
Detecting and Identifying System Changes in the
Cloud via Discovery by Example

Hao Chen∗, Sastry S. Duri†, Vasanth Bala†, Nilton T. Bila†, Canturk Isci† and Ayse K. Coskun∗
∗Department of Electrical and Computer Engineering

Boston University, Boston, MA, 02215
†IBM T J Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, NY, 10598

Abstract—Discovering and identifying system changes caused
by events such as software installation and updates, configuration
changes, and security patches are important functionalities for
change management, security, compliance and problem diagnosis
in emerging cloud platforms. Currently, most discovery tools
use manually written rules, which require specific knowledge of
software and systems. Approaches based on manually written
rules are often fragile and require constant maintenance in this
era of continuous integration. In this paper, we propose a novel
“discovery by example” approach to autonomously search for
and identify system changes. Our approach learns characteristic
features of system changes automatically, without requiring any
explicit rule definitions or specific knowledge of the underlying
software or systems. In this approach, given a system change,
our method searches a repository that contains previous stored
system changes and returns those that are similar to it. We further
explore the use of various forms of “fingerprints” to represent
system changes efficiently and faithfully in a compact manner.
We propose and evaluate two types of fingerprints: the “base-
name fingerprint” and the “1-D histogram fingerprint”. We show
that both fingerprints exhibit different efficiency and accuracy
trade-offs, and they can be effectively employed in different use
cases. We evaluate the performance of our approach with both
techniques and further present an application of it in system
real-time streaming monitoring.

I. INTRODUCTION

A typical data center hosts thousands of virtual machine
(VM) instances. These instances evolve from the time they
are booted. Sometimes, two instances booted from the same
image evolve so differently that a software update to the first
instance completes successfully but fails on the second one.
What are the differences between these instances? How many
other instances in the data center are similar to the second one?
To answer above questions, today, we write custom scripts and
execute them on the individual system to find the changes made
to the system since it is booted. The sources of system changes
include software installation, update, system reconfiguration
and process execution, etc. Software installation is the most
significant one among them.

To discover software installed in a system, state-
of-the-art techniques use rules to check for the exis-
tence of certain files and their attributes. Some rules can
be simple. For example, if there exists a file named
SIGFILESDKXA64 500500.SY S2 and its size is 100KB,
it means that there is a software called IBM SDK 5.0 for the
system Linux AMD/EMT 64. While other rules, particularly,
those that determine whether a given software fix is applicable
to a given system [1], could be quite complex and involve
dozens of conditions to be checked.

Discovery rules, however, often fail. Consider the following
use case. Suppose on our Linux machine we have the software
package IBM SDK 5.0 for the system Linux AMD/EMT 64. If
we consult National Vulnerability Database (NVD) [2], we
would find a vulnerability alert, CVE-2012-4821, against the
version of IBM Java in this software package. There is a fix
available for this vulnerability that requires us to install JDK.
After the fix is installed, we find that the fix does not change
the file SIGFILESDKXA64 500500.SY S2 (which is used
as a rule to discover the software IBM SDK 5.0) in any
manner. For this reason, the simple rule described above fails
to distinguish whether the system contains a vulnerable version
or a fixed version of the IBM SDK 5.0.

In general, there are three major shortcomings of a rule-
based discovery approach. First, it is fragile and highly sys-
tem/software dependent. Take the software installation discov-
ery as an example. All the rule-based systems require rules
to be renewed when the software is updated or a fixpack is
released. While this is doable, it is very inefficient, or even
not practical, as the development of the fix and the writing
of discovery rules are typically handled by different entities.
Second, the rule-based discovery has poor usability. One has
to learn a new rule language and be familiar with specific
software components, in order to write good discovery rules.
Third, the rule-based discovery approach is not suitable for
unknown system changes. Before designing rules to discover
a specific system change, the attributes of that system change
should be first studied, which typically involves large amount
of labor and time. Today, software and updates are released
multiple times a week, and systems in cloud are changed nearly
every minute. It has been impractical to evolve rules at such
a rapid pace.

On the other hand, to identify differences between VM
instances, or to search for specific system changes across
a number of VMs, it is necessary to keep track of system
evolution periodically. With thousands of systems in the cloud
running at any given time, a quarter million features per system
on average, and with hourly snapshots of the system, the size
of the repository needed to keep track of all the changes is
tremendous and approaches big data proportions. As most
traditional techniques fail rapidly in dealing with such a large
amount of data, novel big data solutions are required urgently.

In this paper, we present a novel method to discover
system changes, the discovery by example, which eliminates
the need to manually write rules for discovering systems,
changes, or software components in the cloud. Our method
learns characteristic features of a system change through a



set of its examples automatically. To collect the example, we
compute the differences in system state before and after the
system change happens. These recorded differences of the
system state are further processed to produce a fingerprint,
a compact representation that includes only features relevant
for discovery, such as file base-names, using feature extraction
techniques. We propose two types of fingerprints in this paper:
the base-name fingerprint and the 1-D histogram fingerprint.

While we specifically experiment with the state changes
caused by software installation in this paper, our method is
applicable to identification of arbitrary system changes. The
ability to work with arbitrary changes is useful for detecting
drifts in systems (that may be signs of vulnerability or ineffi-
ciency) by periodically scanning systems and computing their
state differences. Experimental results show that our fingerprint
based discovery by example method (a) is distortion resistant
and not affected by the noise in the system change; (b) is fast,
storage efficient and highly scalable, which is significant in the
big data context; (c) can learn incrementally as more examples
are provided, and does not require knowledge of file / system
specifics or manual updates.

The rest of this paper starts with an overview of “learning
by example” techniques, and the state-of-the-art techniques
of system discovery. Section III describes the main idea and
structure of our proposed “discovery by example” approach.
Section IV introduces two types of fingerprints and their usages
in “discovery by example”. Section V first evaluates the results
of “discovery by example” with two proposed fingerprints, and
then introduces a case study of applying the approach in the
real-time streaming system monitoring. Section VI concludes
the paper and discusses the future work.

