consider using PMC based

phase tracking as the global mechanism to identify phase changes and using BBVs to track the repetitive execution progress.

In terms of decision hierarchy, PMCs can provide confidence to phase changes detected from control flow and provide the

final decision whether this is an actual or spurious phase change. On the other hand, BBVs can enhance the repeatability of

observed PMC phases, by informing PMC method when a repetitive control flow is detected.

We consider application of such control flow feedback to PMC based phase detection in our current research for runtime

dynamic management on real-systems. We envision several applications to such power phase characterizations that can be

used in both architectural studies and real-systems. Temperature aware scheduling[3] can benefit from detecting repetitive

power phases to select among tasks with different power/temperature behavior to reduce performance degradation due to

idling or throttling. Multicore power balancing and activity migration [14, 29] rely on application behavior to distribute

or transfer activity among different components. Power phases can provide both history and phase change information to

decision policies of these techniques. These phases can also be used for dynamic voltage scaling [6, 26] to evaluate costs and

benefits at runtime based on diversity and duration of different power phases.

9 Related Work

Several previous studies investigate phase behavior of applications for adaptation and characterization purposes. Most of

these research studies focus on either control flow or performance characteristics of applications. Iyer and Marculescu [20],

Dhodapkar and Smith [9], Sherwood et al. [32, 33], Huang et al. [17] and Lau et al. [23] analyze control flow behavior of

applications via different features such as subroutines, working sets and basic block profiles. These studies use simulation

based methods to identify application phases for summarizing performance and architectural studies. Patil et al. [28]also

look at control flow phases with real-system experiments. They use similar dynamic instrumentation to identify BBV phases

of applications. Their work uses basic block profiles of applications to find representative execution points, while we look at

power characterizations with BBV and PMC phases.

Cook et al. [7] show the repetitive performance phase characteristics of different applications using simulations. Todi
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[35], Weissel and Bellosa [36] and Duesterwald et al. [11] utilize performance counters to identify performance based

phases. They use performance statistics to guide dynamic optimizations and metric predictions. These works do not consider

power behavior of applications. Isci and Martonosi [18] employ runtime power measurements and power estimation with

performance counters to identify phases of applications. Chang et al. [5] apply process power profiling to determine software

power breakdowns. While these studies also look at power behavior, they do not investigate control flow approaches. Hu et

al. [16] describe a compile time methodology to find basic block phases at runtime for power studies. This study looks at

control flow information from a compiler perspective, whilewe investigate runtime power phase behaviors of both control

flow and performance statistics.

There are also previous studies that compare or evaluate phase characterization techniques. Dhodapkar and Smith [8],

perform a comparison between different control flow techniques, working set signatures and BBVs. Annavaram et al. [2]

sample executed program counters as a proxy to control flow and show the correlations between code signatures and applica-

tion performance. They show that, control flow does not always correlate well with application performance. Lau et al. [22]

also look at control flow and performance of applications to show a strong correlation can be established by linking program

counter to procedures and loops of applications via profiling. In comparison, our work looks at the direct comparison of

two phase characterization features, BBVs and PMCs with runtime measurement feedback for real power evaluation on a

real-system.

10 Conclusion

Phase analysis is increasingly important for computer systems first because simulation-based techniques rely on phase-

directed sampling to reduce simulation time, and second, because real-life adaptive hardware and software mechanismsrely

on dynamic phase-directed readjustments.

With power being such a pressing constraint in current processors, it becomes important to understand not just the phases

of performance metrics, but also of their related-but-distinct power counterparts. Observing power phase behavior onreal

systems is particularly important because the real-systemphases show the impact of a comprehensive range of systems effects

typically excluded from simulations.

This work has explored methods for real-system power phase generation. Drawing on prior work, we have developed an

experimental framework for comparing both control-flow-based and performance-monitoring-based phase techniques, and

for comparing against live power measurements. Our resultsshow that both control-flow and performance statistics provide

useful hints to power phase behavior. In general, performance-based phase tracking leads to approximately 33% less power

characterization errors than code signatures.

In some cases where power behavior depends on aspects other than control flow (e.g. data locality, operand values, or other

characteristics), phases based on control flow can “miss” some transitions. In other cases, control flow phase classification

can result in “extra” phases, where applications perform different tasks with effectively the same execution characteristics.

These effects lead to both false alarms for power phase changes and incorrect power phase classifications.

Overall, the results presented here show a roadmap to effective power phase analysis in real systems. Control-flow tech-

niques offer a good base, but may well be best applied as hybrid techniques together with performance counters that can more

closely track the details of program behavior, needed for detection of power phases with high fidelity.
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