II. RELATED WORK

Discovery by example technique is widely used in the mul-
timedia data analysis domain, such as voice recognition [12],
face and object recognition ([6], [18]), image and audio
search [14], etc. Shazam [17] is a music search service that
allows users to search for music using audio samples. Both
Picasa [16] and Google image search [5] allow users to search
for photos that are similar to a given photo. Amazon Flow [10]
discovers products utilizing object recognition techniques.

Today’s system and software discovery techniques are
mostly rule-based. Open Source Software (OSS) Discovery [3]
is an open source tool that scans machines to identify any
open source components installed on that system by either
consulting registry in a system or checking for existence
of files with specified properties. OpenIOC [4] is an open
framework for sharing threat information. It uses elaborate
rules to examine registry, file contents and metadata to de-
termine whether a security vulnerability exists. BigFix [1] is a
commercial offering that uses rules to scan systems and apply
fixes automatically.

Some recent work investigates solving system problems
using examples. In system performance monitoring, a “finger-
print”, or a “signature”, which is constructed by the statisti-
cal selection and summarization of hundreds of performance
metrics, is used to represent the system state for automatic
classification and identification of performance crises ([7], [8]).

System	  
(t1)	  

System	  
(t2)	  

Frame	  
(t1)	  

crawl crawl 

Frame	  
(t2)	  

Some changes: e.g.,  
Tomcat installed 

diff 

Change	  Set:	  
“Tomcat	  Installed”	  	  

Fig. 1. The creation process of a change set.

Redstone et al. [13] propose to build an automated problem di-
agnosis system that collects problem symptoms, automatically
searches databases of problem symptoms and fixes, and also
allows ordinary users to contribute accurate problem reports in
a structured manner. They propose the idea, however, without
introducing specific design or evaluating performance in their
work. Minersoft [9] scans of a collection of systems’ file
contents and metadata to build an inverted index, which can
be used by users to find systems containing given software.
Satyanarayanan et al. [15] examines the opportunities and
challenges in interactively searching VM images in cloud
environment and presents early evidence of its feasibility, by
leveraging the early discard method [11].

To the best of our knowledge, our work is the first to design
and apply a “discovery by example” approach in detecting
and identifying system changes in the cloud context. We
also design two novel fingerprints to represent the system
changes in a condensed and efficient way. In addition, we
propose a filter cascade structure applied with our “discovery
by example” approach. Finally, a case study of leveraging
“discovery by example” approach in the real-time streaming
system monitoring is described in this work.

III. OUR APPROACH

The goal of our approach is to solve the following prob-
lems: (a) Given a change in the system state of an instance,
detect similar system changes on the other instances in the
cloud; (b) Identify unknown system changes using previously
labeled system changes in the repository.

A system’s state changes on a continuous basis. Some of
the changes arise from clearly defined events such as software
installation, application of security patches and configuration
changes, while others are artifacts of system operations such
as logs and system events. For the rest of the paper, we focus
on system changes caused by software installation. Note that,
however, the proposed method is applicable to a variety of
state changes.

Our approach first records the system change as a change
set, which contains all details of that state change. For dis-
covery purposes, we find that a more compact representation



Fig. 2. An example of the system state recorded in a frame.

that extracted from a change set, i.e., a fingerprint, is more
useful and efficient. The fingerprint design is presented in
detail in Section IV. Then the fingerprint is labeled by the
event that causes the state change, and is stored in a repository.
To solve problem (a), a designed filter cascade is applied on
the fingerprint repository and splits the repository into two
sets: the candidate set and the discard set. Fingerprints in the
candidate set are considered similar to the given one. These
fingerprints can be further used to solve problem (b).

Next, we describe the process used to capture change sets.
After that, we introduce the concept of the fingerprint, and
discuss how it is used in early discard, a technique we use to
cascade the discovery process over a set of filters.

We use the following concepts in our discussion of the
“discovery by example” technique:

System State consists of persistent state information such
as configuration, disk, files, OS, and dynamic state such as
processes, network connections.

Frame is a JSON representation of system state represented as
a collection of following features: configuration, connection,
disk, file, package, and process.

Feature is a JSON dictionary representing attributes of state
entities. A file feature, for example, consists of the following
attributes for a single file: path, name, size, access time,
modification time, permissions, ownership, and type.

Change Set is the difference between two frames from the same
system and contains following sections: additions, deletions,
modifications, and common.

A. Change Set Creation

Figure 1 shows the process of creating a change set. In
the example shown, the system change is caused by installing
Tomcat server. First, the state of the system is collected into a
frame frame1. Then Tomcat is installed. Once the installation
is complete, the system state is again collected into a new
frame frame2. Figure 2 shows an example of the frame. Then
the difference of two frames, frame2 - frame1, is computed:

(1) If a feature is in frame2 but not in frame1, then it is
added to additions;

(2) If a feature is in both frames, but their attributes differ,
then it is added to modification;

(3) If a feature is in both frames, and attributes match, then it
is added to common;

Repository 

Tomcat Installed 

Instance Fingerprint 1 
Instance Fingerprint 2 
… 
Instance Fingerprint N 

Family Fingerprint 

Hadoop Installed 
        … 

MangoDB Installed 
        … 

Httpd Installed 
        … 

...... 

Fig. 3. The structure of the repository. Multiple instance fingerprints of
the same event are grouped together as a family, and a family fingerprint is
generated from instance fingerprints in the family, for each event. The family
fingerprint is used to represent the event and distinguish the event from others.

(4) If a feature is not in frame2 but is in frame1, then it is
added to deletions.

Among all types of features, the file feature is the most
significant one for identifying system changes, and especially
for software installations. In this work, we mainly focus on
using file features to discover and identify those changes, note
that, however, other features can also be used. For example, it
is possible to uniquely identify a software by the list of running
processes. Moreover, integrating multiple types of features in
discovery may even improve accuracy of the discovery, which
is discussed in Section VI.

We use the yum utility to install software in this work1,
which automatically resolves dependencies for installing soft-
ware. For this reason, the resulting change set includes file fea-
tures from different sources: Tomcat server files, files modified
during installation (e.g., /etc/passwd by adding Tomcat users),
temporary files created during installation, files belonging to
software installed to satisfy dependency requirements, yum
repository file updates, files created and modified by other
activities not related to Tomcat installation, etc. Therefore,
for a given Tomcat version on a specific system environment,
the file features contributed by the Tomcat server remain the
same. However, the file features in the change set vary from
installation to installation depending on what other dependent
software is installed by the yum utility and what other parallel
activities are running during the installation process. Therefore,
every change set consists of some variations that impede it of
being identified easily.

B. Fingerprint

Directly utilizing the change set for discovery is not a good
choice, due to the fact that a change set is a complete record
of raw system changes. Thus, it contains information that is
very specific to the system, and includes a lot of information
that is not relevant for discovery purposes. Moreover, as the
size of the change set is usually large, using the change set
for discovery leads to low discovery speed and high storage
costs. Therefore, we extract a subset of features and their
attributes from a change set and create a highly condensed
instance fingerprint. From a given change set, one could create

1Our approach can also work with software installed through other methods.
It is not limited to yum.



Early	  Discard	  

2nd	  Level	  Discard	  

…	  

Last	  Level	  
Discard	  

	  

Final	  
Results	  

Fig. 4. The filter cascade of the “discovery by example” approach.

many different types of instance fingerprints by choosing
different combinations of features and their attributes, and
using different methods. In Section IV, different ways of
generating instance fingerprints are presented.

All instance fingerprints are stored in a repository. A typ-
ical repository contains many change sets for a single system
change event such as installing a Tomcat server. We group all
the change sets of an event together as a family, and label the
family by the name of event, such as “Tomcat Installation”.
Similar to change sets, instance fingerprints are grouped into
families as well. Then we generate a family fingerprint for each
family based on all the instance fingerprints in it. Depending
on different algorithms used, a family fingerprint can be simply
a set of all the instance fingerprints, or a collection of support
vectors, parameters or decision rules trained from instance
fingerprints. In this evaluation, a family fingerprint is simply
represented as a set of all its instance fingerprints. Figure 3
shows the structure of the repository.

The repository is automatically maintained and updated
in some fixed periods, e.g., in mid-night everyday, while the
newly queried samples in that day are added as the training
data for updates. In addition, an interface is also designed for
maintainers to manually update the repository if necessary.

C. Framework of Discovery and Early Discard

We use a cascade of filters for discovery. Figure 4 shows
the general idea behind this approach. A filter at the topmost
layer is called as the early discard filter, which filters out as
many dissimilar candidates as possible using simple and fast
computations while guaranteeing to achieve a fairly low rate of
incorrectly discarding the matching candidates. Candidates that
pass through the early discard filter are sent to the following
layers for further processing until either they are discarded or
they pass through all the layers and are included in the final
results.

To illustrate how filter cascade is used in our approach, we
take an uncategorized change set C as an example. Without
loss of generality, let us assume that the filter cascade consists
of only two layers, i.e., the first filter, or the early discard
filter, and the second filter. We extract two types of instance
fingerprints from the change set, i.e. type1, and type2 for each
filter layer, respectively. The process of finding change sets
in the cloud that are similar to C and identifying C is as
follows: The first filter examines the type1 fingerprints for
all the change sets in the repository. If a change set has

a type1 fingerprint that is considered similar to the type1
fingerprint of C, then the change set is sent to the second filter.
The second filter computes the similarity measure between
type2 fingerprints of those candidates sent to it and the type2
fingerprint of C, and outputs those change sets that meet the
similarity criterion. Note that each layer could use its own
similarity criteria. The output after the second filter can then
be used to identify C. For example, if the output contains
“Tomcat Installation”, then we recognize that C might be a
change set of Tomcat installation on an instance.

A well designed fingerprint can improve both the accuracy
and efficiency of the discovery significantly. For example,
merely using the size of the change set as the fingerprint,
while being simple and fast, does not identify change sets that
vary due to the “noise”, e.g., background running processes
that are unrelated to the application installation. Hence, such
a fingerprint is not noise resistant and robust, and will filter
out matching candidates with a fairly high probability. In
this work, we focus on designing and analyzing efficient
fingerprints for the early discard filter. We also introduce ideas
of designing good fingerprints for layers after early discard in
Section VI.

IV. FINGERPRINT DESIGN AND DISCOVERY
PROCESS

Designing a concise fingerprint that is also capable of
capturing the essence of the change set is important for
discovery, and especially for the early discard, which requires
high processing efficiency. There are many ways of creating
fingerprints depending on what features and attributes in the
change sets are used and how they are represented. In this
section, we first introduce two types of instance fingerprints,
which have more compact representations than the correspond-
ing change set. Then we present how these fingerprints are
applied in our “discovery by example” approach with the filter
cascade structure.

A. Base-name Instance Fingerprint

The first type of instance fingerprint is called the base-
name instance fingerprint, which is a list of the base-names2

of all added and modified file features in a change set. A list
of base-names of file features has a strong distinguishable ca-
pacity, as the combinations of base-names caused by different
system changes are mostly unique. In addition, using only the
base-names of the files in a change set enables us to detect the
change set no matter where in the system the corresponding
files exist, and no matter in what status and authorities those
files are set by users.

For a base-name instance fingerprint f bn, we define its
length Lfbn , as the number of base-names in the fingerprint.
Then for any two base-name instance fingerprints, f bn1 and
f bn2 , the similarity score (α1, α2) between them is defined as
the ratio of the number of common base-names in f bn1 and f bn2 ,
i.e., Ncom, to the length of f bn1 and f bn2 , i.e., Lfbn

1
and Lfbn

2
,

respectively, i.e., α1 = Ncom/Lfbn
1

and α2 = Ncom/Lfbn
2

.
Based on the value of (α1, α2), there are four different
relationship between f bn1 and f bn2 :

2Base-name is the name of the file, without its directory information.



(1) If α1 ≈ α2 ≈ 1, then f bn1 is similar to f bn2 ;

(2) α1 ≈ 1 and α1 >> α2, then f bn1 is contained by f bn2 ;

(3) α2 ≈ 1 and α2 >> α1, then f bn2 is contained by f bn1 ;

(4) Neither α1 nor α2 is close to 1, then f bn1 and f bn2 are
not similar.

The utilization of these relationship in discovery and in the
early discard process is discussed in Section IV-C in detail.

B. 1-D Histogram Instance Fingerprint

A change set sometimes contains thousands of file features,
as a result, the base-name instance fingerprint, which consists
of base-names of all the file features, is still not sufficiently
compact for early discard. In addition, different change sets
may share many common base-names that are not from core
parts of the system changes (e.g., a large number of common
temporary files created as part of the software installation by
yum), which may cause the base-name fingerprint to be no
longer distinguishable. Furthermore, more learning algorithms
can be applied if a base-name fingerprint is transformed into
a quantified fingerprint. For these reasons, we propose a
quantified fingerprint, the 1-D histogram instance fingerprint,
i.e., f1D.

The idea of the 1-D histogram instance fingerprint is
inspired by the image processing technique. In image process-
ing and pattern recognition, a pixel-based image is typically
represented by a histogram feature, e.g., local binary pattern,
color histogram, etc, which is capable of capturing the main
attributes of the image with only a few numbers, and can be
efficiently processed by many learning algorithms. Similarly,
we apply the histogram feature technique in our discovery of
system changes. The idea is to build the histogram by using
some hashing functions to convert the strings of base-names to
integers in bin range. More specifically, in our implementation,
the f1D is generated in the following way:

Step 1: For each base-name in f bn, we calculate the ASCII
sum of its characters. In our implementation, we select the
ASCII sum as the hash function to convert strings to integers,
because ASCII sum is simple and fast. Experimental results
have shown that ASCII sum is an efficient choice. In future,
we plan to evaluate the use of different hash functions.

Step 2: Each base-name string has been converted to an integer
after step 1, so now we have several numbers of integers. We
generate a counting histogram of these integers. The range of
each bin of the histogram is determined by the number of bins,
i.e., Nbins that is selected. Based on our observations, most
of these ASCII sum integers are ranged in [200, 2000], thus,
given the Nbins, the bin range in our case is designed as (0,
200, 200 + 2000−200

Nbins−1 , 200 + 2* 2000−200
Nbins−1 , ... , 2000 - 2000−200

Nbins−1 ,
2000, ∞). In the counting histogram, the number of ASCII
sum integers that falls in each bin, i.e., Ci, i = 1, 2, ...Nbins

is calculated;

Step 3: Finally we normalize the histogram by calculating

Cnorm
i = Ci /

Nbins∑
i=1

Ci, i = 1, 2, ...Nbins, so we have

Nbins∑
i=1

Cnorm
i = 1. The histogram is normalized so that the

Base-name instance fingerprint: 
[tomcat, tomcat.service, logs, tomcat-users.xml, catalina.out , conf… ] 

Quantified list of the fingerprint: 
[648, 1447, 437, 1638, 1219, 422… ] 

1D histogram instance fingerprint (without normalization): 
[0, 0, 2, 1, 0, 0, 1, 1, 1, 0, 0] 

0     200    400    600    800  1000   1200 1400 1600  1800  2000 

422 
437 
… 

648 
… 

1219 
… 

1447 
… 

1638 
… 

Extract  
base-names 

File features 

Hash:  
ASCII sum 

Histogram  

Normalization  

1D histogram instance fingerprint (normalized): 
[0, 0, 0.33, 0.17, 0, 0, 0.17, 0.17, 0.17, 0, 0] 

Fig. 5. The flow chart of the 1-D histogram instance fingerprint generation.

Early Discard Filter 
Threshold θ 

Query instance  
fingerprint fq 

All the instance  
fingerprints fi 

Repository 

Candidate Set Discard Set 

Repository 

Tomcat Installation 
… 

Httpd 
MangoDB 
Hadoop 
… 

Identify  
the query 

Input to the following layers for further process 

Fig. 6. The discovery process by using fingerprints.

discovery result is not affected by the length of the base-name
list.

The length of the 1-D histogram instance fingerprint is
Nbins, which is much smaller than the length of f bn. Figure 5
shows the generation process of the 1-D histogram instance
fingerprint.

As the 1-D histogram instance fingerprint is a quantified
and highly condensed feature vector, many learning algorithms
and metrics can be directly applied on it. For example, the
similarity of two 1-D histogram instance fingerprints can be
measured by a distance metric. The smaller the distance is,
the more similar the fingerprints are. There are various of
distance metrics. In this work, we use the simple yet effective
Euclidean distance. Namely, given two 1-D histogram instance
fingerprints, f1D1 and f1D2 , the distance d1,2 between them is
calculated as d1,2 = ||f1D1 − f1D2 ||2. As both f1D1 and f1D2
are normalized, the maximal value of the distance is

√
2. We

further normalize d1,2 as the percentage of the maximal value,
i.e., d1,2 =

||f1D
1 −f

1D
2 ||2√

2
∗ 100%, for convenience of making

comparisons.

C. Discovery Process with Fingerprints

In this section, we specifically present how the “discov-
ery by example” and the early discard work with designed
fingerprints. We first study the discovery by using the base-
name instance fingerprint. The fingerprint of the query change
set is first generated as f bnq . Then f bnq is input into the early



discard filter and compared with all the base-name instance
fingerprints f bni , i = 1, 2, 3..., in the repository. Based on
the results of comparisons and the designed “filtering policy”,
all the system change events, i.e., all the families, in the
repository are divided into two sets, a candidate set and a
discard set. A candidate set includes families that have at
least one instance fingerprint that passes the filter (i.e., satisfies
the “filtering policy”), while families in the discard set have
none of their instance fingerprints satisfying the “filtering
policy”. The “filtering policy” of the early discard layer in
this case is designed based on the similarity score introduced
in Section IV-A, and a similarity threshold, θbn ≤ 1. For
each instance fingerprint pair (f bnq , f bni ) and corresponding
similarity score (αq , αi), if both αq ≥ θbn and αi ≥ θbn,
then f bni is similar to f bnq and f bni passes the filter, otherwise
it is filtered out. Families in the candidate set are considered
similar to the query sample by the early discard layer, and
provide clues of identifying the query. For example, if the
“Tomcat installation” family is in the candidate set, then the
query sample may be a change caused by Tomcat installation.
These families are further processed by the following layers
in the discovery filter cascade. Figure 6 shows this process of
discovery.

The process of discovery by the 1-D histogram instance
fingerprint is similar to that of the base-name instance fin-
gerprint, but with a different “filtering policy”. The “filtering
policy” in this case is defined based on the distance metric.
The distance between the query 1-D histogram fingerprint f1Dq
and the 1-D histogram instance fingerprint in the repository,
f1Di , i = 1, 2, 3..., is calculated, and denoted as dq,i, which
has been introduced in Section IV-B. A distance threshold,
θ1D ≤ 1 is also defined, recalling that the distance is
normalized by the maximal value. If dq,i < θ1D, then f1Di is
considered similar to f1Dq on the early discard layer and passes
the filter, otherwise it does not satisfy the “filtering policy” and
is filtered out. The rest process of the 1-D histogram instance
fingerprint is the same as that of the discovery using base-name
instance fingerprint.

V. EXPERIMENTAL RESULTS

In this section, we first present how the repository is
constructed and how the test benchmark data is collected. Then
we evaluate results of the “discovery by example” approach
using both the base-name fingerprint and the 1-D histogram
fingerprint. Finally, a case study of leveraging “discovery by
example” technique in real-time streaming system monitoring
is discussed.

A. Data Collection and the Test Benchmark

We generate the example repository for our experiments by
randomly selecting 161 software packages from the Linux yum
repository, installing them on an Amazon Web Service (AWS)
EC2 Fedora-19 Micro instance by using the yum utility, and
recording the system changes during each of the installation
process. In installation, software package dependencies are
resolved and installed as well. Different software packages
usually share common dependencies, so some dependencies
that are needed by the current software may have already been
installed during previous installations of other software. Thus,
when we install a batch of software, changing the order of the

software package installation affects files added or modified
into each change set. Furthermore, there might be changes
made from other unrelated activities happening in parallel of
the installation. All these conditions introduce variations in the
change set corresponding to a software installation. In order
to capture this variation in our experiments, each software is
installed three different times when we generate the repository,
with various dependencies and unrelated activities during each
of them. Then we randomly select 89 software from the 161
available packages in repository to create our test benchmark.
We install each of them once and record the change set.

We use the percentage of false discard and the average
percentage of total discard to evaluate the accuracy and effi-
ciency of our approach. The percentage of false discard, i.e.,ηf
is defined as the percentage of 89 tests whose target candidates
in the repository are put in the discard set. As these 89 test
software are selected from 161 software in repository, each of
them has one target candidate. High ηf represents high false
discard rate, thus, low accuracy. On the other hand, an over-
permissive discard filter could include too many candidates in
the candidate set, and thus provide low value for early discard.
Therefore, we define the average percentage of total discard,
i.e., ηt to measure the efficacy of the filter. For each test i,
the percentage of total discard, i.e., βi is calculated as the size
of the discard set, i.e., SD

i divided by the total number of
the events in the repository (in our case equals to 161), i.e.,
βi = SD

i /161 ∗ 100%. Then ηt is computed as the average

value of βi across 89 tests, i.e. ηt =
89∑
i=1

βi/89. In addition,

we also measure the size of the repository and the average
processing time of the test, to help evaluate the efficiency of
our approach.

B. Early Discard with Base-name Fingerprint

We evaluate the performance of early discard on our
designed test benchmark, using the base-name instance fin-
gerprint, with various similarity thresholds θbn. The results of
the percentage of false discard, the average percentage of total
discard and the average processing time of the test are shown
in Figure 7(a) to Figure 7(c), respectively. From Figure 7(a)
and Figure 7(b) we can see that when θbn increases, both the
percentage of false discard and the average percentage of total
discard increase. This is as expected, as a larger similarity
threshold requires candidates to have more matching base-
names to pass the filter, and as a result, more candidates are
discarded. Figure 7(c) shows that the average processing time
of the test keeps around 33 milliseconds, and does not vary
much with different θbn. While determining a good θbn, a
low percentage of false discard is first required, and then a
high average percentage of total discard is expected, as a very
large candidate set after the filter leads to too many candidates
being sent to the next layer, and therefore causes low efficiency.
If an tolerable percentage of false discard is 10%, then both
θbn = 50% and θbn = 60% satisfy this requirement from
the figure, and with the average percentage of total discard
as 55.3% and 74.5%, respectively. The similarity threshold,
furthermore, can be automatically trained and updated, based
on different accuracy and performance requirements, following
the updates of the repository, so that the threshold is able to
be always well tuned, to suit for different requirements and
purposes in general.



50% 60% 70% 80% 90%
0

20

40

60

80

100

Similarity Threshold

P
e
rc

e
n
ta

g
e
 o

f 
F

a
ls

e
 D

is
c
a
rd

 (
%

)

% of False Discard Via Similarity Threshold
by Base−name Instance Fingerprint

(a)

50% 60% 70% 80% 90%
0

20

40

60

80

100

Similarity Threshold

A
v
g
. 
P

e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
D

is
c
a
rd

 (
%

)

Avg. % of Total Discard Via Similarity Threshold
by Base−name Instance Fingerprint

(b)

50% 60% 70% 80% 90%
0

10

20

30

40

50

60

Similarity Threshold

A
v
g

. 
Q

u
e

ry
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

Avg. Query Time Via Similarity Threshold
by Base−name Instance Fingerprint

(c)

2% 5% 6% 7% 8% 10%
0

10

20

30

40

50

60

Distance Threshold

P
e

rc
e

n
ta

g
e

 o
f 

F
a

ls
e

 D
is

c
a

rd
 (

%
)

% of False Discard Via Distance Threshold
by 1−D Histogram Instance Fingerprint

(d)

2% 5% 6% 7% 8% 10%
0

20

40

60

80

100

Distance Threshold

A
v
g
. 
P

e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
D

is
c
a
rd

 (
%

)

Avg. % of Total Discard Via Distance Threshold
by 1−D Histogram Instance Fingerprint

(e)

2% 5% 6% 7% 8% 10%
0

2

4

6

8

10

Distance Threshold

A
v
g

. 
Q

u
e

ry
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

Avg. Query Time Via Distance Threshold
by 1−D Histogram Instance Fingerprint

(f)

Fig. 7. The early discard performance by using the base-name instance fingerprint (a, b, c), via different similarity thresholds, and by using the 1-D histogram
instance fingerprint (d, e, f), via different distance thresholds, (a) and (d) are results of the percentage of false discard. (b) and (e) are results of the average
percentage of total discard, (c) and (f) are the average query processing time. The results are measured based on 89 test software installations.

In addition, we measure the size of the repository (161
software with each installed by three times, thus, in total 483
samples). The storage size of using the base-name instance
fingerprint is 11MB, which is 28 times smaller than saving all
the change sets. Overall, the results show that when applying
the base-name fingerprint, an early discard filter can discard
more than half of the total candidates, while at the same time
guaranteeing that the probability of the false discard is less
than 10%. Also, the processing speed is fast and the storage
size of the base-name fingerprint is small.

C. Early Discard with 1-D Histogram Fingerprint

While using the 1-D histogram fingerprint to represent the
change set, the histogram bin number (i.e., the dimension of
the fingerprint) not only affects the accuracy of discovery, but
also affects the size of repository and the query processing
speed. Hence, we test the 1-D histogram fingerprint approach
with different selections of the histogram bin number. Figure 8
shows the results of the percentage of false discard (Fig. 8(a)),
the average percentage of total discard (Fig. 8(b)), and the
average query processing time (Fig. 8(c)) of the 89 software
installation tests, at a fixed distance threshold θ1D = 5%. The
size of the repository of storing 483 1-D histogram instance
fingerprints is shown in Figure 8(d).

Results show that as the number of bins is increased, both
the percentage of false discard and the average percentage
of total discard first increase rapidly, and then saturate after
certain points. The increase of the average percentage of total
discard is close to a step function, which means a very small

0 200 400 600 800 1000 1200
5

10

15

20

25

% of False Discard (%)

Number of Bins

(a)

0 200 400 600 800 1000 1200
95

96

97

98

99

100

Avg. % of Total Discard (%)

Number of Bins

(b)

0 200 400 600 800 1000 1200
0

5

10

15

20

Avg. Query Processing Time (ms)

Number of Bins

(c)

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

Size of Storage (kB)

Number of Bins

(d)

Fig. 8. The early discard performance by using the 1-D histogram instance
fingerprint, via different number of bins used in histogram generation. (a) is
the percentage of false discard, (b) is the average percentage of total discard,
(c) is the average query processing time and (d) is the size of the storage
of all the fingerprints. The results are measured based on 89 test software
installations. The distance threshold used here is 5%.

number of bins can achieve fairly high average percentage of
total discard, e.g., using 10 bins leads to an average percentage
of total discard larger than 95%. In addition, both the average



0 20 40 60 80 100
50

60

70

80

90

100
Avg. % of Total Discard via % of False Discard

Percentage of False Discard (%)

A
v
g
. 
P

e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
D

is
c
a
rd

 (
%

)

 

 

Base−name

1−D Histogram

Fig. 9. The curve of the average percentage of the total discard via the
percentage of false discard, by using the base-name fingerprint and the 1-D
histogram fingerprint.

query processing time and the size of the storage of the 1-D
histogram instance fingerprints increase accompanied with the
growth of the number of histogram bins used. The average
query processing time increases slowly and is not sensitive to
the number of bins. However, the size of the storage increases
notably at a linear trend with a steep slope. Overall from
Figure 8, we conclude that neither a small nor a large number
of bins is the good choice. If the number of bins is too
small and close to 0, it leads to a low average percentage
of total discard that is close to 0 and the system is useless;
if the number of bins is large, the average percentage of total
discard is not improved much, while the percentage of false
discard, the average query processing time and the size of the
storage required are all increased. Based on observations, a
good choice of the number of bins used is estimated to be
between 10-50.

With the selected number of bins as 20, then we test
the performance of using the 1-D histogram fingerprint under
different selections of the distance threshold θ1D. We again
query the fingerprints of 89 test software in our test benchmark
and measure the percentage of false discard, the average
percentage of the total discard, and the average processing time
of the test, shown in Figure 7(d) to Figure 7(f). Figure 7(d) and
Figure 7(e) show that when θ1D increases, both the percentage
of false discard and the average percentage of the total discard
decrease. This is as expected, as a larger distance threshold
allows more candidates with larger distances to the query
fingerprint to pass the filter, and as a result, leads to fewer
candidates being discarded. Figure 7(f) shows that the average
query processing time by using the 1-D histogram fingerprint
keeps around 6.7 milliseconds, and does not vary much with
different θ1D. Similar to the similarity threshold, the distance
threshold can be trained and updated automatically. In addition,
the size of the repository by using the 1-D histogram finger-
print is 88 KB, which is 3500 times smaller than saving all the
change sets. Overall, the results show that when applying the
1-D histogram fingerprint, an early discard filter can discard
more than 90% of the total candidates while at the same time
guaranteeing that the probability of the false discard is less
than 5%, which is fairly efficient. Also the processing speed is
very fast and the storage size of the 1-D histogram fingerprint
is tiny.

Finally, we compare the performance of the early discard

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

Percentage of False Discard (%)

A
v
g
. 
P

e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
D

is
c
a
rd

 (
%

)

Avg. % of Total Discard via % of False Discard
Partial Example, Base−name Fingerprint

 

 

20%

40%

60%

80%

100%

(a)

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

Percentage of False Discard (%)
A

v
g
. 
P

e
rc

e
n
ta

g
e
 o

f 
T

o
ta

l 
D

is
c
a
rd

 (
%

)

Avg. % of Total Discard via % of False Discard
Partial Example, 1−D Histogram Fingerprint

 

 

20%

40%

60%

80%

100%

(b)

Fig. 10. The curve of the average percentage of the total discard, via the
percentage of false discard, under different partial values (20% -100%). (a) is
of the base-name fingerprint and (b) is of the 1-D histogram fingerprint.

by using the base-name fingerprint with that of using the 1-
D histogram fingerprint. Figure 9 presents the curve of the
average percentage of total discard versus the percentage
of false discard for both types of fingerprints. For an early
discard filter, it is desirable to have a small percentage of
false discard and a large average percentage of total discard.
From Figure 9 we can see that the performance of using the
1-D histogram fingerprint outperforms that of using the base-
name fingerprint. For example, when we keep the percentage
of false discard lower than 7% in both cases, using the 1-
D histogram fingerprint provides the average percentage of
total discard up to 97.3%, while that of using the base-name
fingerprint is only up to 55.3%, which shows that using the 1-D
histogram fingerprint is much more efficient. Furthermore, the
1-D histogram fingerprint is more condensed than the base-
name fingerprint, with the size of storage of 483 instance
fingerprints as 88KB versus 11MB, which is around 125 times
saving. The query processing speed of using the 1-D histogram
fingerprint is also 5 times faster than using the base-name
fingerprint (6.7 ms versus 33 ms). Thus, to sum up, using the
1-D histogram fingerprint in discovery achieves both higher
efficiency and higher accuracy.

D. A Case Study: Discovery by Example in Real-Time Stream-
ing System Monitoring

Today, we have islands of information regarding system
instances, vulnerabilities in databases like National Vulnera-
bility Database, and fixes to these vulnerabilities in providers’



repositories, etc. If we close the loop between these islands, we
could then make running infrastructure more secure. As part
of this closed loop, we need to have the capability to block
unwanted changes propagating through running infrastructures.
This requires us to monitor changes happening in systems in
real time, detect and stop anomalous system changes. In order
to do this, we need to be capable of discovering system changes
and events with only partial information of them, as it might
be too late to avoid vulnerabilities and malicious changes if
we wait for the anomalous changes being completed and the
full change set being created.

In this case study, we evaluate the performance of our pro-
posed fingerprint based “discovery by example” technique in
real-time streaming system monitoring. More specifically, we
want to see that given partial change sets for query, whether
our approach is still able to efficiently search for similar
candidates throughout the repository and identify the query
example. We apply both the base-name instance fingerprint
and the 1-D histogram instance fingerprint representations, and
compare their performance. The query examples in this case
are partial change sets3 of 89 software installations in our test
benchmark. We evaluate the results of different partial values,
from 20% to 100%. 20% means that we only have a small
part (20%) of the full change set, and 100% represents the
full change set.

Figure 10(a) and Figure 10(b) present the curves of the
average percentage of total discard versus the percentage of
false discard, with each curve representing a partial value
(20% -100%), by using the base-name fingerprint and the 1-
D histogram fingerprint respectively. These figures show that
when the partial value is small (e.g., 20%), neither two types of
fingerprints provides good performance in discovery. This is as
expected, as only having such tiny information is not sufficient
for identifying the example. When the partial value increases,
the performance of the discovery is getting improved.

The curve of the base-name fingerprint saturates fast -
the performance of the 40% partial value has already been
close to that of using the full query change set (100% partial
value), which shows that the discovery of using the base-
name fingerprint is not very sensitive to the partial value,
as long as the partial value is not too small (less than
40%). Having a large partial value, in addition, sometimes
may involve larger noise that affects the discovery, thus even
leads to a decrease of the discovery performance. For the 1-
D histogram fingerprint, the performance of discovery keeps
improving following the increase of the partial value, which
means that the 1-D histogram fingerprint is sensitive to the
partial value. Comparing these two figures, we can further
see that when the partial value is large (80% and 100%),
using the 1-D histogram fingerprint has a better discovery
performance, and when the partial value is small (40% and
60%), using the base-name fingerprint outperforms using the 1-
D histogram fingerprint. Therefore, in the real-time streaming
system monitoring, applying these two types of fingerprints in
a complementary way can improve the overall performance:

3Features in the partial change set are not randomly picked out from the
original full change set, instead, they are continuous in the time sequence, and
together form as a piece of the original full change set. They are recorded
during a partial time period of the full application installation, namely, they
are generated in a real-time streaming way.

when the query is a small piece of the full change set, the
base-name fingerprint is applied for discovery, and when the
partial value is getting larger, we switch to apply the 1-D
histogram fingerprint.

Overall, the results show that our “discovery by example”
approach with proposed fingerprints can still be highly efficient
and accurate, when only partial query samples are accessible.
These results present the great potential of our approach being
applied in a real-time streaming system monitoring context.
Meanwhile, they also help demonstrate the robustness of the
approach.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed applying the “discovery by
example” approach to detect and identify changes to system
instances in the cloud. We introduced a filter cascade discovery
structure and specifically studied the early discard filter. We
have also proposed two types of highly condensed fingerprints
(the base-name fingerprint and the 1-D histogram fingerprint)
to represent the system changes in early discard. Experimental
results show that by applying our fingerprints, the early discard
filter can discard up to 90% of unrelated candidates while
guaranteeing that the probability of the false discard is less
than 5%. In addition, the processing speed is less than 10
milliseconds for each query and the storage space required
of saving examples is reduced by up to 3500 times. Further
results in the case study show that our proposed approach can
still keep high efficiency and accuracy while the query samples
are partial, and thus is suitable for real-time streaming system
monitoring. In particular, we have shown that our condensed
1-D histogram can perform better for full fingerprints, while
the base-name fingerprints are more suitable for realtime,
streaming detection. Overall, our approach can automatically
detect and identify system changes from examples. It does
not require any specific knowledge or manual processing. It is
distortion resistant, fast, storage efficient, and can be used to
identify various forms of system changes.

Our ongoing work includes the following. First, both
fingerprints that we have designed so far take only base-names
of file features into consideration. We believe that a fingerprint
that takes into account other file attributes may have more
discriminating power, which would be suitable for filters after
the early discard. To incorporate additional attributes, multi-
dimensional histogram fingerprints can be constructed, with
each dimension representing one type of metadata. Also, while
current work focuses on file features, we believe this approach
can easily accommodate other features, such as processes,
configuration, connections, and their relationship. Though the
processing speed and the storage efficiency may decrease by
taking all of them into account, it is still suitable for filters
after the early discard, as which are supposed to take more
details into account, and be more tolerable for the processing
speed and the storage size than the early discard filter.

Second, we are testing the effectiveness of our approach on
other use cases besides discovering software installations, such
as discovering software updates and system reconfigurations.
For example, our early results show that the fingerprint based
“discovery by example” approach is capable of distinguishing
the same software but with different versions, and as a result,
software updates can be accurately discovered.



Third, in this work, detection of similar fingerprints and
identification of the query are based on comparing the query
fingerprint with all instance fingerprints in the repository. We
would like to explore whether we could synthesize a more effi-
cient family fingerprint rather than a simple set of the instance
fingerprints, so the processing speed and the storage efficiency
can be further improved. In future, we plan to explore more
machine learning algorithms such as SVM, decision trees and
neural networks for the fingerprint classification and detection.

REFERENCES

[1] Endpoint manager relevance language guide.
http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc

8.2/Relevance Guide PDF.pdf.
[2] National vulnerability database. http://nvd.nist.gov/.
[3] Open source software discovery. http://ossdiscovery.sourceforge.net.
[4] Openioc. http://www.openioc.org/.
[5] Search by image. http://www.google.com/insidesearch/features/images/

searchbyimage.html.
[6] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and

object recognition using shape contexts. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(4):509–522, 2002.

[7] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B Woodard, and
Hans Andersen. Fingerprinting the datacenter: automated classification
of performance crises. In Proceedings of the 5th European conference
on Computer systems, pages 111–124. ACM, 2010.

[8] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence
Kelly, and Armando Fox. Capturing, indexing, clustering, and retrieving
system history. In ACM SIGOPS Operating Systems Review, volume 39,
pages 105–118. ACM, 2005.

[9] Marios D Dikaiakos, Asterios Katsifodimos, and George Pallis. Min-
ersoft: Software retrieval in grid and cloud computing infrastructures.
ACM Transactions on Internet Technology (TOIT), 12(1):2, 2012.

[10] Geoffrey A. Fowler. One-minute review: Amazons flow image
recognition beats barcode scans. The Wall Street Journal,
http://blogs.wsj.com/digits/2014/02/05/one-minute-review-amazons-
flow-image-recognition-beats-barcode-scans/?mod=WSJBlog, 2014.

[11] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, Mahadev
Satyanarayanan, Gregory R Ganger, Erik Riedel, and Anastassia Aila-
maki. Diamond: A storage architecture for early discard in interactive
search. In FAST, volume 4, pages 73–86, 2004.

[12] Frederick Jelinek. Statistical methods for speech recognition. MIT
press, 1997.

[13] Joshua Redstone, Michael M Swift, and Brian N Bershad. Using
computers to diagnose computer problems. In HotOS, pages 86–91,
2003.

[14] Yong Rui, Thomas S Huang, and Shih-Fu Chang. Image retrieval:
Current techniques, promising directions, and open issues. Journal of
visual communication and image representation, 10(1):39–62, 1999.

[15] Mahadev Satyanarayanan, Wolfgang Richter, Glenn Ammons, Jan
Harkes, and Adam Goode. The case for content search of vm clouds.
In Proceedings of the 2010 IEEE 34th Annual Computer Software and
Applications Conference Workshops, pages 382–387, 2010.

[16] Steve Schwartz. Organizing and Editing Your Photos with Picasa:
Visual QuickProject Guide. Peachpit Press, 2005.

[17] Avery Wang. The shazam music recognition service. Communications
of the ACM, 49(8):44–48, 2006.

[18] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosen-
feld. Face recognition: A literature survey. ACM Computing Surveys
(CSUR), 35(4):399–458, 2003.


